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ABSTRACT 14 

 Phylogenetic inference requires a means to search phylogenetic tree space. This is usually 15 

achieved using progressive algorithms that propose and test small alterations in the current tree 16 

topology and branch lengths. Current programs search tree topology space using branch-17 

swapping algorithms, but proposals do not discriminate well between swaps likely to succeed or 18 

fail. When applied to datasets with many taxa, the huge number of possible topologies slows 19 

these programs dramatically. To overcome this, we developed a statistical approach for proposal 20 

generation in Bayesian analysis, and evaluated its applicability for the problem of searching 21 

phylogenetic tree space. The general idea of the approach, which we call ‘Markov katana’, is to 22 

make proposals based on a heuristic algorithm using bootstrapped subsets of the data. Such 23 

proposals induce an unintended sampling distribution that must be determined and removed to 24 

generate posterior estimates, but the cost of this extra step can in principle be small compared to 25 

the added value of more efficient parameter exploration in Markov chain Monte Carlo analyses. 26 

Our prototype application uses the simple neighbor-joining distance heuristic on data subsets to 27 

propose new reasonably likely phylogenetic trees (including topologies and branch lengths). The 28 

evolutionary model used to generate distances in our prototype was far simpler than the more 29 

complex model used to evaluate the likelihood of phylogenies based on the full dataset. This 30 

prototype implementation indicates that the Markov katana approach could be easily 31 

incorporated into existing phylogenetic search programs and may prove a useful alternative in 32 

conjunction with existing methods. The general features of this statistical approach may also 33 

prove useful in disciplines other than phylogenetics. We demonstrate that this method can be 34 

used to efficiently estimate a Bayesian posterior.   35 

 Key words: phylogenetics, tree search, Bayesian, bootstrap 36 
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INTRODUCTION 37 

Phylogenetic inference has long played a pivotal role in molecular evolution and evolutionary 38 

genomics (e.g. Felsenstein 2004; Vonk 2013; Fukushima 2017). It provides unique information 39 

about gene and protein interactions (Wang 2005; Hackett 2007; Reyes-Prieto 2007; Craig 2007) 40 

and is critical for detecting adaptive bursts and functional divergence (e.g. Castoe 2008; Castoe 41 

2009). Despite its importance, phylogenetic inference is difficult partly because searching tree 42 

space is an NP-hard problem (Bodlaender 1992; Brocchieri 2001). Distance-based methods such 43 

as neighbor-joining (NJ; (Saitou 1987)) are fast and often provide good approximate results but 44 

are considered less reliable than the computationally expensive (Hershkovitz 1998; Takahashi 45 

2000; Whelan 2001) likelihood-based methods (maximum likelihood, ML, and Bayesian or 46 

posterior probability, PP). While distance methods generate a single tree using heuristic 47 

approaches, likelihood methods must search tree space, generally by running an optimization 48 

scheme or Markov chain Monte Carlo (MCMC). Tree space is often searched using various 49 

forms of branch swapping (Felsenstein 1981; Huelsenbeck 1997, 2001; Sullivan 2005; 50 

Anisimova 2006). A cautious approach to interpreting results from traditional branch-swapping 51 

algorithms is warranted, particularly for trees with sequences from many taxa (Mossel 2005).  52 

 The principle confounding effect in phylogenetic inference is that multiple substitutions 53 

may occur at the same site. Distance-based methods are inferior to likelihood-based methods in 54 

accurately inferring multiple substitutions (Felsenstein 1984; Huelsenbeck 1996; Xia 2006). 55 

Distance-based methods are also far more strongly biased by long-branch attraction and cannot 56 

fully incorporate the advantages of site-specific models of evolution (Huelsenbeck 1995, 1997; 57 

Pollock 1998). Another major class of phylogenetic analysis, based on the principle of maximum 58 

parsimony, will not be considered here because parsimony methods are far slower than distance 59 
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methods, and they do not accurately model evolutionary processes despite having the same 60 

biases and inaccuracies as distance methods. The computational limitations of likelihood-based 61 

methods become far more severe with large amounts of sequence data from highly diverse sets 62 

of organisms (Pollock 2000; Sanderson 2003; A. J. de Koning 2010). For example there are 63 

