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ABSTRACT 11 

Interneurons are critical for the proper functioning of neural circuits and are typically 12 

considered to act as linear point neurons. However, exciting new findings reveal 13 

complex, sub- and/or supralinear computations in the dendrites of various interneuron 14 

types. These findings challenge the point neuron dogma and call for a new theory of 15 

interneuron arithmetic. Using detailed, biophysically constrained models, we predict 16 

that dendrites of FS basket cells in both the hippocampus and mPFC come in two 17 

flavors: supralinear, supporting local sodium spikes within large-volume branches and 18 

sublinear, in small-volume branches. Synaptic activation of varying sets of these 19 

dendrites leads to somatic firing variability that cannot be explained by the point 20 

neuron reduction. Instead, a 2-stage Artificial Neural Network (ANN), with both sub- 21 

and supralinear hidden nodes, captures the variance. We propose that FS basket cells 22 

have substantially expanded computational capabilities sub-served by their non-linear 23 

dendrites and act as a 2-layer ANN. 24 

 25 

GABAergic interneurons play a key role in modulating neuronal activity and 26 

transmission in multiple brain regions
1–5

. Among others, they are responsible for 27 

controlling the excitability of both excitatory and inhibitory cells, modulating synaptic 28 
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plasticity and coordinating synchrony during neuronal oscillations
2,6–8,9

. GABAergic 29 

interneurons come in a variety of molecular profiles, anatomical features and 30 

electrophysiological properties
1,3,5,10

. Despite this variability, many interneuron types 31 

exhibit similar computations, the most common being a precise EPSP-spike 32 

coupling
2,11,12

. As they innervate a large number of cells near the site of action 33 

potential initiation
3,13

, they are believed to generate a powerful widespread inhibition, 34 

also referred to as an inhibitory blanket
13

.  35 

 36 

Fast Spiking (FS) basket cells constitute one of the main types of hippocampal and 37 

neocortical interneurons.
6,13,14

 They are distinguished from other subtypes by 38 

molecular markers –e.g. the expression of the Parvalbumin (PV) protein-, their 39 

anatomical features
15

, synaptic connectivity patterns
13,16

 and membrane mechanisms 40 

such as the presence of calcium permeable AMPA receptors
17,6,18

 and the high density 41 

of potassium channels in their aspiny dendritic trees
5,14,19,20,6

. 42 

A growing body of literature recognizes the importance of FS basket cells in 43 

controlling executive functions such as working memory and attention as well as their 44 

role in neurodegenerative disorders
4,21,22

. However, little is known about the 45 

mechanistic underpinnings of FS basket cell contributions to these functions. Most 46 

studies have focused on the molecular and anatomical features of FS basket 47 

cells
7,12,15,19,23,24

 and supported the dogma that these cells integrate inputs like linear –48 

or at best sublinear- point neurons
25,26

.  49 

 50 

This dogma is based on the assumption that FS basket cells integrate synaptic inputs 51 

in a linear manner, completely ignoring potential dendritic infuences
6
. Active 52 

dendritic mechanisms however, are known to transform incoming information in non-53 

trivial ways, thus greatly influencing output signals
27,28,29,30

. Despite its fundamental 54 

role in neuronal computations, dendritic integration has been studied mainly in 55 

excitatory pyramidal cells
27,31–38

. The current knowledge about FS basket cell 56 

dendrites entails a passive backpropagation of APs, low density of sodium channels
6
 57 

and high density of fast, high-threshold potassium channels in distal dendrites
6,39,40

. 58 

All of the above contribute to sublinear dendritic integration, coupled to fast and 59 

temporally precise AP initiation in response to synaptic input
12,25

, largely in line with 60 

the simplified point-neuron view of interneurons. 61 
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Exciting new findings however, reveal that the dendrites of certain interneuron types 62 

are much more powerful than originally assumed. For example, sublinear dendritic 63 

EPSP integration along with supralinear calcium accumulations has been reported in 64 

cerebellar Stellate Cells (SCs)
11,41

.Moreover, RAD dendrite-targeting interneurons in 65 

the CA1 area exhibit calcium supralinearities
42

 while in the CA3, both calcium 66 

nonlinearities and sodium spikes in FS basket cell dendrites during sharp wave 67 

ripples, have been reported
2
. The exact nature of dendritic computations in FS basket 68 

cells, however, is unknown. As a result, whether a linear point neuron or a more 69 

sophisticated abstraction -like the two-stage
32

 or multi-stage integration
43

 proposed 70 

for pyramidal neurons- can successfully capture their synaptic integration profile, 71 

remains an open question. 72 

To address this question, we developed detailed, biologically constrained biophysical 73 

models of FS basket cells using anatomical reconstructions of both hippocampal 
44

 74 

and cortical (medial Prefrontal Cortex) neurons
45

 (shown in figure 1). Synaptic 75 

stimulation within the dendrites of model cells predicts the co-existence of two 76 

distinct integration modes; some dendrites exhibit supralinear synaptic integration 77 

while others operate in a sublinear mode (figure 2 and supplementary figures 4,5). 78 

