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Abstract  24 

 25 
Data normalization is a crucial step in the gene expression analysis as it ensures the validity of its 26 

downstream analyses. Although many metrics have been designed to evaluate the current normalization 27 

methods, the different metrics yield inconsistent results. In this study, we designed a new metric named Area 28 

Under normalized CV threshold Curve (AUCVC) and applied it with another metric mSCC to evaluate 14 29 

commonly used normalization methods, achieving consistency in our evaluation results using both bulk 30 

RNA-seq and scRNA-seq data from the same library construction protocol. This consistency has validated 31 

the underlying theory that a sucessiful normalization method simultaneously maximizes the number of 32 

uniform genes and minimizes the correlation between the expression profiles of gene pairs. This consistency 33 

can also be used to analyze the quality of gene expression data. The gene expression data, normalization 34 

methods and evaluation metrics used in this study have been included in an R package named 35 

NormExpression. NormExpression provides a framework and a fast and simple way for researchers to 36 

evaluate methods (particularly some data-driven methods or their own methods) and then select a best one 37 

for data normalization in the gene expression analysis.  38 

 39 
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Introduction 53 

Global gene expression analysis provides quantitative information about the population of RNA 54 

species in cells and tissues 1. High-throughput technologies to measure global gene expression levels started 55 

with Serial Analysis of Gene Expression (SAGE) and are widely used with microarray and RNA-seq 2. 56 

Recently, single-cell RNA sequencing (scRNA-seq) has been used to simultaneously measure the expression 57 

levels of genes from a single cell, providing higher resolution of cellular differences than what can be 58 

achieved by bulk RNA-seq, which can only produce an expression value for each gene by averaging its 59 

expression levels across a large population of cells 3. Raw gene expression data from these high-throughput 60 

technologies must be normalized to remove technical variation so that meaningful biological comparisons 61 

can be made. Data normalization is a crucial step in the gene expression analysis as it ensures the validity of 62 

its downstream analyses 1. Although the significance of gene expression data normalization has been 63 

demonstrated 4, how to select a successful normalization method is still an open problem, particularly for 64 

scRNA-seq data. 65 

Basically, two classes of methods are available to normalize gene expression data using global 66 

normalization factors. They are the control-based normalization and the average-bulk normalization. The 67 

former class of methods assumes the total expression level summed over a pre-specified group of genes is 68 

approximately the same across all the samples. The latter class of methods assumes most genes are not 69 

Differentially Expressed (DE) across all the samples. The control-based normalization often uses RNA from 70 

a group of internal control genes (e.g. housekeeping genes) or external spike-in RNA (e.g. ERCC RNA 5), 71 

while the average-bulk normalization is more commonly used for their universality. Five average-bulk 72 

normalization methods designed to normalize bulk RNA-seq data are library size, median of the ratios of 73 

observed counts that is also referred to as the DESeq method 6, Relative Log Expression (RLE), 74 

upperquartile (UQ) and Trimmed Mean of M values (TMM) 7. Recently, three new methods were 75 

introduced as Total Ubiquitous (TU), Network Centrality Scaling (NCS) and Evolution Strategy (ES) with 76 

best performance among 15 tested methods 8. To improve scRNA-seq data normalization, Lun et al. 77 

introduced a new method using the pooled size factors (Pooled) and claimed that their method outperformed 78 

the library size method, TMM and DESeq 9. Bacher et al. addressed that using existing normalization 79 

methods on scRNA-seq data introduced artifacts that bias downstream analyses. Then, another new method 80 

SCnorm was introduced and claimed to outperform MR, Transcripts Per Million (TPM), scran, SCDE and 81 

