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Abstract 

Electrical activity recorded on the scalp using electroencephalography (EEG) results from the mixing of 

signals originating from different regions of the brain as well as from artefactual sources.  In order to 

investigate the role of distinct brain areas in a given experiment, the signal recorded on the sensors is 

typically projected back into the brain (source reconstruction) using algorithms that address the so-

called EEG “inverse problem”. Once that the activity of sources located inside of the brain has been 

reconstructed, it is often desirable to study the statistical dependencies among them, in particular to 

quantify directional dynamical interactions between brain areas. Unfortunately, even when performing 

source reconstruction, the superposition of signals that is due to the propagation of activity from 

sources to sensors cannot be completely undone, resulting in potentially biased estimates of directional 

functional connectivity.  Here we perform a set of simulations involving interacting sources, and 

quantify source connectivity estimation performance as a function of the location of the sources, their 

distance to each other, the noise level, the source reconstruction algorithm, and the connectivity 

estimator. The generated source activity was projected onto the scalp and projected back to the cortical 

level using two source reconstruction algorithms, Linearly Constrained Minimum Variance (LCMV) 

beamforming and ‘Exact’ Low-resolution Tomography (eLORETA). In source space, directed 

connectivity was estimated using Multi-Variate Granger Causality (MVGC), Time-Reversed Granger 

Causality (TRGC) and Partial Directed Coherence (PDC), and the estimated connectivity was compared 

with the imposed ground truth. Our results demonstrate that all considered factors significantly affect 

the connectivity estimation performance. 

1. Introduction 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 22, 2018. ; https://doi.org/10.1101/251223doi: bioRxiv preprint 

https://doi.org/10.1101/251223
http://creativecommons.org/licenses/by/4.0/


  
 

2 
 

Understanding how the joint dynamics of separate brain regions gives rise to function is a fascinating 

and challenging issue. Several techniques are constantly being developed to investigate these dynamics. 

EEG signals, due to their high temporal resolution and non-invasiveness, are often employed to 

investigate how brain activity is modulated in different tasks or conditions [1]–[5]. One of the main 

issues associated with the EEG signals is the low spatial resolution due to the head volume conduction 

[6], [7]. It is well known that the electrical activity measured at sensors level is a mixture of the source 

activity coming from all the sources in the brain (in addition to contributions coming from outside of it). 

In other words, the spherical geometry of the head and the presence of several tissues with different 

electrical properties between the cortex and the scalp distort the electric field generated by active 

neurons so that it is not possible to associate a single brain area to each electrode. The high correlation 

between signals recorded from neighbouring electrodes at scalp level leads connectivity algorithms to 

estimate inaccurate patterns including spurious links and to taint results with poor interpretability. 

Making inferences on connectivity from the EEG signal is still not straightforward [8], [9]. In order to 

overcome or attenuate the volume conduction problem, several strategies and algorithms have been 

proposed to estimate source activities from multi-channel EEG recordings [10]. For example, simple 

spatial filters as the Laplacian can reduce the correlations among scalp-recorded channels induced by 

the source mixing [6]. Another possibility is given by the Blind Source Separation (BSS) techniques that 

allow to separate the data into underlying components representing the activity potentially extended 

networks at the source level. Two algorithms specifically developed for Granger-causal interactions 

assume that these components follow a multivariate autoregressive (MVAR) model with independent 

innovation noise [11], [12]. While such approaches allow one to reduce the volume conduction effect, 

the problem of the interpretability of the results is not completely addressed since directed dynamical 

influences are estimated between components and not on the cortical brain activity.  

Another important choice concerns the connectivity estimator. There are different kind of algorithms 

and some of them were developed specifically to be less sensitive to artifacts of head volume conduction. 

Promising results have been obtained using the Phase-Slope Index (PSI) [13] and the Imaginary 

Coherence (ICoh) [14] but these methods, despite being less sensitive to volume conduction, do not 

solve the inverse problem and don’t allow precise localisation. Furthermore, their bivariate nature leads 

in some conditions, to spurious links due to hidden sources. In fact, it is well known how pairwise 

approaches can lead to false positive detections of connections due to their inability to distinguish a 

direct interaction between two signals from the influence of a common driver acting on both signals. 

[15]. Among the directed connectivity estimators, worth of note is the class of multivariate estimators 

based on the concept of the Wiener-Granger Causality (GC) [16]. These data-driven approaches are 

computationally simple and require no a priori assumption on the presence or absence of interactions 

between specific pairs of variables. For this reason we decided to focus on three of them: the classical 

time-domain measure Multi-Variate Granger Causality (MVGC) [17], its adaptation called Time-

Reversed Granger Causality (TRGC) that uses time-reversed data as surrogates for statistical testing [9], 

[18], and the frequency-domain measure Partial Directed Coherence (PDC) [19].  

To achieve interpretable results, the reconstruction of brain sources prior to conducting connectivity 

estimation is required.  To solve the ill-posed (as the number of sources higher than the number of 

sensors) EEG inverse problem, several algorithms are available. Two of the most commonly used 

algorithms are the ‘exact’ Low Resolution Tomography (eLORETA) [20], and the Linearly Constrained 

Minimum Variance (LCMV) Beamformer [21]. Previous studies on real EEG data have already 
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highlighted differences associated with these inverse solutions [22] but additional simulations studies 

are necessary in order to provide reliable and more specific findings. In other words, different 

algorithms for the inverse problem solution and for the connectivity estimation could be more or less 

sensitive to the volume conduction problem, but the evaluation of their performances on real datasets 

is not possible since an objective ground truth is typically not available. Inverse approaches for 

extracting cortical waveforms and Granger-based estimators for connectivity measures can be 

combined to extract and investigate the human brain circuits but a complete evaluation of the volume 

conduction effect, in terms of demixing quality, in different experimental conditions is still necessary. It 

is also important to consider the presence of a localization error associated to the forward model used 

to describe the relationship between activations in the brain and scalp potentials. A suitable  forward 

model for such validations is the ‘New York Head’, which is a highly accurate finite element model (FEM) 

of the electrical current flow of the average adult human head that is based on the segmentation of a 

highly detailed magnetic resonance image (MRI) into six different tissue types [23]. The goal of the 

present study is to identify data analysis pipelines combining source localization approaches and 

methods for brain connectivity estimation that are able to provide accurate and reliable estimates 

insensitive to the spurious effects induced by the volume conduction, and thereby allow one to interpret 

the obtained results in neurophysiological terms. In particular, the present study: 

● Demonstrates the possibility to significantly reduce the effect of the volume conduction on the 

connectivity estimates employing appropriate algorithms as the TRGC; 

● Provides guidelines for the employment of the best methods with different spatial distributions 

of the sources (different depth and relative position); 

● Evaluates, which source reconstruction approach, among eLORETA and LCMV, leads to a better 

performance in this context. 

 

In order to reach these aims, a simulation study was performed starting from the generation of 

simulated data, which mimic brain source signals with an imposed connectivity pattern. The influence 

of volume conduction on connectivity estimates was investigated by assigning simulated source signals 

to different anatomical location in the brain. The results of these simulations allow us to identify the 

best-performing combination of algorithms for the estimation of the brain activity and connectivity in 

several realistic conditions.  