Morphological features such as dendritic length and/or diameter influence the 79 

integration mode and these features differ between hippocampal and cortical neurons. 80 

Interestingly, dendritic volume appears to be a consistent discriminating feature 81 

among sub- and supralinear dendrites of both areas (figure 3). By generating a large 82 

number of different spatial patterns of synaptic activation we find that spatially 83 

dispersed inputs lead to higher firing rates than inputs clustered within a few dendrites 84 

in both Hippocampus and PFC models (figure 4), opposite to respective simulations 85 

in pyramidal neurons
46

. Moreover, a 2-layer Artificial Neural Network (ANN) with 86 

both sub- and supralinear hidden nodes can predict the firing rate of the 87 

aforementioned models much better than a linear ANN (figures 5, 6, Table 1, 88 

Supplementary figure 7).  89 

This is the first study that provides a systematic, cross-area analysis of dendritic 90 

integration in FS basket cells. Our findings challenge the current dogma, whereby 91 

interneurons are treated as linear summing devices, essentially void of dendrites. We 92 

predict that the dendrites of FS basket cells in both Hippocampal and Neocortical 93 

regions can operate in distinct non-linear modes. As a result, FS basket cells, similar 94 
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to pyramidal neurons
32

, are better represented by a 2-stage integrator abstraction 95 

rather than a point neuron. 96 

 97 

Figure 1: Fast spiking basket cell reconstructions from 5 Hippocampal and 3 PFC 98 

interneurons. Dendrites are shown in red.  Firing patterns in response to 200 pA current 99 

injection at the cell body are also shown for each morphology.  100 

 101 

RESULTS 102 

The models 103 
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A total of 8 biophysical model neurons were built within the NEURON simulation 104 

environment
47

. We used realistic reconstructions of FS basket cells from the rat 105 

hippocampus (5 cells)
44

 and from the mPFC (3 cells)
45

 of mice (figure 1). All 106 

morphologies were downloaded from the Neuromorpho.org database
 
and checked for 107 

reconstruction accuracy (diameter) (See Online Methods). To ensure biological 108 

relevance, ionic and synaptic conductances as well as basic membrane properties of 109 

model cells were heavily validated against experimental data
6,12,15,19,40,48

 (see 110 

Supplementary Table 1-4 and Supplementary figures 1-3). Moreover, for consistency 111 

reasons, the same set of biophysical mechanisms (type and distribution) was used in 112 

all model cells. This is to our knowledge the first set of detailed, biologically realistic 113 

models of FS basket cells from two brain areas. 114 

Bi-modal dendritic integration in Fast Spiking Basket cells  115 

The first step for deducing a realistic abstraction of FS basket cells is the systematic 116 

characterization of dendritic/neuronal integration properties across a significant 117 

number of neurons and dendrites. Towards this goal, we simulated gradually 118 

increasing excitatory synaptic input to the dendrites of all neuronal models (total of 119 

637 simulated dendrites) and recorded the voltage response both locally (figure 2) and 120 

at the soma (Supplementary figure 5)
11,31

. Increasing numbers of synapses (1:1:20) 121 

were uniformly distributed in each stimulated dendrite and activated synchronously 122 

with a single pulse. Sodium conductances in somatic and axonal compartments were 123 

set to zero, to avoid AP backpropagation contamination effects. We compared 124 

measured EPSPs to their linearly expected values, given by the number of activated 125 

inputs multiplied by the unitary EPSP. We found that within the same dendritic tree, 126 

branches summate inputs either in a supralinear or a sublinear mode (figure 2, 127 

supplementary figures 4,5). While there were differences in the number of dendrites 128 

and proportions of sub- vs. supralinear dendrites, all of the morphologies tested 129 

expressed both integration modes (Supplementary Table 5). Importantly, while both 130 

modes have been suggested in distinct interneuron types
11,42

, this is the first study that 131 

predicts their co-existence within a single cell. 132 
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 133 

Figure 2: Bimodal dendritic integration in FS basket cell models.  Representative recordings 134 

from supralinear (A,C) and sublinear (B,D) dendritic branches in Hippocampal (top) and PFC 135 

(bottom) biophysical model interneurons, in response to synaptic stimulation. Increasing 136 

numbers of synapses (1:1:20) were uniformly distributed within each activated branch and 137 

activated with a single pulse. The y-axis shows the actual peak depolarization caused by 138 

synaptic activation while the x-axis shows the expected peak depolarization that would result 139 

from the linear summation of unitary EPSPs. The dashed line indicates linearity. 140 

To assess the robustness of this finding, we performed a sensitivity analysis whereby 141 

the cp-AMPA, NMDA, VGCCs, sodium and IA potassium conductances were varied 142 

by ±20% of their control value. We found no changes in the integration mode of 143 

dendrites (data not shown) and only insignificant alterations in the spike threshold of 144 

supralinear dendrites (Supplementary figure 6). These simulations suggest that under 145 

physiological conditions, FS basket cells are highly likely to express two types of 146 

dendritic integration modes. 147 

Morphological determinants of dendritic integration modes 148 

Morphological features of dendrites were previously shown to influence synaptic 149 

integration profiles
49

. We thus investigated whether specific anatomical features 150 

correlate with the expression of each integration mode. We found that the mean 151 

dendritic diameter was highly statistically different (p-value=4.1966e-54) among sub-152 