BASiCS using both simulated and case study data 10. 82 

Although many metrics have been designed to evaluate the relative success of these methods, the 83 

different metrics yield inconsistent results. The first problem in the evaluation of normalization methods is 84 

the lack of guide by a theory. In 2013, Glusman et al. proposed that a sucessful normalization method 85 

simultaneously maximizes the number of uniform genes and minimizes the correlation between the 86 

expression profiles of gene pairs. Based on this theory, they presented two novel and mutually independent 87 
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metrics to evaluate 15 normalization methods and achieved consistent results using bulk RNA-seq data 8. In 88 

this study, we designed a new metric named Area Under normalized CV threshold Curve (AUCVC) and 89 

applied it with another metric mSCC (Materials and Methods) to evaluate 14 commonly used 90 

normalization methods using both bulk RNA-seq and scRNA-seq data from the same library construction 91 

protocol. The evaluation by AUCVC and mSCC achieved consistent results using both bulk RNA-seq data 92 

and scRNA-seq data, validating the theory proposed by Glusman et al 8. As many new normalization 93 

methods are developed, researchers need a fast and simple way to evaluate different methods, particularly 94 

some data-driven methods or their own methods rather than obtain information from published evaluation 95 

results, which could have biases or mistakes, e.g. misunderstanding of RLE, UQ and TMM methods 11. To 96 

satisfy this demand, we developed an R package NormExpression including the gene expression data, 97 

normalization methods and evaluation metrics used in this study. This tool provides a framework for 98 

researchers to select the best method for the normalization of their gene expression data based on evaluation. 99 

 100 

Results 101 

 102 
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Basic concepts 103 

In total, 14 normalization methods have been evaluated in this study. They are Housekeeping Genes 104 

(HG7), External RNA Control Consortium (ERCC), Total Read Number (TN), Total Read Count (TC), 105 

Cellular RNA (CR), Nuclear RNA (NR), the ratios of observed counts (DESeq), Relative Log Expression 106 

(RLE), upperquartile (UQ), Trimmed Mean of M values (TMM), Total Ubiquitous (TU), Network 107 

Centrality Scaling (NCS), Evolution Strategy (ES) and SCnorm (Materials and Methods). Currently, most 108 

methods with a few exceptions (e.g. SCnorm) are used to normalize a raw gene expression matrix (n 109 

samples by m genes) by multiplying a global normalization factor to each of its columns, yielding a 110 

normalized gene expression matrix (Figure 1A). The normalization factor in the package NormExpression 111 

is equivalent to the scaling factor in a previous study [8]. The reciprocal of normalization factor is the library 112 

size (Figure 1B), which represents total RNA in a library and is also named as size factor in the 113 

Bioconductor package DESeq 6. The definition of normalization factor in NormExpression and the 114 

definition of size factor in DESeq are different from definitions of normalization factor and size factor in the 115 

Bioconductor package edgeR 7. RLE, UQ and TMM in edgeR produce normalization factors to adjust 116 

library sizes, which should be used to calculate the Counts Per Million (CPM) for the normalization of gene 117 

expression data and CPM should be calculated by one million multiplying reciprocals of adjusted library 118 

sizes (Figure 1B). However, edgeR provides a function named calcNormFactors to produce normalization 119 

factors for library-size adjustment, which have been wrongly used for the normalization of gene expression 120 

data in many studies 11. The NormExpression package includes such modifications as below. Since HG7, 121 

ERCC, TN, TC, CR, NR and TU produce normalization factors by the estimation of library sizes as CPM, 122 

their normalization factors are amplified by one million for a uniform representation (Figure 1B). DESeq, 123 

RLE, UQ and TMM have been modified to ignore zero values for both scRNA-seq and bulk RNA-seq data 124 

and the resulting normalization factors need be further normalized by their geometric mean values (Figure 125 

1B). UQ and TMM use library sizes estimated by NR. After modification, RLE is identical to DESeq. We 126 

verified that these modifications did not change the evaluation or normalization results. 127 