2. Methods 

Over the past few decades, different techniques of source localization applied to EEG data were 

developed to provide a non-invasive estimate of brain activity [24]. Such techniques employ voltage 

measurements at various locations on the scalp to estimate the current sources inside the brain which 

best fit these data. Source localization techniques are based on the follow generative model of EEG data: 

𝛷(𝑡) = 𝑳𝐽(𝑡) + 𝜀(𝑡) (1) 

where 𝛷(𝑡) ∈ 𝑅𝑀 is the EEG signal measured from M scalp locations at time t, 𝐽(𝑡) ∈ 𝑅3𝑁 is the activity 

of N sources with a 3D orientation in the space, 𝑳 ∈ 𝑅𝑀𝑥3𝑁 is the leadfield matrix summarizing the 

propagation of the N electrical sources j to the EEG sensors and 𝜀(𝑡) ∈ 𝑅𝑀 is the noise associated to the 

measures. The lead-field matrix L contains information about the geometry and the conductivity of all 

the tissues in the head (between the sensors and the sources) and its computation is well-known as 
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forward modeling. The estimation of the sources 𝑗(𝑡) from the measures 𝛷(𝑡) contributes to the source 

reconstruction purpose and it is well-known as inverse modeling. The two modeling approaches will be 

described in detail below. 

2.1 Forward Problem 

The forward problem is solved starting from the electrical activity at source level and calculating the 

potentials at the sensors (electrodes) level. The result is the scalp activity as a function of the current 

density (produced by neuronal generators) and describes how the electrical field spreads through the 

different layers of the head. It depends on the geometry and on the electrical properties of the tissues. 

The New York Head is an accurate finite element electrical model of the average adult human head [23]. 

It is based on a highly detailed nonlinear average of T1-weighted structural MR image of 152 adults 

provided by the International Consortium for Brain Mapping (ICBM) [25]. A detailed segmentation of 

this average image into six tissue types (scalp, skull, CSF, grey matter, white matter, air cavities) was 

performed at the native MRI resolution of 0.5 mm3. The suitability of this volume conductor model to 

serve as an approximation for individual heads was tested by comparison with additional BEMs and 

FEMs constructed for four subjects.  

2.2 Inverse Problem 

The inverse problem concerns the reconstruction of the brain sources that underlie the measured 

potentials in electrode space. Because of the difference between the number of sensors and the much 

higher number of active dipoles in the cortex, the inverse problem solution is not unique. Furthermore, 

it is very sensitive to small changes in the noisy data and also depends on the choice of the reference 

electrode. The accuracy of the source reconstruction is affected by a high number of factors including 

the head model errors, the source-modelling errors and EEG noise (instrumental or biological) [26]. 

Several algorithms were developed to solve the inverse problem. In the present study, we focused on 

two methods: i) the Linearly Constrained Minimum Variance Beamformer (LCMV) and ii) the ‘Exact’ 

Low Resolution Tomography (eLORETA). 

Linearly Constrained Minimum Variance (LCMV) 

Linearly constrained minimum variance filtering (LCMV) [26] is a spatial filtering method that lets brain 

activity coming from a specific location pass, while attenuating activity originating at other locations. 

The output of the filter is an estimate of the power of the electrical field generated by the neurons within 

a restricted area of the brain. The spatial pass-band of the filter depends on the dimension of that area, 

thus the higher the desired resolution the smaller required pass-band. A map of neural power as a 

function of location is obtained by designing multiple spatial filters, each with a different pass-band, and 

depicting output power as a function of pass-band location. This spatial filtering approach falls within 

the general category of beamforming. It is known that the signal at each location in the brain consists of 

the three dipole moments, so that three spatial filters for each location are required. The N x 3 matrix 

W(q0) represents the transfer function of the filter for the narrowband volume element Q0 centered in 

q0. The output of the filter, J, is the inner product between W(q0) and 𝛷.  

𝐽 = 𝑾𝑇(𝑞0)𝛷 (2) 

Under ideal conditions, the transfer function of the filter has to satisfy two conditions: 
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𝑾𝑇(𝑞0)𝑳(𝑞0) = 𝐼 (3) 

𝑾𝑇(𝑞0)𝑳(𝑞𝑠) = 0 (4) 

 As this cannot be achieved under general conditions, eq. 4 is replaced by the condition that the variance 

of the filter output (eq. 5) is minimal. 

𝑣𝑎�̂�(𝑞0) = 𝑡𝑟 {[𝑾𝑇(𝑞0)𝑪−1(𝑥)𝑾(𝑞0)]} (5) 

The optimal filter is given by: 

𝑾(𝑞0) =  [𝑳𝑇(𝑞0)𝑪𝛷
−1𝑳(𝑞0)]−1 𝑳𝑇(𝑞0)𝑪−1(𝑥) (6) 

The variance of the filter output can then be simplified as 

𝑣𝑎�̂�(𝑞0) = 𝑡𝑟 {[𝑳𝑇(𝑞0)𝑪𝛷
−1(𝑥)𝑳(𝑞0)]−1 } (7) 

where the sensor-space covariance is: 

𝑪𝛷 = 𝐸[𝛷𝛷𝑇]. (8) 

The optimal filter 𝑊(𝑞𝑠) has a large output in qs only if there is a significant energy originating from 

there.  To localize the electrical activity of the brain sources, the variance of the LCMV filter output is 

evaluated as a function of location within the volume of the brain, normalized by the LCMV filter output 

on a reference (noise) data segment. Regions of large relative variance are presumably active, while 

regions with small relative variance can be considered inactive. Nevertheless, in the present study, the 

goodness in terms of localization is not it is not of main interest. We only considered the estimated 

source time series (filter output) to assess connectivity patterns between them. Factors that may 

influence the accuracy of the LCMV are: 

● The pass-band of the filter, indicating the spatial resolution. The spatial extent of the pass-band 

depends on the transfer matrices L(q), which in turn depend on the number of electrodes, their 

distribution, and source location. 

● The SNR, because of the variance minimization procedure used to determine the spatial filters.  

In this context SNR has to be thought of not as ratio of the signal power to the noise power, but 

rather as the variance of the source divided by the variance of the noise. 

‘Exact’ Low Resolution Tomography (eLORETA) 

‘Exact’ Low Resolution Electromagnetic Tomography (eLORETA) [27] is a linear inverse method 

characterized by spatially smooth current density. In the most general case, linear solutions to the EEG 

inverse problem are of the following form: 

𝐽(𝜆) = ‖𝑳𝐽 − 𝛷‖2 + 𝜆𝑱𝑇𝑾𝐽 (9) 
 

where λ represents the Tikhonov regularization parameter which can be estimated through the general 

cross validation approach [28], and where W is a symmetric positive definite weight matrix. The idea of 

eLORETA is to find an appropriate W matrix in eq. 9 such that the solution has zero localization error 

for all single point sources in the brain [27]. These weights are obtained from the following expression: 

𝑤𝑖 = [𝑳𝑖
𝑇(𝑳𝑾−1𝑳𝑇 + 𝜆𝑰𝑀)+𝑳𝑖]1/2 , (10) 
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where 𝑤𝑖 for 𝑖 = 1, … , 𝑁 (number of voxels) are the diagonal elements of the weight matrix W, 𝐿𝑖 ∈ 𝑅𝑀𝑥1 

represents the i-th column of lead field matrix L and the symbol + refers to Moore-Penrose 

pseudoinverse. The solution to (eq. 10) can be found by iterating four steps. First, we have to initialize 

the diagonal matrix W with 𝑤𝑖 = 1, for 𝑖 = 1, … , 𝑁 and then compute: 

𝐶 = (𝐿𝑾−1𝐿𝑇 + 𝜆𝑰𝑀)+ . (11) 

Holding C fixed, we compute new weights for all the dipoles 𝑖 = 1, … , 𝑁: 

𝑤𝑖 = [𝑳𝑖
𝑇𝑪𝑳𝑖]1/2 (12) 

and then we return to eq. 11 until convergence. Once the 𝑤𝑖 have been estimated, the eLORETA solution 

is given by the following expression: 

[𝑱]𝑖 = 𝑤𝑖
−1𝐿𝑖

𝑇(𝐿𝑾−1𝑳𝑇 + 𝜆𝑰𝑀)+𝛷 . (13) 

It has been suggested that eLORETA solution achieves exact localization to single test point sources 

under ideal (no-noise) conditions, outperforming all other linear solutions on both simulated and real 

EEG data in this respect [29]. However, in the presence of two or more sources (thus, in any setting 

involving source interaction), this property does not hold anymore. 