2.75*1076 possible topologies relating 50 taxa (Felsenstein 2004), making exhaustive approaches 64 

impossible. Branch-and-bound searches can reduce the tree space to be examined for smaller 65 

trees but are insufficient for large datasets because the number of tree topologies is still too large 66 

(Hendy 1982). Thus, heuristic searches must be used for large trees, evaluating trees that are 67 

proximal to reasonably likely trees that have already been found. These searches are currently 68 

often performed using branch-swapping algorithms such as nearest-neighbor interchange (NNI), 69 

subtree pruning and regrafting (SPR) and tree bisection and reconnection (TBR) (e.g. Ronquist 70 

2003; Salemi 2009).  The number of NNI, SPR, and TBR neighbors of any topology increase 71 

respectively as linear, quadratic, and cubic functions of the number of taxa, and the trees 72 

proposed are not necessarily of similar likelihood to the known tree. Therefore, many highly 73 

improbable trees are evaluated in branch-swapping algorithms, and the correct solution is not 74 

guaranteed due to the presence of local optima in tree space (Mossel 2005). Branch length 75 

optimization (or posterior equilibration) must also be performed after branch swapping and is an 76 

additional source of computational cost. 77 

 Several heuristic approaches have been developed to release tree searches from local 78 

optima. Ratchet methods employ multiple initial trees perturbed by bootstrap resampling to 79 

ensure a less-overlapping tree space in subsequent optimizations using branch swapping (Nixon 80 

1999; Vos 2003). The partial stepwise addition (PSA) approach enables escape from local 81 

optima by removing some taxa during the topology search (Whelan 2007). Simulated annealing 82 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/250951doi: bioRxiv preprint 

https://doi.org/10.1101/250951
http://creativecommons.org/licenses/by/4.0/


  MARKOV KATANA 

5 
 

(SA; Kirkpatrick 1983) and Metropolis-coupled Markov chain Monte Carlo (MCMCMC; Geyer 83 

1991) manipulate a likely range of proposed tree acceptances in a single heuristic search or in 84 

multiple interacting chains, respectively. Genetic algorithms (GAs) simulate the population 85 

dynamics of tree topologies using likelihood as a fitness parameter (Matsuda 1995). These 86 

methods outperform simple heuristic searches in at least some contexts. All approaches listed 87 

above employ branch swapping to explore tree space and therefore suffer from inefficiency due 88 

to the decoupling of topology proposals from the likelihoods of the topologies. 89 

 Here we consider whether the beneficial features of Bayesian analyses under relatively 90 

complex models can be profitably combined with the speed of distance methods based on 91 

relatively simple models. The key to our approach is that rather than using branch swapping to 92 

explore phylogenetic tree space, distance-based trees predicted from partially sampled sequences 93 

are used. We use Markov chain Monte Carlo (MCMC) and a Metropolis-Hastings algorithm in 94 

which new steps in the chain are proposed based on bootstrap resampling a proportion of the 95 

current sequence sample. Heuristic phylogenetic trees based on the new sample are created using 96 

NJ and the likelihoods of the new trees are evaluated using the full sequence dataset and the 97 

mtMam model (Yang 1998). The unwanted sampling distribution induced by the NJ proposal 98 

mechanism is estimated by running the proposal mechanism without calculating the likelihoods 99 

of the proposed trees. The posterior is then corrected for this sampling distribution. We evaluated 100 

the effect of different site sample sizes used to generate the NJ trees (sample size) and different 101 

resample proportions (jump size). 102 
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MATERIALS AND METHODS  103 

Mitochondrial Sequences 104 

 The 495 amino acid COI 1249-taxon mitochondrial gene alignment from Goldstein et al 105 

was used (Goldstein 2015). 10 taxa were arbitrarily selected from the alignment to use for testing 106 

and are shown in Table 1.  107 

Program Details 108 

 A Perl program, MarkovKatana, was written to implement the Markov chain 109 

bootstrapping algorithm. MarkovKatana takes multiple sequence alignments in the fasta format 110 

and outputs phylogenetic trees in the Newick format, along with likelihood values. Another 111 

program Forest was written to analyze the trees generated by MarkovKatana to calculate tree 112 

and branch frequencies. MarkovKatana and Forest were tested on and are compatible with 113 

current Unix-based operating systems as well as Windows. The program PAML was used to 114 

calculate the likelihoods for the trees using the entire alignment of 495 amino acids (Yang 2007).  115 