 128 

Evaluation of 14 normalization methods 129 

In the previous study 8, Glusman et al. had quantified success of normalization methods by the number 130 

of uniform genes (Materials and Methods) and used the Coefficient of Variation (CV) cutoff 0.25 to 131 

determine the number of uniform genes for each method. This metric was designed based on the theory that 132 
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the relative values among different normalization methods were quite stable, although the absolute number 133 

of uniform genes depended on the cutoff value. However, it is almost impossible to determine a CV cutoff 134 

for scRNA-seq data since CV in scRNA-seq data has a much larger dynamic range than in bulk RNA-seq 135 

data.  136 

Inspired by Area Under the receiver operating characteristic Curve (AUC) 12, we designed a new metric 137 

named Area Under normalized CV threshold Curve (AUCVC) to evaluate 14 normalization methods using 138 

one scRNA-seq dataset scRNA663 and one bulk RNA-seq dataset bkRNA18 (Materials and Methods). A 139 

single housekeeping gene GAPDH was also used for comparison in the evaluation of normalization methods 140 

using bulk RNA-seq data, but it was not applicable to scRNA-seq data due to zero counts of GAPDH 141 

present in many samples. Parameter grid of non-zero ratio cutoffs (Materials and Methods) from 0.2 to 0.9 142 

for scRNA663 and from 0.7 to 1 for bkRNA18 was used to produce AUCVCs of all methods (Figure 2AB). 143 

For each non-zero ratio cutoff, the TU method used the maximum AUCVC to determine the best presence 144 

rate (Materials and Methods), upper and lower cutoffs by testing all possible combinations of presence rate, 145 

lower and upper cutoffs at 5% resolution. The presence rate cutoff was tested from 0.2 to 0.6 for scRNA663 146 

and set to 1 for bkRNA18. The lower cutoff was tested from 5% to 40% and the upper cutoff was tested 147 

from 60% to 95%. In addition, the calculation only considered each combination of lower and upper cutoffs 148 

which produced more than 1,00 ubiquitous genes (Materials and Methods) for scRNA663 and more than 149 

1,000 for bkRNA18. For each non-zero ratio cutoff, NCS and ES used the presence rate, lower and upper 150 

cutoffs determined by the TU method, when it achieved the maximum AUCVC. The raw gene expression 151 

matrix (None) was also used to produce AUCVCs for comparison. 152 

The evaluation results using both scRNA663 and bkRNA18 showed that all methods except HG7, TN 153 

and SCnorm were classified into three groups based on their AUCVC values sorted in descending order 154 

(Figure 2AB). The first group including TU, NCS and ES achieved the best performances using both 155 

scRNA663 and bkRNA18. TU, NCS and ES, which had only been evaluated using bulk RNA-seq data in 156 

the previous study 8, were evaluated by our new metric AUCVC as the best normalization methods using 157 

both scRNA-seq and bulk RNA-seq data. The second group including ERCC, TC, CR, NR, DESeq, RLE, 158 

UQ and TMM achieved medial performances using both scRNA663 and bkRNA18. In the second group, 159 

ERCC, TC, CR and NR outperformed DESeq, RLE, UQ and TMM using scRNA663, while DESeq, RLE, 160 

UQ and TMM outperformed ERCC, TC, CR and NR using bkRNA18. The third group achieved the poorest 161 

performances, including TN, SCnorm and None for scRNA663 (Figure 2A) and HG7, GAPDH and None 162 

for bkRNA18 (Figure 2B). HG7 and GAPDH achieved the poorest performances using bkRNA18, 163 

suggesting that a predefined set of housekeeping genes may not be appropriate guides for data normalization 164 

of bulk RNA-seq data. However, it could be coincidental that HG7 was classified into the first group using 165 

scRNA663. TN outperformed the second group of methods using bkRNA18 but underperformed it using 166 

scRNA663. SCnorm was designed to improve the scRNA-seq data normalization but it performed better 167 

using scRNA-seq data than bulk RNA-seq data. Particularly, SCnorm ranked the first in the best group by its 168 
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AUCVC to normalize bkRNA18 when the non-zero ratio cutoffs were set to 0.7 or 0.8 (Figure 2B), but 169 

ranked the last in the poorest group to normalize scRNA663 when the non-zero ratio cutoffs were set to 0.2 170 

to 0.4 (Figure 2A).  171 

The evaluation results by the medians of Spearman Correlation Coefficients between the normalized 172 

expression profiles of ubiquitous gene pairs (mSCCs) (Materials and Methods) were consistent with the 173 

evaluation results by AUCVC (Figure 2). This validated the underlying theory that a sucessiful 174 

normalization method simultaneously maximizes the number of uniform genes and minimizes the 175 

correlation between the expression profiles of gene pairs. Then, we calculated Spearman Correlation 176 