2.3 Multivariate Directed Connectivity Estimation 

Multivariate Granger Causality (MVGC) 

The concept of Granger causality [16], [30] is based on the predictability of time series. Namely, if a time 

series X2(t) contains information that improves the predictability of future values of another time series 

X1(t) above and beyond what can be predicted on the basis of X1(t) alone, then X2(t) is said to Granger-

cause X1(t). In other words, if the prediction error decreases by adding the past values of X2(t) to a 

regression model for predicting X1(t), we can assume that X2(t) Granger-causes X1(t). In the BIVAR (bi-

variate vector-autoregressive) formulation, this notion is described as follows: 

(
𝑥1(𝑛)
𝑥2(𝑛)

) =  ∑ ( 
𝐴11,𝑘 𝐴12,𝑘

𝐴21,𝑘 𝐴22,𝑘
) (

𝑥1,𝑛−𝑘

𝑥2,𝑛−𝑘
) +  (

𝑒1,𝑛

𝑒2,𝑛
)

𝑝

𝑘=1

                           (14) 

𝜮 ≡ 𝑐𝑜𝑣 (
𝑒1,𝑛

𝑒2,𝑛
) =  (

𝛴11 𝛴12

𝛴21 𝛴22
)  

  (15) 

At this point, one can perform a full regression (eq. 16), using both time series, and a reduced regression 

(eq. 17), using only the target time series: 

𝑥1(𝑛) =  ∑ 𝑨11,𝑘𝑥1,𝑛−𝑘

𝑝

𝑘=1

+  ∑ 𝑨12,𝑘𝑥2,𝑛−𝑘

𝑝

𝑘=1

+  𝑒1,𝑛 (16) 

𝑥1(𝑛) =  ∑ 𝑨′11,𝑘𝑥1,𝑛−𝑘

𝑝

𝑘=1

+  𝑒′1,𝑛  (17) 

In the full regression, the dependence of X1 on the past of X2, in addition to its own past, is encapsulated 

in the coefficients A12,k. There is no dependence between X1 and X2 if the coefficients are null for all lags 

k, A12,1  = A12,2  = … = A12,p = 0. Prediction error estimation is based on full and reduced regression residuals. 

In particular Σ’11 ≡ var(e’1,n) is the residual variance in the case of reduced regression and Σ11 ≡ var(e1,n) 
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is the residual variance in the case of full regression.  Pairwise time-domain Granger causality is defined 

as 

𝑓𝑋2⟶𝑋1 = 𝑙𝑜𝑔
|𝜮′11|

|𝜮11|
 

 

(18) 

The value of 𝑓𝑋2⟶𝑋1 is equal to 0 if there is no GC between the time series and their variance ratio is 1. 

If a dynamical influence from X2 to  X1 exist, the value of 𝑓𝑋2⟶𝑋1 is greater than zero. Let us suppose to 

have joint dependencies between X1 and X2 and a third set of variables, e.g. X3, then spurious influences 

may be reported. Spurious connections can be detected even when there is no direct influence X2 → X1 

but there are (possibly lagged) dependencies of X1 and X2 on X3. To overcome this problem, Barnett and 

Seth propose a different way to compute GC, introducing the so called Pairwise Conditional Granger 

Causality (PWCGC), which conditions out common dependencies between variables before estimating 

pairwise GC scores, provided such dependencies are present in the data [31]. The MVAR model is again 

expressed in the form of full regression (eq. 19) and in the form of reduced regression (eq. 20), as: 

𝑥1(𝑛) =  ∑ 𝑨11,𝑘𝑥1,𝑛−𝑘

𝑝

𝑘=1

+  ∑ 𝑨12,𝑘𝑥2,𝑛−𝑘

𝑝

𝑘=1

+ ∑ 𝑨13,𝑘𝑥3,𝑛−𝑘

𝑝

𝑘=1

 + 𝑒1,𝑛 (19) 

𝑥1(𝑛) =  ∑ 𝑨′11,𝑘𝑥1,𝑛−𝑘

𝑝

𝑘=1

 + ∑ 𝑨′13,𝑘𝑥3,𝑛−𝑘

𝑝

𝑘=1

 + 𝑒′1,𝑛 

 

(20) 

𝑓𝑋2⟶𝑋1|𝑋3 = 𝑙𝑜𝑔
|𝜮′11|

|𝜮11|
 (21) 

Here, FX2→X1|X3 may be read as “the degree to which the past of X2 helps to predict X1, over and above the 

degree to which X1 is already predicted by its own past and the past of X3”. In our simulation study, we 

are going to use this approach. Additionally it is worth noting that we use the state-space formulation of 

Granger causality, which eliminates the bias due to the fact that the reduced model is VARMA (Vector 

Auto Regressive Moving Average) and not VAR [32]. 

Time reversed Granger causality 

Granger-causal estimators are prone to detect spurious influences not only in the presence of hidden 

common drivers but also in the presence of additive correlated noise [9], [13], [18], [33], [34]. Correlated 

noise is a ubiquitous property of EEG data, which are by their very nature linear mixtures of 

contributions from different sources. Since this mixing process cannot be fully undone using source 

imaging techniques, it poses a serious problem for EEG-based brain connectivity analysis using GC. To 

overcome the problem of spurious connectivity for mixed data, Haufe et al. proposed time-reversal [9], 

[34]. The intuitive idea behind this approach is that, if connectivity is defined based on temporal delays, 

directed influence should be reduced (if not reversed) if the temporal order is reversed. This is in 

contrast to the observation that two signals that are correlated but Non-Interacting often appear 

spuriously connected no matter whether GC is applied on the original or time-reversed data. If, however, 

GC estimates obtained on original and time-reversed data are contrasted with each other, the 

instantaneous influence of volume conduction can be removed, and the false detection of connectivity 

can be avoided. GC is defined based on the Granger-scores defined in eq. 18, where Fx1⟶ x2 is the direct 
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influence from x1 to x2, and it requires that the residual variance of the restricted model should be 

smaller than the one in the case of full model [13]. When time-reversing the data, we denote the residual 

covariance matrix of the time-reversed process (full model) by: 

�̃� =  [
�̃�11 �̃�12

�̃�21 �̃�22

] (22) 

As for the original GC, we define the dynamical influence as 

𝐹𝑥2̃⟶𝑥1̃ = 𝑙𝑜𝑔 (
 �̃�′11

 �̃�11

) (23) 

Finally, Time-reversed GC is given by the difference between the net GC scores obtained on the original 

and time-reversed GC: 

�̃�𝑥1̃⟶𝑥2̃ = 𝐹𝑥1̃⟶𝑥2̃ − �̃�𝑥1̃⟶𝑥2̃ (24) 

Using the above definitions, the validation of a Granger causal influence that cannot be explained by a 

mixture of independent sources can be performed according to the following criterion, named 

Conjunction-based time-reversed GC: 

● the directionality of GC is required to flip for time-reversed signals. The connection is regarded 

as significant if both GC values (with original and reversed data), are significant: 𝐹𝑥1̃⟶𝑥2̃ > 0 ∧  

�̃�𝑥1̃⟶𝑥2̃ < 0. This is the definition adopted in the present paper. 