Branch Prior Calculations 116 

 Branch priors were calculated as 117 

 , (1) 118 

where  and  are respectively the number of possible rooted and unrooted topologies with x 119 

taxa, N is the total number of taxa being evaluated, and s is the smaller number of taxa that are 120 

segregated on one side or the other of branch (Pickett 2005). 121 

P B1 | N , sl( ) = Ts
r *TN−s

r

TN
u

Tx
r Tx

u

Bb
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Modifying Implementation of NJ in Markov Katana to Improve Branch 122 

Length Estimation 123 

 In initial runs, the NJ algorithm often generated unrealistically short branches, so to 124 

counteract this we lengthened the shortest branches by adding a random number from 0 to 2 125 

substitutions (a branch length increase of 0 to 2/495). This limited the effect of these implausibly 126 

short branches in the proposal mechanism. Short branches were still possible, but extremely 127 

short branches were not as likely to be proposed.  128 

RESULTS 129 

Details of the Markov Katana Implementation 130 

 A bootstrap sampling procedure (Felsenstein 1985; Zharkikh 1995) was employed to 131 

sample sites in the alignment that were then used to calculate distance matrices. Although 132 

complete and partial bootstrapping has been used extensively in phylogenetic studies to evaluate 133 

branch support and tree confidence (Efron 1996; Alfaro 2003), we used it solely to generate a 134 

broad distribution of reasonably likely trees based on the NJ heuristic. Note that while partial 135 

sampling is more common when employing the related jackknife approach, bootstrapping 136 

approaches such as that employed here sample with replacement, rather than without 137 

replacement as in the jackknife. Depending on the number of sites sampled (the sample size), 138 

trees produced from partial sequence samples can be quite different from the ML tree of the 139 

entire alignment and considerably less likely (Castoe 2009). Evaluating the posterior distribution 140 

with an importance sampling approach using these trees is not feasible because the extreme 141 

variation in likelihoods among trees means that a few trees would dominate the weighted 142 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/250951doi: bioRxiv preprint 

https://doi.org/10.1101/250951
http://creativecommons.org/licenses/by/4.0/


  MARKOV KATANA 

8 
 

importance sampling average (Kuhner 1995). Instead, it is necessary to use a progressive 143 

Markov chain approach to evaluate the posterior, such as the Metropolis-Hastings algorithm 144 

(Hastings 1970), in which the proposed sample depends on the current sample (Fig. 1). Only a 145 

fraction of sites is resampled in each generation of the chain. The NJ tree generated from the 146 

proposed sample updates both 147 

branch lengths and topology 148 

simultaneously, and the 149 

likelihood of this proposal was 150 

then calculated on the full 151 

alignment. The number of sites 152 

resampled was uniform 153 

randomly chosen up to some 154 

maximum, which we will call 155 

the ‘jump size’.  156 

Posterior Calculations 157 

 To obtain the posterior, the uncorrected distribution of trees after the initial Markov 158 

katana (MK) run must be corrected for the bias induced by the proposal mechanism. In these 159 

runs, the sample size as a fraction, f, and the jump size, j, were variable parameters and differed 160 

among runs as specified. For a given sampled generation, k, the alignment sample at that 161 

generation produced a NJ genealogy, , with topology, Ti . The proportion of times that each 162 

different topology was produced by the chain out of K sampled generations in the chain is an 163 

estimator of the uncorrected posterior for a given sample size, f, or 164 

Gk

 

 
Figure 1. Flow of the Markov katana procedure. 
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  , (2) 165 

where  is a delta function equal to 1 if  has topology Ti  and otherwise 0. To obtain 166 

the corrected topology posterior, C Ti( ) , we first estimate the topology sampling bias  167 

induced by NJ proposals with sampling fraction f, by sampling K’ genealogies from a separate 168 

chain in which all proposals are accepted, to obtain 169 

 . (3) 170 

 We note that this procedure is identical to obtaining a NJ partial bootstrap, but by running 171 

the Markov chain with a given jump size we can obtain the connectedness among topologies, 172 

providing a natural topological distance measure.  173 

 We then recognize that 174 

 , (4) 175 

where , , and , are the likelihood, the genealogy sampling bias induced by 176 

NJ proposals with sampling fraction f, and the prior, respectively. Here we assume a flat prior 177 

across all tree topologies. The next step is to divide the uncorrected topology posterior by the 178 

sampling distribution induced by the proposals to obtain 179 

 . (5) 180 

We normalized the corrected posteriors by dividing by the sum of all corrected posteriors over 181 

all topologies sampled.  182 

 It may sometimes be useful and possibly more accurate to calculate branch (a.k.a. a 183 