Coefficients (SCCs) bwteen all the normalization factors except that using SCnorm. Using 1- SCCs as 177 

distances, hierarchical clustering of 13 normalization factors showed equivalent classification into the same 178 

groups (Figure 3EF) as those (Figure 2AB) by AUCVC. The evaluation results by AUCVC, mSCC and 179 

hierarchical clustering can be visualized using NormExpression. From Figure 3, it can be seen that, while 180 

normalization methods except HG7, GAPDH and None perform without much differences on bulk RNA-seq 181 

data (Figure 3BDF), they have significant differences in the performances on scRNA-seq data (Figure 182 

3ACE). This provides an explanation as to why bulk RNA-seq data and scRNA-seq data from the same 183 

samples produced different results in many biological studies. Therefore, it is more challenging to select a 184 

best method for the normalization of scRNA-seq data. 185 

 186 

Implementation and availability 187 

The gene expression data (scRNA663 and bkRNA18), normalization methods (except NCS, ES and 188 

SCnorm) and evaluation metrics (AUCVC and mSCC) have been included in the R package 189 

NormExpression. The data process in this study was provided in detail (Supplementary file 1). All the 190 
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functions except the NCS and ES methods have been implemented in R programs for their running on R 191 

platforms of any version. The NCS and ES methods had been implemented in Perl programs with multiple 192 

dependencies on Perl modules 8 and were modified into a stand-alone program for Linux systems 193 

(Supplementary file 2).  194 

NormExpression can be used in three ways: normalization without evaluation, normalization with 195 

simple evaluation or normalization with complete evaluation. Normalization without evaluation is suggested 196 

to use TU for users' data, since it has been already ranked as the best method for both scRNA-seq and bulk 197 

RNA-seq data (Supplementary file 1). Normalization with simple evaluation by AUCVC is suggested to 198 

select the best method from 10 normalization methods using users' data, which are HG7, ERCC (if 199 

available), TN, TC, CR, NR, DESeq (RLE), UQ and TMM. The raw gene expression matrix is also used to 200 

produce AUCVCs for comparison. TN, NCS, ES and SCnorm are not included in 10 methods, since TN and 201 

SCnorm have not shown robust performances, and NCS and ES have a similar performance of TU but are 202 

much more time consuming. Normalization with complete evaluation by AUCVC and mSCC for method 203 

selection is suggested to select the best method from at least 10 normalization methods plus TU. The 204 

normalization with simple evaluation determines the best method based on its AUCVC, while normalization 205 

with complete evaluation need consider the consistency of results using two metrics (Materials and 206 

Methods). 207 

 208 

Materials and Methods 209 

Datasets 210 

In a previous study by Lin Liu et al. (SRA: SRP113436), 663 single-cell samples and 18 bulk samples 211 

had been sequenced using the Smart-seq2 scRNA-seq protocol. In this study, we built a scRNA-seq dataset 212 

including 653 single cells from colon tumor tissues and 10 single cells from distal tissues (>10 cm) as 213 

control. We also built a bulk RNA-seq dataset including nine samples from colon tumor tissues and nine 214 

samples from distal tissues. The cleaning and quality control of both scRNA-seq and bulk RNA-seq data 215 

were performed using the pipeline Fastq_clean [15] that was optimized to clean the raw reads from Illumina 216 

platforms. Using the software STAR 13 v2.5.2b, we aligned all the cleaned scRNA-seq and bulk RNA-seq 217 

reads to the human genome GRCh38/hg38 and quantified the expression levels of 57,992 annotated genes 218 