Other criteria, less stringent than this one,  are discussed in [18]. Simulations have shown that TRGC 

leads to a reduced number of false connections, compared to original GC and its variants  [9], [18], [33]–

[35].  

Theoretical work presented in [18] has moreover shown that : 

● The application of time reversal to any connectivity measures that is based on second order 

statistics - which, besides GC and pairwise-conditional GC also includes its direct extension to 

frequency domain (spectral GC) and the popular frequency-domain measures partial directed 

coherence (PDC) and directed transfer function (DTF), among others - prevents the spurious 

detection of connectivity on mixtures of independent sources that would otherwise be highly 

likely. 

● The application of time reversal to Granger causality (that is, the use of TRGC) is guaranteed to 

always yield the correct direction of interaction for systems that do not contain causal loops, and 

are noise-free. 

Partial directed coherence (PDC) 

Partial Directed Coherence (PDC) [36] is a spectral measure to assess the dynamical influence between 

signals within a multivariate dataset. It is basically a frequency version of the concept of Granger 

causality [37]. PDC is defined as follows: 

π𝑖𝑗(𝑓) =
|𝑨𝒊𝒋|

2

∑ |𝑨𝑖𝑘(𝑓)|𝑁
𝑘=1

 (25) 
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PDC values fall in the range [0, 1], where πij(f)=0 stands for the absence of a direct influence from xi to xj 

at the considered frequency f. PDC only estimates the direct influence between two signals, thus 

discounting for indirect effects of other channels in a similar way as pairwise-conditional GC. The 

definition has been subsequently refined with the introduction first of a row-wise normalization [38]: 

𝜋𝑖𝑗
𝑟𝑜𝑤(𝑓) =

𝑨𝒊𝒋

√∑ 𝑨𝑖𝑘(𝑓)𝑨𝑖𝑘
∗ (𝑓)𝑁

𝑘=1

, (26) 

then of a quadratic version, so that the new squared and normalized PDC can be interpreted as the 

portion of the ith signal power density due to the jth one: 

𝑠𝑃𝐷𝐶𝑖𝑗
𝑟𝑜𝑤(𝑓) =

|𝑨𝑖𝑗(𝑓)|
2

∑ |𝑨𝑖𝑘(𝑓)|2𝑁
𝑘=1

. (27) 

2.4 Statistical assessment of significant connections 

The standard way to assess the statistical significance of Granger scores is a likelihood ratio test, which 

can be derived from large-sample theory [39]. If dim(X1) = nx1, dim(X2) = nx2 and dim(X3) = nx3 (with nx1 

+ nx2 + nx3 = n) then the difference in the number of parameters between the full model and the nested 

reduced model (see eq. 20) is just d ≡ p nx1 nx2. Thus, under the null hypothesis of zero Granger-causal 

influence, the GC estimator scaled by sample size, (m − p) FX2→X1|X3(u), has an asymptotic χ2 distribution. 

Under the alternative hypothesis, the scaled estimator has an asymptotic noncentral - χ2 (d; ν) 

distribution, with non-centrality parameter ν = (m − p) FX2→X1|X3(u) equal to the scaled actual influence 

(which may, for the purpose of constructing confidence intervals, be replaced by its estimator). 

Similarly, it was demonstrated that the squared PDC estimator tends to a Gaussian distribution in the 

non-null case and to a χ2 distribution in the null case. This assumption led to the development of a new 

approach, the asymptotic statistic, which allowed the derivation of the probability distribution of the 

null-case squared PDC estimator (the χ2 distribution), by knowing its asymptotic variance [40], [41]. 

Note that these standard statistical tests are only capable to distinguish actually present GC/PDC effects 

from results obtained due to random signal fluctuations in the absence of GC/PDC. They are not capable 

of distinguishing actual GC/PDF effects that are due to genuine time delayed interaction from actual  

GC/PDC effects that are solely due to additive mixed noise in the absence of genuine time-delayed 

interaction. To test for the latter, the statistical significance of TRGC (or, time-reversed PDC) needs to 

be established. For difference-based TRGC, this can be achieved by testing whether (eq. 28) is 

significantly different from zero using non-parametric approaches like the bootstrap. In this work, we 

focus on conjunction-based TRGC and we used an alpha of 0.05, FDR corrected.  

 

2.5  Simulation Framework 

The simulation study developed for investigating the effects of the volume conduction on connectivity 

estimation accuracy and reliability is composed by the following main steps: 

- Generation of brain signals with an imposed connectivity pattern 
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- Forward problem solution 

- Inverse problem solution 

- Connectivity estimation 

- Performance evaluation 

 

An overview of the simulation framework, with all the considered factors, is shown in fig.1.  

 

 

Figure 1 – Block diagram reporting the main steps of the simulation framework. 

 

2.6 Simulated time series generation 

Brain signals were generated using a multivariate autoregressive (MVAR) model with order 2 as 

generator filter. We simulated three time series and only one connection. Both, the autoregressive 

components and the off-diagonal elements of the coefficients matrix were randomly chosen within the 

range [0.3 1]. The three different time series will be called Sender, Receiver and Non-Interacting dipole, 

to indicate, respectively, the driving dipole, the receiving dipole, and the independent dipole. Each of 

them represents an active source contributing to the simulated EEG scalp potentials. In order to simulate 

an experimental condition as realistic as possible, we also generated 500 pink noise signals representing 

the background brain activity.  

2.7 Simulated time series location 

Brain activity was modelled with 1006 electric equivalent dipoles, equally distributed within the brain. 

Using the New York Head model, we obtained the dipole positions by subsampling the 75000 MNI 
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coordinates available in the ICBM152 model. In the panel a of fig. 2 we showed all the 1006 possible 

dipole locations.  

 

Figure 2 -  Panel a) shows the 1006 locations in which activity was modelled. Red circle represents an example of 
the 500 locations associated with the brain noise activity. Panel b) presents the four conditions for the two fixed 
active dipoles, which are the red (Sender) and the purple (Receiver) one. The black circle represents the Non-
Interacting dipole (noise). 

For each simulation, we fixed the position of two active dipoles on four possible conditions (represented 

in fig.2b) defined from the combination of the following factors: 

● Depth of the dipoles: “superficial” (distance from the origin >6.5 cm) or “deep” (distance from 

the origin <6cm);  

● Distance between the dipoles: “far” (relative distance >8cm) or “close” (relative distance <5cm). 

The third dipole (moving dipole) instead, change its location on the 1004 possible remaining positions. 

Two different cases were analysed by changing the moving dipole. In the first case, it is the Non-

Interacting dipole, thus the connection is fixed. In the second case, the moving dipole is the Receiver; 

thus, the relative locations of Sender and Receiver varies across repetitions. The 500 additional noisy 

elements were randomly distributed within the brain. 