Û f Ti( ) = 1
K

δ Ti ,Gk( )
k=1

K

∑

δ Ti ,Gk( ) Gk

β̂ f Ti( )

β̂ f Ti( ) = 1
ʹK

δ Ti ,G ʹk( )
ʹk =1

ʹK

∑

U f Ti( )∝β f Ti( ) L Gk( )P Gk( )∫ •δ Ti ,Gk( ) = β f Ti( )C Ti( )

L Gk( ) β f Gk( ) P Gk( )

Ĉ Ti( )∝Û f Ti( )
β̂ f Ti( )
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species bi-partition, or edge) posteriors directly over the sample of trees,  184 

 , (6) 185 

where  is a delta function equal to 1 if  has branch , and otherwise 0.  The ~ 186 

symbol indicates that the branch uncorrected posteriors were calculated directly. In this case, it is 187 

necessary to appropriately adjust for the sampling distribution on the branch induced by 188 

topological constraints (Pickett 2005), which is contained in both  and a similarly 189 

obtained 190 

 . (7) 191 

  This prior is put back into the posterior calculation as  192 

 , (8) 193 

where  is the prior probability of branch  induced by topological structures, N is 194 

the total number of extant species in the tree, and  is the smaller number of species that are 195 

partitioned to one side of branch .  can be calculated directly (see Methods).  196 

Implementation of the Markov katana 197 

!U f Bl( ) = 1
K

δ Bl ,Gk( )
k
∑

δ Bl ,Gk( ) Gk Bl

!U f Bl( )

!β f Bl( ) = 1
ʹK

δ Bl ,G ʹk( )
ʹk =1

ʹK

∑

Ĉ Bl( )∝
!U f Bl( )

!β f Bl( )
*P Bl | N , sl( )

P Bl | N , sl( ) Bl

sl

Bl P Bl | N , sl( )
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 We began by analyzing a 10-taxon Cytochrome C Oxidase subunit 1 (COI) amino acid 198 

alignment (495 residues) that was chosen so that there would be a moderate level of topological 199 

uncertainty in the posterior (Fig. 2). Preliminary evaluations indicated that NJ trees on 200 

bootstrapped data have a distribution of topologies that are relatively similar among distance 201 

types (Sup. Fig. S1). Although there is considerable noise to the estimates for very small 202 

frequencies, and there is a slight shift towards higher frequencies with the Markov katana 203 

difference NJ, overall the two measures have a nearly linear relationship. This gave us 204 

confidence that NJ trees based on differences rather than corrected distances might be 205 

sufficiently accurate for our purposes, so to keep the NJ calculations as simple and fast as 206 

possible for initial testing, distances were generated using the simple difference matrix. The 207 

likelihood of the proposed tree topology and branch lengths were then evaluated using the 208 

mtMam substitution rate model (Yang 1998) on the entire sequences. Continuing to keep things 209 

 
Figure 2. An example phylogenetic tree for the 10-taxon dataset. A tree for the 495 amino acid Cytochrome 
C Oxidase subunit 1 (COI) alignment used in initial analyses, including posterior probabilities. The posteriors 
were calculated using Mr. Bayes. Given the intentionally limited data used here for the purpose of testing the 
Markov katana method, this tree should not be interpreted as being a ‘true’ or species tree.  
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simple for initial testing, we used a flat prior, although we imagine that most future 210 

implementations will want to incorporate other priors here, such as the commonly used 211 

exponential priors on branch lengths (Yang 2005).  212 

 To understand the differences in topology sampling bias estimates obtained using 213 

different sample sizes, f, Markov katana was run with sample fractions ranging from 100% (495 214 

sites) down to 20% (99 sites). The topology sampling biases for smaller f become somewhat 215 

more even, with the least frequent topologies about 10x more frequent for f = 20% than for 216 

f=100% (Fig. 3). At the same time, the number of topologies with sampling probabilities greater 217 