(57,955 nuclear and 37 mitochondrial). Non-polyA RNAs were not discarded to test the robustness of 219 

normalization methods, although the Smart-seq2 protocol theoretically had only captured polyA RNAs. In 220 

addition, the expression levels of 92 ERCC RNAs and the long non-coding RNA (lncRNA) MDL1 in the 221 

human mitochondrion 14 were also quantified. ERCC RNA had been spiked into 208 single-cell samples 222 

before library construction; the expression levels of 92 ERCC RNAs in other 455 single-cell samples and 18 223 

bulk samples were simulated by linear regression. Finally, the two datasets were named scRNA663 (58085 224 

× 663) and bkRNA18 (58085 × 18), and were included into the R package NormExpression. 225 
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 226 

Normalization methods 227 

HG7, ERCC, TN, TC, CR, NR and TU are based on a set of pre-selected genes and each of these 228 

methods uses the gene expression level summed over these pre-selected genes in a sample as the library size 229 

(Figure 1B) to calculate the normalization factor. The pre-selected genes used by HG7, ERCC and TU are 230 

seven housekeeping genes, 92 ERCC RNAs and ubiquitous genes (described below), respectively. Seven 231 

genes (UBC, HMBS, TBP, GAPDH, HPRT1, RPL13A and ACTB) in the HG7 method had been used to 232 

achieve the best evaluation result among those using all possible combinations of tested housekeeping genes 233 

in the previous study by Glusman et al. 8. ERCC RNA is a set of commonly used spike-in RNA consisting 234 

of 92 polyadenylated transcripts with short 3' polyA tails but without 5' caps 5. NR only counts reads which 235 

have been aligned to nuclear genomes, while CR counts reads which have been aligned to both nuclear and 236 

mitochondrial genomes. The library size estimated by TC is equal to the estimations by CR and ERCC 237 

combined. TN uses the number of all reads which can be aligned to 92 ERCC RNAs, nuclear and 238 

mitochondrial genomes. 239 

The DESeq method was obtained from the Bioconductor package DESeq 6 and modified to process 240 

scRNA-seq data. RLE, UQ and TMM were obtained from the Bioconductor package edgeR 7 and modified 241 

to process scRNA-seq data. TU, NCS and ES were obtained from the previous study by Glusman et al. 8. 242 

Since TU sums counts of all ubiquitous genes as the library size to calculate the normalization factor, a 243 

process to identify ubiquitous genes (described below) has been integrated into the TU method: our 244 

implementation of TU maximizes AUCVC instead of the number of resulting uniform genes to determine 245 

the best presence rate, upper and lower cutoffs in the R package NormExpression. SCnorm was obtained 246 

from the Bioconductor package SCnorm 10. 247 

 248 

Uniform genes and ubiquitous genes 249 

A gene was defined as uniform when the Coefficient of Variation (CV, Formula 1) of its post-250 

normalization expression levels across all samples was not more than a cutoff. Ubiquitous genes were 251 

defined as the intersection of a trimmed sets of all samples 8. This trimmed set of genes were selected for 252 

each sample by 1) excluding genes with zero values, 2) sorting the non-zero genes by expression level in 253 

that sample, and 3) removing the upper and lower ends of the sample-specific expression distribution. 254 

Glusman et al. determined the best upper and lower cutoffs by testing all possible combinations of lower and 255 

upper cutoffs at 5% resolution to maximize the number of resulting uniform genes using one bulk RNA-seq 256 

dataset 8. The size of a scRNA-seq dataset is usually very large, which could result in a very small or even 257 

empty set of ubiquitous genes, since the number of ubiquitous genes depends on the sizes of datasets. To 258 

identify ubiquitous genes using scRNA-seq data, we defined a new parameter named presence rate, 259 

governing the minimal fraction of trimmed sets in which a gene must appear to be considered ubiquitous. 260 