2.8 Pseudo-EEG signal generation.  

After the signals generation, the time series representing both the source activity and the noise, were 

projected onto 108 EEG electrodes defined by the New York Head model, and summed according to 

following equation: 
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𝑥𝑏𝑟𝑎𝑖𝑛(𝑡) = 𝛼 ∗
𝑥𝑎𝑐𝑡_𝑠(𝑡)

||𝑥𝑎𝑐𝑡_𝑠(𝑡)||𝐹
+ (𝛼 − 1) ∗

𝑥𝑛𝑜𝑖𝑠𝑒_𝑠(𝑡)

||𝑥𝑛𝑜𝑖𝑠𝑒_𝑠(𝑡)||𝐹
 ,  (28) 

where 𝑥𝑎𝑐𝑡_𝑠 and 𝑥𝑛𝑜𝑖𝑠𝑒_𝑠 are the projections of the active sources signals and of the brain noise sources 

activity respectively, and where ||𝑥(𝑡)||𝐹 is the Frobenius norm of the multivariate time series x(t) (the 

square-root of the sum of the squared activity across time and space). The parameter 𝛼 thereby defines 

the signal-to-noise ratio. Given 𝛼, the corresponding SNR in decibels (𝑑𝑏𝑠) is: 

𝑑𝑏𝑠 = 20 ∗ 𝑙𝑜𝑔10 (
𝛼

1−𝛼
) . (29) 

Finally, in order to simulate the measurement noise, spatially and temporally uncorrelated signals are 

added to 𝑥𝑏𝑟𝑎𝑖𝑛(𝑡) with an imposed α equal to 0.9. The overall pseudo-EEG data is defined from the 

following equation: 

𝑥(𝑡) = 0.9 ∗
𝑥𝑏𝑟𝑎𝑖𝑛(𝑡)

||𝑥𝑏𝑟𝑎𝑖𝑛(𝑡)||𝐹
+ 0.1 ∗

𝑥𝑛𝑜𝑖𝑠𝑒(𝑡)

||𝑥𝑛𝑜𝑖𝑠𝑒(𝑡)||𝐹
 , (30) 

where 𝑥𝑛𝑜𝑖𝑠𝑒 is the white uncorrelated noise.  

2.9 Source reconstruction and directed connectivity estimation 

The simulated pseudo-EEG signal was projected onto the cortical surface using two different inverse 

problem solutions: LCMV and eLORETA. The regularization parameter to be set in the eLORETA 

algorithm was chosen by means of a cross-validation approach. In cortical source space, directed 

connectivity according to MVGC, TRGC and PDC was estimated at the locations of the three simulated 

active dipoles, and the statistical significance of the estimated connections was assessed.  

2.10 Performance parameters 

The quantitative evaluation of the accuracy in signals reconstruction and connectivity estimation was 

performed by means of three parameters: the False Positive Rate (FPR), the False Negative Rate (FNR) 

and the Area Under ROC Curve (AUC). Such parameters were computed by comparing the estimated 

connectivity pattern with the imposed ground-truth. A false positive (FP) is an estimated (statistically 

significant) connection that is not present in the simulated data, while a true negative (TN) is an absent 

simulated connection that is correctly estimated as being absent. The FPR (see eq. 31) is the number of 

false positives normalized by the number of absent connections. The FPR is thus defined as in the 

follows: 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
 .    (31)                                                                                   

The FNR quantifies the percentage of missed (not statistically significant) connections (referred to as 

false negatives, FN) that are actually present in the simulated data relative to the total number of actually 

present simulated connections. The latter number is given as the sum of false negatives and true 

positives (TP, referring to actually present connections that are also estimated to be present). The FNR 

is thus defined as follows: 

𝐹𝑁𝑅 =  
𝐹𝑁

𝐹𝑁+𝑇𝑃
 . (32) 
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In this study, the total number of possible connections is six (2 possible directions for three distinct 

pairs of variables). As only one interaction was modelled, FN+TP equals one, while the number of absent 

connections (FP + TN) is equal to five. 

The AUC is a measure of binary classification accuracy, which is applied here to the problem of 

distinguishing between interacting and Non-Interacting signals. It takes into account both the FPR and 

FNR across the entire range of all possible thresholds for the connectivity measure; therefore, it is 

independent of a specific significance level. The AUC is bounded between 0.5 (chance-level class 

separation) and 1 (perfect class separation) and was derived from the Wilcoxon-Mann-Whitney test 

[42]. 

2.11 Statistical Analysis 

In order to statistically evaluate the accuracy of the employed algorithms in reconstructing the sources 

activity and estimating brain networks, a four-way ANalysis Of VAriance (ANOVA) was computed. The 

main within factors were: 

● the fixed dipoles position (DIP_POS) with 4 levels: Close Deep, Close Superficial, Far Deep, Far 

Superficial; 

● the adopted inverse methods (L_INV_METH) with 2 levels: eLORETA, LCMV; 

● the connectivity estimator (EST_TYPE) with 3 levels: MVGC, PDC, TR_GC; 

● the signal-to-noise ratio (SNR) defined by 3 levels of α: 0.5, 0.7, 0.9 (corresponding to SNR equal 

to 0, 7 and 19 dB respectively) that in the next will be identified as “low”, “medium” and “high” 

value of SNR. 

The dependent variables were the three introduced performance parameters (FPR, FNR and AUC) 

averaged on the 1004 possible location of the moving dipole. The simulation was repeated 100 times 

for each experimental condition. Additionally, a post hoc analysis was performed in order to highlight 

the significant comparisons between the various level of the included factors and their interaction, using 

Tukey's range test. 

2.12 Topographical visualization of the results 

As described in the previous paragraph, the ANOVA investigates the performance parameters averaged 

for more than one thousand possible locations of the moving dipole.  In order to obtain a detailed 

overview on the variations of the estimate accuracy as function of the position of the moving dipole, we 

averaged the parameters on the 100 iterations and reported the obtained results in 3D brain maps. The 

color of each one of the 1004 dipoles codes for the value of the FPR. We do not report the maps obtained 

for the false negatives because their amount is always very low (less than 5%). 

With the aim to summarize the complex information contained in the brain maps, we also calculated the 

FPR as function of the distance between Sender and Receiver as well as between Sender and Non-

Interacting dipole for each SNR level, inverse approach, and connectivity estimator. The position of the 

fixed dipole (either Receiver or Non-Interacting dipole) in these analyses was far and superficial. 

3. RESULTS 

3.1 Statistical analysis 
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The results of the four-way ANOVA computed separately for the three performance parameters are 

reported in Table I. A four-way ANOVA consists of fifteen separate multiple tests (four main effects, six 

two-way interactions, four three-way interactions, and one four-way interaction). Therefore, a 

correction for multiple comparisons (Bonferroni-Holm for example) was performed. 

 

Table I - Results of the four-way ANOVA (F values) computed considering as dependent variables FPR, FNR and 
AUC and as within main factors the type of inverse algorithm (L_INV METH), the connectivity estimator 
(EST_TYPE), the SNR and the position of the fixed dipoles (DIP_POS). In the column “Factors”, the degrees of 
freedom are also reported.  

All factors and all interactions between factors have a significant effect on the FPR, FNR and AUC. In the 

following, we show a graphical depiction of the means of the four-way interaction factor (L_INV METH 

x EST_TYPE x SNR x DIP_POS) for each investigated performance measure. 

False Positives Rate 

Figure 3 shows means obtained for the FPR for different levels of SNR (α) and dipole positions when 

specific algorithms for the inverse solution and connectivity estimation are employed.   