than 10-6 increased from 218 

5,975 for f=100% to 219 

21,198 for f = 20%. 220 

Predictably, comparisons 221 

of replicate sampling 222 

distribution runs indicated 223 

an increasing variance in 224 

estimated biases with 225 

decreasing probabilities in 226 

the runs (Fig. S2).  227 

 The posterior 228 

correction (Equation 5) 229 

appears to work well 230 

across a broad range of 231 

sample sizes (Fig. 4). The 232 

 
Figure 3. Relative sampling distributions estimations comparing 
different sample sizes. Sample size 1.0 sampling distribution versus the 
sampling distributions of sample size a) 0.95, b) 0.6, c) 0.4, d) 0.2. The 
blue line indicates where x and y values are equal. The sampling 
distributions were averaged over triplicate runs of 1,000,000 generations 
and used a jump size of 0.1. 
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corrected topology 233 

posteriors for sample 234 

fractions from 20% 235 

to 95% were all 236 

highly correlated 237 

with the topology 238 

posteriors for sample 239 

size 100%. It should 240 

be noted that the 241 

uncorrected 242 

posteriors are only 243 

slightly less 244 

correlated with each 245 

other than are the 246 

corrected posteriors 247 

(Fig. S3), meaning 248 

that the answer would have been similar without the correction. It is probably best to use the 249 

correction anyway, because in more complicated situations it may make more of a difference, 250 

and it is not too much trouble to obtain and is correct.  251 

 The corrected posterior estimates appear to be most noisy when the sampling distribution 252 

estimate is small and therefore poorly estimated. This is not entirely surprising given that the 253 

sampling distribution is in the denominator. Because the sampling distribution calculations are 254 

computationally inexpensive (they do not require a likelihood calculation), it is possible to obtain 255 

 
Figure 4. Corrected posteriors are linear over a wide range of sample sizes. 
Sample fraction 1.0 posterior distribution versus the posterior distributions of 
sample fractions a) 0.95, b) 0.6, c) 0.4, and d) 0.2. The X = Y line is shown in 
blue. The uncorrected posteriors were averaged over triplicate runs of 50,000 
generations and used a jump size of 0.1. The sampling distributions used for the 
correction were from Figure 3.  
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a couple orders of magnitude more data for them than for the uncorrected posterior estimates. 256 

While estimating the sampling distribution more precisely is important for the correction, many 257 

of the trees examined have topologies that are not found in the posterior. A potential means to 258 

increase accuracy of relevant topologies in the sampling distribution is to limit the sampling prior 259 

chains to those topologies seen in the uncorrected posterior.  260 

Effect of Sample Fraction and Jump Size on the Markov Chain 261 

 Although the posterior estimates were comparable for all sample sizes, it is still 262 

worthwhile to consider the effect of both sample size and jump size on the mixing efficiency of 263 

the Markov chain. For a range of 264 

conditions considered, the acceptance 265 

probability for Markov chain proposal 266 

varied from 10% to 90% (Fig. 5). We 267 

chose 100% sample size bootstraps 268 

for the NJ proposals along with a 269 

jump size of 50 (10%) as standard 270 

reference conditions, which had 271 

acceptance probabilities of about 272 

30%.   273 
Figure 5. Acceptance probability for number of sites 
resampled (jump size). The average acceptance probabilities are 
shown for proposals that resampled different numbers of sites. 
For the dark line, the bootstrapped sample fraction for neighbor-
joining (NJ) proposals was 100% and for the grey line it was 
80%, both from the 495-amino acid 10-taxon dataset. Acceptance 
probabilities were determined by the average of 3 independent 
50,000-generation runs of Markov katana.   
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 We also considered the effect of jump size on both the sampling distribution and the 274 

uncorrected posterior Markov chain estimates. For the initial sampling distribution estimation 275 

procedure, the most well-mixed chain is of course the one with independent bootstraps 276 

(j=100%), but the chain also 277 

mixes well with lower jump 278 

sizes. It is necessary to have 279 

smaller jump sizes because a 280 

high proportion (99.9%) of the 281 

random samples are not in the 282 

uncorrected posterior topology 283 

set. For this analysis, the 284 

optimal jump size was j=0.85. 285 

This result did not differ much 286 

for a range of sample sizes. 287 

Although differing in detail, 288 

the jump size analysis for the 289 

uncorrected posterior had 290 

similar results to the biased sampling prior analysis.  291 

 Acceptance probabilities varied widely depending on jump size. In general, 5-10 sites 292 

appears to be a minimum, and 50 sites is probably a maximum. With smaller sample sizes (e.g., 293 