 261 
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Evaluation metrics 262 

In the previous study 8, Glusman et al. designed two novel and mutually independent metrics, which 263 

were the number of uniform genes and Spearman Correlation Coefficients (SCCs) between expression 264 

profiles of gene pairs. The basic theory underlying these two evaluation metrics is that a successful 265 

normalization method simultaneously maximizes the number of uniform genes and minimizes the 266 

correlation between the expression profiles of gene pairs. In this study, we designed a new metric AUCVC 267 

instead of the number of uniform genes for method evaluation. In addtion, we randomly selected 1,000,000 268 

ubiquitous gene pairs to calculate the mSCCs for method evaluation (Figure 3CD). Then, we compared the 269 

evaluation results by mSCC with those by AUCVC to assess the consistency.  270 

AUCVC (Figure 3AB) is created by plotting the number of uniform genes (y-axis) at each normalized 271 

CV (Formula 2) cutoff (x-axis). To determine the number of uniform genes using scRNA-seq data 272 

containing a high frequency of zeros, we only considered genes with non-zero ratios not less than a cutoff. 273 

The parameter non-zero ratio of one gene should be calculated as the number of its all non-zero expression 274 

values divided by the number of total samples. Since a high or a low normalized CV cutoff produces more 275 

false or less uniform genes, it is reasonable to consider the overall performance of each method at various 276 

cutoffsettings instead of that at one specific cutoff setting. In Formula 1 and 2, symbols have the same 277 

meanings as those in Figure 1 and n* does not count zero elements in each sample.  278 

 279 
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Figure 1. Basic concepts  332 
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(A). A raw gene expression matrix can be transformed into a normalized gene expression matrix by the 333 
multiplication of a global factor fj to each column. Each column represents the expression levels of all genes 334 
from a sample and each row represents the expression levels of a gene across all samples. (B). HG7, ERCC, 335 
TN, TC, CR, NR and TU use Nj* as library sizes to calculate normalization factors. Nj represents the library 336 
size estimated by TC. DESeq, RLE, UQ and TMM have been modified in NormExpression to ignore zero 337 
values and the resulting normalization factors need be further normalized by their geometric mean values. 338 
After modification, RLE is identical to DESeq. Q3 means that about 75% of genes in the jth sample have 339 
expression levels below Q3 and about 25% have those above Q3. For all methods, log represents the natural 340 
logarithm. 341 
 342 
 343 
Figure 2. Grid of non-zero ratio to evaluate normalization methods 344 

Grid of non-zero ratio cutoffs from 0.2 to 0.9 for scRNA663 and from 0.7 to 1 for bkRNA18 was used to 345 
produce AUCVCs All the normalization methods were classified into three groups based on their AUCVC 346 
values sorted in descending order using one scRNA-seq dataset scRNA663 (A) and one bulk RNA-seq 347 
dataset bkRNA18 (B). These methods were also classified into three groups based on their medians of SCCs 348 
sorted in ascending order using one scRNA-seq dataset scRNA663 (C) and one bulk RNA-seq dataset 349 
bkRNA18 (D). GAPDH is not applicable to scRNA-seq data due to zero counts of GAPDH present in many 350 
samples. All the numbers are accurate to two decimal places, the marginal differences are reflected by their 351 
orders. 352 

 353 

 354 

Figure 3. Consistency in evaluation results by different metrics 355 

A normalization method with a higher AUCVC produced a lower median of Spearman Correlation 356 
Coefficients (SCCs) between the normalized expression profiles of ubiquitous gene pairs using both scRNA-357 
seq (AC) and bulk RNA-seq data (BD). Using 1- SCCs as distances, hierarchical clustering of 13 methods 358 
showed equivalent classification into the same groups (EF) as those (Figure 2AB) by AUCVC. SCCs were 359 
calculated between normalization factor pairs of 13 methods. SCnorm was not applicable to be used to 360 
calculate SCCs, since it produced a factor matrix rather than a factor vector as 13 other methods. 361 
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