Factors

L_INV METH (1,99) 86,25 p=1*10-5
68,27 p=1*10-5

41,43 p=1*10-5

EST_TYPE (2,198) 1686,5 p=1*10-5
8,45 p=0,0003 1652,6 p=1*10-5

SNR (2,198) 357,14 p=1*10-5
67,42 p=1*10-5

570,29 p=1*10-5

DIP_POS (3,297) 930,51 p=1*10-5
62,13 p=1*10-5

1292,1 p=1*10-5

L_INV METH x EST_TYPE (2,198) 14,55 p=1*10-5
15,16 p=1*10-5

13,03 p=1*10-5

L_INV METH x SNR (2,198) 23,68 p=1*10-5
101,48 p=1*10-5

2,5 p=0,084

EST_TYPE x SNR (4,396) 91,06 p=1*10-5
45,73 p=1*10-5

74,73 p=1*10-5

DIP_POS x L_INV METH (3,297) 82 p=1*10-5
86,54 p=1*10-5

15,14 p=1*10-5

EST_TYPE x DIP_POS (6,594) 225,55 p=1*10-5
5,69 p=1*10-5

181,71 p=1*10-5

DIP_POS x SNR (6,594) 84,16 p=1*10-5
90,47 p=1*10-5

59,74 p=1*10-5

L_INV METH*EST_TYPE*SNR (4,396) 34,76 p=1*10-5
27,24 p=1*10-5

18,96 p=1*10-5

L_INV METH*EST_TYPE*DIP_POS (6,594) 23,43 p=1*10-5
24,61 p=1*10-5

29,39 p=1*10-5

L_INV METH*SNR*DIP_POS (6,594) 14,54 p=1*10-5
79,11 p=1*10-5

54,39 p=1*10-5

EST_TYPE*SNR*DIP_POS (12,1188) 3,42 p=1*10-5
28,93 p=1*10-5

3,98 p=1*10-5

L_INV METH x EST_TYPE x SNR x DIP_POS  (12,1188) 47,67 p=1*10-5
17,3 p=1*10-5

42,27 p=1*10-5

FPR FNR AUC
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Figure 3 - Means associated with the four-way interaction factor (L_INV METH x EST_TYPE x SNR x DIP_POS) of 

the ANOVA performed on the FPR. Each panel corresponds to a specific value of the SNR parameter α: 0.5 (panel 
a), 0.7 (panel b), 0.9 (panel c). For each panel, there are two graphs associated with the two different inverse 
solutions: eLORETA on the left and LCMV on the right. X-axes report the levels of the factor DIP_POS and the colours 
code for the three connectivity estimators. Whiskers represent 95% confidence intervals. Each panel depicts results 
obtained for one SNR level. 

 

These graphs show how the two different inverse methods and the location of the fixed dipoles influence 

the amount of false positive connections when the estimation is performed with the three different 

connectivity estimation algorithms for different levels of SNR. 

Connectivity Estimator: As expected, we found that the amount of false positive decreases when the 

connectivity pattern is extracted by means of TRGC. FPR associated with the TRGC is significantly lower 

(Tukey test) with respect to the other two methods independently of the dipoles position, the SNR level 

and to the inverse algorithm (see all the subplots). MVGC and PDC do not show significantly different 
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results for each condition, and the number of estimated spurious connections is not significantly 

different.  

Inverse Algorithm: For each panel, we can compare the performance associated with the different 

inverse solutions comparing the two subplots. Regardless of the SNR, the LCMV algorithm (on the right) 

for source reconstruction has globally better performance than eLORETA (on the left) for all the three 

SNR values. The post hoc analysis reveals a significant increase of the FPR for eLORETA, compared to 

LCMV, in all the considered conditions of SNR, dipoles position, and connectivity estimator. Only in the 

most advantageous configuration, when α equals 0.9, indicating high SNR, and the linked dipoles are in 

the Far/Superficial configuration, such difference is not significant. In the worst case, corresponding to 

the Close/Deep configuration, the FPR is considerably high, especially for the eLORETA reconstruction, 

where it exceeds 70%, and the difference between the performances of the two inverse methods 

appears to be emphasized.  

Fixed dipoles position: It is worth to note how performance critically depends on the position of the 

fixed dipoles. Independently of the employed inverse algorithm and connectivity estimator, the ANOVA 

suggested that when they are located deep in the brain the amount of false positives significantly 

increases. When the fixed dipoles are superficial and α is equal 0.7, the relative distance (close/far) does 

not have a significant influence on the FPR. For the higher SNR levels, the ANOVA highlighted a 

significant increase of the FPR from 10% to 20%, suggesting that the optimal condition for the source 

reconstruction is given by far and superficial dipoles. For the very low SNR value of 0.5, for all the L_INV 

METH and EST_TYPE levels, the statistical test revealed a significant decrease of FPR in the 

Close/Superficial case relative to the Far/Superficial case. 

SNR: In all considered conditions, the test indicates a significant improvement of performance when the 

simulated SNR is higher. More in detail, when the SNR level is 0.9, the amount of false positives is less 

than 30% in all the cases except for the Deep/Close condition. The analysis of FPR suggests that the best 

combination of factors is given, for all the considered SNR levels, by: i) dipoles located superficial in the 

brain and not too close; ii) LCMV as algorithm for the inverse problem solution and iii) TRGC as 

connectivity estimator.  Only in this case the percentage of false positives reached low values (around 

10% for SNR equal to 0.9). 

False Negative Rate 

The graphs in Figure 4 depict the means of the four-way interaction factor (L_INV METH x EST_TYPE x 

SNR x DIP_POS) obtained for the FNR index.  
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Figure 4 - Means associated with the four-way interaction factor (L_INV METH x EST_TYPE x SNR x DIP_POS) of 
the ANOVA performed on the FNR. Each panel corresponds to a specific α level: 0.5 (panel a), 0.7 (panel b), 0.9 
(panel c). For each panel, there are two graphs associated with the two different inverse solutions: eLORETA on the 
left and LCMV on the right. X-axes always show the levels of the factor DIP_POS and the colours code for the three 
connectivity estimators. Whiskers represent 95% confidence intervals. Each panel depicts results obtained for one 
SNR level. 

The percentage of false negatives is less than 5% in all simulated cases, except for the lowest SNR level 

(α equal to 0.5) when LCMV is employed. In the easier condition with a higher signal to noise ratio and 

interacting dipoles that are not deep and close at the same time, the FNR is around 1% regardless of the 

chosen connectivity estimator.  
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Connectivity Estimator: The factor EST_TYPE does not have a significant effect on the FNR index 

independently of all the other factors (SNR value, type of algorithm chosen for the source reconstruction 

and connectivity estimation): its variations never exceed 1%. Also, the slight increase of false positives 

associated with the time reversed adaptation of GC is not statistically significant in this case. 

Inverse Algorithm: The percentage of FN obtained with the two inverse methods is strictly linked to 

the dipoles’ position. Results reported in panel a) show that for SNR equal to 0db, FNR significantly 

increases for LCMV only when the dipoles are located deep in the brain (accounting for an increase of 

20% in the Close/Deep condition). Panel b) shows a similar but attenuated trend for α equal to 0.7 

(increase of less than 5% in the Close/Deep condition). As shown in panel c), there are no significant 

differences between LCMV and eLORETA for the highest SNR value.  