80% shown here), the jump size is a larger proportion of the sample and reduces the acceptance 294 

probability more rapidly. Jump sizes bigger than 50 have somewhat greater probability of 295 

making large jumps in topology space (Fig. 6), at the cost of reduced probabilities of jumps to 296 

 
Figure 6. The effect of varying jump size. Increasing the jump size in 
general increases the average Robinson–Foulds (RF) distance between 
jumps and proposals. Parts a) and b) show the distance between trees in 
jumps for jump size 0.1 and 0.7 respectively. Parts c) and d) show the 
distance between trees in proposals for jump size 0.1 and 0.7 
respectively. Rejected jumps are considered jumps of distance 0. 
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the same topology due to lower acceptance probabilities.  297 

The Structure of Tree Space 298 

 Figure 7 shows a 299 

network representation of the 300 

12 tree topologies that had a 301 

posterior of 0.001 or higher 302 

(see Table 2). The size of the 303 

node represents the relative 304 

posterior of the topology, and 305 

the edges of the graph indicate 306 

NNI distances of one or two 307 

between the tree topologies. 308 

The tree topology space of this test data was clearly divided into two clusters of trees shown by 309 

the intragroup connections and the few intergroup connections. Given the connectivity of the 310 

network, other tree topology sampling procedures may have difficulty jumping between groups.  311 

DISCUSSION 312 

 We have demonstrated here that the Markov katana bootstrapping approach to 313 

phylogenetic tree searching can be a highly effective means for finding Bayesian posterior 314 

topologies and branches. It is able to take advantage of the speed of approximate distance-based 315 

methods to propose new trees, but retains the reliability of Bayesian methods. Many previous 316 

phylogenetic tree-search methods use the provided sequences for only the likelihood 317 

calculations, but Markov katana introduces a new way to explore tree space informed by the 318 

 
Figure 7. Tree distance network. This figure shows the distances 
between different tree topologies (A-L). The size of the circle shows 
the relative posterior probability. Black and blue lines indicate 
distances of 1 and 2 nearest neighbor interchange (NNI) (RF distance 
of 2 and 4), respectively. Topologies shown have > 0.001 posterior 
probabilities.  
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sequences. Including the sequence data in the tree search improves the fraction of high likelihood 319 

trees proposed and allows efficient jump proposals between even distant topologies.   320 

 For the 10-taxon dataset, the NJ algorithm is extremely fast, and the overall speed of the 321 

MK computation was limited by the likelihood calculations. As the number of taxa grows 322 

beyond ~200, the NJ algorithm slows dramatically and dominates computation times (data not 323 

shown). This could be alleviated using fast heuristic NJ algorithms or external programs such as 324 

RapidNJ that are optimized for large alignments (Simonsen 2008). Our current implementation 325 

calculates the distance contribution of each site only once and so is not hindered by the 326 

complexity of the distance measure. We did not see a great difference in the proposal bias for the 327 

two distance measures we compared, but further exploration of the performance of alternative 328 

distances may in some cases be warranted.  329 

 We used PAML for the likelihood calculations, but any program that computes 330 

likelihoods could potentially be used. The simplicity and adjustability of the approach means that 331 

it could be easily incorporated into existing sequence analysis packages (e.g., MrBayes, PAUP*, 332 

HyPhy, and PAML (Ronquist 2003; Swofford 2003; Pond 2005; Yang 2007)). We used a Perl 333 

script to implement the MK algorithm and demonstrate the method as simply as possible, but we 334 

expect that MK can be easily integrated directly into existing programs, which would then 335 

undoubtedly be much faster. We did not see the benefit in constructing a new likelihood program 336 

from scratch, although we believe the methodology would interact well with our existing 337 

context-dependent Bayesian analysis program, PLEX (de Koning 2012).  338 
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FIGURE CAPTIONS 499 