Fixed dipoles position: The factor DIP_POS is significant for low and medium SNR values and L_INV 

METH corresponding to LCMV. In such conditions, for deep dipoles, the FNR is significantly higher, 

regardless the connectivity estimator. Moreover, focusing on the deep locations, there is a significant 

increase of the false negatives when the dipoles are close compared to when they are further away.  

SNR: the signal-to-noise ratio associated to the three levels of the factor SNR significantly influences the 

presence of false negatives only when the inverse problem is solved by the LCMV algorithm. This is 

particularly the case for the condition Close/Deep, in which the FNR decreases from 20% when α is equal 

to 0.5 (panel a) to 4% when α is equal to 0.7 (panel b), and to 1% for the highest SNR level (panel c).  

This suggests that the amount of false negatives is independent of the algorithm employed for solving 

the inverse problem and for the connectivity estimation. In case of poor signal quality (low SNR), the 

FNR is considerable when the sources to be reconstructed are located deep in the brain. Algorithms that 

are more prone to missing connections are LCMV for source reconstruction and TRGC as connectivity 

estimation. 

AUC 

The graphs in Figure 5 depict the means of the four-way interaction factor (L_INV METH x EST_TYPE x 

SNR x DIP_POS) obtained for the AUC parameter.  
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Figure 5 - Means associated with the four-way interaction factor (L_INV METH x EST_TYPE x SNR x DIP_POS) of 
the ANOVA performed on the FNR. Each panel corresponds to a specific α level: 0.5 (panel a), 0.7 (panel b), 0.9 
(panel c). In each panel, there are two graphs associated with the two different inverse solution: LCMV on the left 
and eLORETA on the right. X-axes report the levels of the factor DIP_POS and colours code for the three connectivity 
estimators. Whiskers represent 95% confidence intervals. Each panel depicts results obtained for one SNR level. 

The AUC index hereby summarizes the effect of the four considered factors on the accuracy of the 

estimation in term of false positives and false negatives, providing a unifying measure of the 

discriminability of actually present and non-existent connections. 

Connectivity Estimator: As expected from the previous results concerning the FPR trend, the accuracy 

of the estimation considerably increases when performed by means of TRGC. The increase of the 

performances associated with TRGC is statistically significant and amounts to about 10%. Confirming 

what has already been demonstrated for FPR and FNR, the accuracy of MVGC and PDC is not significantly 

different in any condition.  

Inverse Algorithm: On average, the difference between LCMV and eLORETA is not significant, but there 

are combinations of the factors for which either of the two performed better. The main discrimination 
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is given by the linked dipoles position. When the sources are located deep in the brain (especially if they 

are also close), the accuracy of the connectivity estimation appears significantly higher when LCMV is 

employed to reconstruct the brain activity. Once again, the only exception is the low SNR setting, in 

which this relationship is reversed because LCMV is more sensitive to the SNR level compared to the 

eLORETA algorithm, which shows more stable performance.   

Fixed dipoles position: Independent of the employed inverse algorithm and connectivity estimator, 

the accuracy of the estimation significantly decreases when the linked dipoles are located deep in the 

brain. For higher SNR levels, the ANOVA highlights a performance degradation in terms of the AUC 

dropping from 90% (Far/Superficial) to 70% (Close/Deep).  

SNR: As expected, the performance significantly improves in all considered conditions when the 

simulated SNR is high. More specifically, when the SNR level is 0.9, the accuracy is higher than 85% for 

eLORETA and higher than 90% for LCMV in all the cases except for the Deep/Close condition.  

The analysis of the AUC index suggests that the optimal combination of factors is given by: i) dipoles 

located superficial in the brain and not too close; ii) LCMV algorithm when the SNR is not too low, 

otherwise eLORETA; iii) TRGC as connectivity estimator. 

3.2 Brain maps 

Non-Interacting dipole position 

As mentioned before, in each simulated condition, the moving dipole changes its position over 1004 

locations equally distributed in the brain. In order to map the performance of the three connectivity 

estimators for each investigated source reconstruction algorithm and each position of the fixed dipoles, 

MVGC, PDC and TRGC were computed considering all the 1004 possible configurations of the network. 

Since each simulation was iterated 100 times, we were able to obtain an average performance value. 

Only the maps depicting the FPR are reported because of the greater sensitivity of this indicator to the 

factors considered in the analysis. We report transparent axial views of the head for each choice of fixed 

dipoles position and inverse method. Only 2 out of 3 estimators are reported because the PDC 

performances are similar to those obtained using the MVGC algorithm in all the considered conditions. 

We report the value assumed by the FPR (coded by its color) in the position of the moving dipole 

associated with that measure. Figure 6 reports the results obtained for the lowest SNR level, when α is 

equal to 0.5.   
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Figure 6 –  Spatial distribution of the FPR in the Moving Non-Interacting Dipole condition for low SNR (α = 0.5). 
Shown are the Sender (red circle) and Receiver (purple circle) of the interaction in the Far-Superficial (a), Far-
Deep (b), Close-Superficial (c), and Close-Deep (d) conditions. The other points represent the mean value of the FPR 
across 100 iterations (coded by the colour bar on the right side) when the third active dipole (the Non-Interacting 
one) is moved across the brain. The first two columns refer to the classical GC (MVGC algorithm); the last two to 
the TRGC. For each column, results obtained with eLORETA and LCMV are reported next to each other.  

The percentage of false positives depends on the distance of the Non-Interacting dipole from the two 

fixed ones. The most relevant result is that when the fixed dipoles are located deep in the brain and close 

to each other (panel d), high FPR values are spread across the whole brain, and reach 100% in the 

vicinity of the Sender and Receiver. Only TRGC combined with the LCMV algorithm mitigates this effect, 

which is then limited to the configurations in which the Non-Interacting dipole is close to the other two. 

Panels a), b) and c) clearly show a strong increase of the FPR when the Non-Interacting dipole is located 
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in the areas close to the Receiver or to the Sender. Similar maps displaying the results obtained for α 

equal to 0.7 and 0.9 are reported in the supplementary material. These results confirm the trends 

commented for the previous maps but with globally better performances. The FPR considerably 

increases around the fixed dipoles. This phenomenon is focal when LCMV is employed and more spread-

out if eLORETA combined with the MVGC estimator. Again, when the fixed dipoles are located deep in 

the brain and close each other, high FPR values are spread across the whole brain and reach 100% in 

the vicinity of Receiver and Sender. Maps associated with all the others fixed dipoles positions show that 

when the sources included in the model are far one from the other, the best performance is obtained 

with eLORETA. In order to summarize the information contained in these maps, figure 7 shows the value 

of the FPR as function of the distance of the moving dipole from the Sender of the interaction for all SNR 

values, inverse algorithms and connectivity estimators. 

 

Figure 7 - FPR as function of the distance (in cm) of the Non-Interacting Moving Dipole from the Sender of the 
interaction for the two inverse reconstruction algorithms, eLORETA and LCMV. The MVGC and TRGC connectivity 
estimators are drawn in red and blue colours, respectively. The circle marker codes for low SNR, the triangle for 
medium SNR, and the cross for high SNR.  
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The results suggest that TRGC performs better than MVGC regardless of the distance of the moving 

dipole from the Sender. LCMV source reconstruction is less sensitive to the distance between dipoles. 

For example, in panel a), an increase of the FPR 14 cm away from the Sender is noticeable. This point 

corresponds to the position of the second interacting dipole. When the LCMV algorithm is employed the 

increase is much less evident. The trends are similar for all α levels, although higher FPRs are observed 

for lower SNRs. For high SNR, the best performance is achieved with eLORETA when the moving dipole 

is far from the other two.    