Figure 1. Flow of the Markov katana procedure. 500 
 501 
Figure 2. An example phylogenetic tree for the 10-taxon dataset. A tree for all protein coding regions in the 502 
mitochondrial genome is shown. Posterior probabilities are shown for the 495 amino acid Cytochrome C Oxidase 503 
subunit 1 (COI) alignment used in initial analyses. The posteriors were calculated using Mr. Bayes. Given the 504 
limited data used for the purpose of testing our method, this tree should not be interpreted as a true or species tree.  505 
 506 
Figure 3. Relative sampling distributions estimations comparing different sample sizes. Sample size 1.0 507 
sampling distribution versus the sampling distributions of sample size a) 0.95, b) 0.6, c) 0.4, d) 0.2. The blue line 508 
indicates where x and y values are equal. The sampling distributions were averaged over triplicate runs of 1,000,000 509 
generations and used a jump size of 0.1. 510 
 511 
Figure 4. Corrected posteriors are linear over a wide range of sample sizes. Sample fraction 1.0 posterior 512 
distribution versus the posterior distributions of sample fractions a) 0.95, b) 0.6, c) 0.4, and d) 0.2. The X = Y line is 513 
shown in blue. The uncorrected posteriors were averaged over triplicate runs of 50,000 generations and used a jump 514 
size of 0.1. The sampling distributions used for the correction were from Figure 3.  515 
 516 
Figure 5. Acceptance probability for number of sites resampled (jump size). The average acceptance 517 
probabilities are shown for proposals that resampled different numbers of sites. For the dark line, the bootstrapped 518 
sample fraction for neighbor-joining (NJ) proposals was 100% and for the grey line it was 80%, both from the 495-519 
amino acid 10-taxon dataset. Acceptance probabilities were determined by the average of 3 independent 50,000 520 
generation runs of Markov katana.   521 
 522 
Figure 6. The effect of varying jump size. Increasing the jump size in general increases the average Robinson–523 
Foulds (RF) distance between jumps and proposals. Parts a) and b) show the distance between trees in jumps for 524 
jump size 0.1 and 0.7 respectively. Parts c) and d) show the distance between trees in proposals for jump size 0.1 525 
and 0.7 respectively. Rejected jumps are considered jumps of distance 0. 526 
 527 
Figure 7. Tree distance network. This figure shows the distances between different tree topologies (A-L). The size 528 
of the circle shows the relative posterior probability. Black and blue lines indicate distances of 1 and 2 nearest 529 
neighbor interchange (NNI) (RF distance of 2 and 4), respectively. Topologies that are > 0.001 posterior probability.  530 
 531 

TABLES 532 

Table 1: Species in the Cytochrome C Oxidase Subunit 1 Alignment 533 

Chrysochloris asiatica 
Monodelphis domestica 
Chamaeleo calcaricarens 
Trachypithecus obscurus 
Gulo gulo 
Ensatina eschscholtzii 
Cervus nippon centralis 
Presbytis melalophos 
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Anomalurus sp. GP-2005 
Agapornis roseicollis 

 534 

Table 2: Tree Posteriors 535 

Letter Id Posterior 
A  16405 0.692 
B 78835 0.067 
C 36915 0.066 
D 92575 0.048 
E 26545 0.038 
F 57985 0.037 
G 80055 0.029 
H 39655 0.010 
I 2955 0.003 
J 82665 0.003 
K 8085 0.002 
L 88595 0.001 
 Table 2. Posterior probability for topologies with substantial representation in the 536 

uncorrected posterior for the 10-taxon dataset. The topologies are labeled for reference in Figure 537 

7. 538 

 539 

   540 
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541 

 
Supplementary Figure S1. Comparing NJ implementations. 
Markov katana bootstrapped topology probabilities were compared 
with those from a different neighbor-joining program, RapidNJ. 10,000 
bootstraps were run. 
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 542 

 543 

 
Supplementary Figure S2. Variance of the sampling distribution 
among runs. The sampling distributions of two different runs with 
sample size 1.0 and jump size 0.1 and 1 million bootstraps are shown.  
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 544 

 545 

 
Supplementary Figure S3. Comparing sampling distribution 
and posteriors across sample size. The sampling distribution 
(column a), uncorrected posteriors (column b) and corrected 
posteriors (column c) for 470 sites, 297 sites, 198 sites, and 99 sites, 
all versus 495 sites.  
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