Interactive dipole position 

The last analysis was performed using a fixed location for the Non-Interacting and Sender dipoles, 

placing the Receiver dipole at different positions. The results are in line with the previous ones. Figure 

8 depicts topographical maps for the low SNR level (in the supplementary material for medium and high 

SNR levels), while figure 9 depicts FPR as a function of the distance between Receiver and Sender. 
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Figure 8 - Spatial distribution of the FPR in the Moving Receiver Dipole condition for low SNR (α = 0.5). Shown are 
the Sender (red circle) and Receiver (purple circle) of the interaction in the Far-Superficial (a), Far-Deep (b), Close-
Superficial (c), and Close-Deep (d) conditions. The other points represent the mean value of the FPR across 100 
iterations (coded by the colour bar on the right side) when the third active dipole (the Non-Interacting one) is 
moved across the brain. The first two columns refer to the classical GC (MVGC algorithm); the last two to the TRGC. 
For each column, results obtained with eLORETA and LCMV are reported next to each other. 

When the fixed dipoles are close (panels b and d), a high percentage of false positives appears 

throughout the brain, in particular for low and medium level of SNR. All others results are in line with 

the results reported above: 

● the increase of the α value corresponds to a decrease in the number of false positives 

independently of all the other factors; 

● on average, LCMV performed better than eLORETA. This advantage is predominantly due to an 

increased robustness w.r.t. the position of the nodes; 
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● TRGC provided more accurate connectivity estimates than MVGC and PDC;  

● when the involved dipoles are far away from another, eLORETA leads to more accurate 

connectivity estimation, and the difference between the classical MVGC and TRGC is less 

pronounced than in the other conditions; 

● with the dipoles in the Far/Superficial configuration, and α equal to 0.9, the percentage of false 

positives is less than 10% for all the inverse solutions and connectivity algorithms; 

● with the dipoles in the Close/Deep configuration, the percentage of false positives reaches 100% 

regardless of the SNR value. 

 

Fig. 9 shows the FPR as function of the distance between Sender and Receiver for all SNR values, inverse 

algorithms and connectivity estimators. 

 

 

Figure 9. FPR as function of the distance (in cm) of the moving Receiver from the Sender for the two inverse 
reconstruction algorithms, eLORETA and LCMV. The MVGC and TRGC connectivity estimators are drawn in red and 
blue colours, respectively. The circle marker codes for low SNR, the triangle for medium SNR, and the cross for high 
SNR. 
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The first result is that the mean value of the FPR is lower than for the Non-Interacting moving dipole 

condition. Also, in this case, TRGC performed better than MVGC regardless of the distance of the moving 

Receiver dipole from the Sender. In panel a) it is possible to notice an increase of the FPR when the 

Receiver dipole is 14cm away from the Sender dipole (this being the position of the Non-Interacting 

dipole). Trends are similar for all the α levels, where, generally, decreases in SNR are associated with 

increases in FPR. For high SNR, the best performance is achieved using eLORETA when the moving 

dipole is far away from the other two (FPR around 5%).    

4. Discussion and Conclusion 

It is well established that neuroelectrical measures recorded on the scalp need to be projected back into 

the brain in order to be able to infer at least roughly where these signals have been generated. In the 

same way it is evident that measures of statistical dependencies between brain regions cannot be 

inferred by studying dependencies between scalp sensor signals [8]–[10].  Unfortunately, even with 

state-of-the-art localization of the brain sources underlying the measured signals, directed dynamical 

influences between these reconstructed sources do not always reflect the ground truth. This issue has 

been anticipated in [8]–[10] and thoroughly analyzed by Palva and colleagues [43] for phase-based 

(undirected) connectivity measures. In the present comprehensive simulation study, we focused on 

directional connectivity measures and quantified the extent to which the estimation of influences 

between reconstructed sources is possible. We employed an analysis framework combining source 

localization approaches and brain connectivity estimators with the goal of identifying those analysis 

pipelines that that are least affected by the presence of head volume conduction and, therefore, provide 

the most accurate and reliable connectivity estimates. Several realistic conditions of brain activity were 

simulated, where our goal was to simulate both advantageous and disadvantageous conditions for the 

following brain connectivity estimation. To this end, we modulated the depth of the sources, the distance 

between sources, and the SNR. Not surprisingly, a convenient condition we identified is the presence of 

far and superficial dipoles in combination with a high SNR; in contrast, a disadvantageous condition is 

given by the presence of close and deep sources with a low SNR level. Our simulations suggest that all 

considered factors show a significant influence on the estimation quality and, consequently, their 

combination has a considerable impact on the connectivity estimation performance. LCMV source 

reconstruction appears to be more sensitive to the SNR value, while eLORETA achieves similar 

performance regardless of the SNR. In general, LCMV showed better performance than eLORETA. Only 

when the simulated sources were assigned to distant locations, the eLORETA performance is similar to 

or better than the performance of LCMV. In agreement with the theoretical hypothesis, we 

demonstrated that the TRGC algorithm provides a better estimation of the directed statistical 

dependencies between sources than classical MVGC and PDC. Indeed, the percentage of spurious 

connections decreased significantly and the overall detection of connectivity as measured by the AUC 

increased significantly in all considered experimental conditions when TRGC was used instead of MVGC 

or PDC. At the same time, the percentage of missed connections as measured by the FNR increased 

slightly, but still remained close to zero. GC and PDC showed similar performance independent of all 

other factors. As expected, we found that closer and deeper active sources decreased the obtained 

performance. Thus, a dependence between the dipoles position and the accuracy of the estimates was 

found. This is a clear effect of the volume conduction, since, when two sources are close to each other, 
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they generate a highly mixed signal on the scalp, which compromises the correct estimation even after 

inverse source reconstruction. On the other hand, when the sources are far away from each other, they 

are less affected by volume conduction, leading to a better quality of the connectivity estimation. The 

insights obtained in this study may guide the choice of crucial parameters such as selection of regions-

of-interest (ROI) as well as the selection of source reconstruction and connectivity estimation 

algorithms that promise to provide the most reliable and physiologically interpretable description of 

brain networks based on EEG data. 

We agree with [43], advocating for the application of measures, for which promises and pitfalls are 

known, and which integrate knowledge of how neural activity in the whole brain as well as external 

(physiological or artifactual) activity contribute to the signals that we record on the scalp. In this regard, 

it should be noted that connectivity estimates can only at most be as focal as the reconstructed source 

current densities they are derived from, and we know that common inverse methods lead to very blurry 

results. To distinguish correctly-identified connections from connections that are observed in the 

vicinity of the true interacting sources due to blurry inverse solutions, a data-driven clustering in the 

space of brain-wide pairwise connectivities, as recently proposed in [44], may a viable option, which 

may be preferable to a reduction of the source space to the level of static ROIs. It has to be kept in mind, 

however, that – although of importance – the main problem in EEG-based brain connectivity analysis is 

not the spatial blur of correctly identified connections but the emergence of spurious connectivity as a 

result of observing mixtures of signals even at the level of reconstructed sources. This problem can only 

be addressed by using appropriate connectivity measures that are robust to volume conduction effects 

by construction.  

 

Code and data availability 

The code necessary to reproduce these simulations is available at: 

https://github.com/paolop21/simulation_source_connectivity. 

The results of the simulations and the structures necessary to run the code are available at: 

https://zenodo.org/record/1155857#.WmMVwqjiY2w 
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