(thinner) and supra-linear (thicker) dendrites in the hippocampus (figure 3C) while in 153 
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the PFC the dendritic length was a better determinant of sub- (shorter) vs. supra-154 

linearity (longer) (p-value=7.6543e-05) (figure 3B). Length was less significant in the 155 

hippocampus (p-value=0.0064) (figure 3A) while diameter was not different among 156 

sub- and supralinear dendrites in the PFC (p-value=0.2454) (figure 3D). Dendritic 157 

volume considers both of the above features and serves as a robust morphological 158 

determinant for all dendrites in both areas (p-value=1.8433e-09), (figure 3E). These 159 

findings predict that morphology plays a crucial role in the spiking abilities of FS 160 

basket cell dendrites (figure 3F). 161 

 162 

Figure 3: Morphological determinants of dendritic integration modes. A-B:  Total length 163 

(μm) distributions of supralinear vs. sublinear dendrites in the hippocampus (A) and the PFC 164 

(B). Statistically significant differences are observed for both sub- and supra-linear models, in 165 

both areas. Significance is higher in PFC cells (p-value=7.6543e-05, 130 dendrites analyzed) 166 

compared to Hippocampal (p-value=0.0064, 507 dendrites analyzed) FS basket cells. C-D: 167 

Same as in A-B, for mean dendritic diameter (μm). Statistically significant differences are 168 

observed in Hippocampal (p-value=4.1966e-54, 507 dendrites analyzed) but not in PFC FS 169 

basket cells (p-value=0.2454, 130 dendrites analyzed).  E. Dendritic Volume (μm
3
) is a 170 

common discriminating characteristic among supralinear (larger) and sublinear dendrites, for 171 
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both areas (p-value= p-value=1.8433e-09, 637 dendrites analyzed). F. Schematic illustration 172 

of distinctive morphological features for supralinear and sublinear dendrites in Hippocampus 173 

(left) and PFC (right).  174 

 175 

Effect of bimodal dendritic integration on neuronal firing 176 

In light of a bimodal dendritic integration in the modeled FS basket cells, the natural 177 

question that arises concerns the functional implications of such a property. To 178 

answer this question, we simulated a large variety of different spatial patterns of 179 

synaptic activation and assessed their effect on neuronal output. Specifically, we 180 

generated over 10,000 synaptic stimulus patterns, which comprised of 0 to 60 181 

excitatory synapses (activated with random Poisson spike trains at 50 Hz) distributed 182 

within a few, strongly activated branches (clustered) or randomly distributed within 183 

the entire dendritic tree (dispersed). 184 

Several stimulation protocols were devised, in which different numbers of synapses 185 

were activated in various locations within the dendritic tree (see Online Methods). 186 

Dendrites were selected at random and inputs were distributed uniformly within 187 

selected dendrites. For the dispersed case, we allocated 5 or 10 synapses in randomly 188 

selected dendrites, one at a time, while for the clustered case we allocated 10 or 20 189 

synapses within an increasing number of branches. In all cases, the number of 190 

activated synapses increased gradually up to a maximum of 60, as this number was 191 

sufficient to induce spiking at gamma frequencies (30-100 Hz). This process was 192 

repeated k times (k = number of dendrites in each cell) to ensure full coverage of the 193 

entire tree. As expected given the two modes of dendritic integration, the localization 194 

of activated inputs affected neuronal firing. For a given number of activated synapses, 195 

dispersed activation led to higher somatic firing rates than clustered activation, both in 196 

Hippocampal (p-value=2.0914e-21, figure 4A) as well as in PFC FS basket cells (p-197 

value=0.0051, figure 4B). Interestingly, this finding is opposite to what has been 198 

reported for pyramidal neurons, in which synapse clustering increases firing rates
46

. 199 

 200 

 201 
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 202 

Figure 4: Effect of bimodal dendritic integration on neuronal firing.  Firing rate responses (in 203 

Hz) from one Hippocampal (A) and one PFC (B) model cell, in response to stimulation of 204 

increasing numbers of synapses (10 to 60) that are either randomly distributed throughout the 205 

entire dendritic tree (blue) or clustered within a few dendritic branches (pink).) Synapses are 206 

stimulated with a 50 Hz Poisson spike train. Indicative somatic traces in response to 207 

stimulation of 30 synapses are shown for the four cases. Red dots represent the synaptic 208 

allocation motif. 209 

 210 

FS basket cells as 2-layer artificial neural networks 211 

The non-linear synaptic integration taking place within the dendrites of cortical
33

 and 212 

CA1
31,34

 pyramidal neurons was previously described as a sigmoidal transfer 213 

function
50

. Based on this reduction, a single pyramidal neuron was proposed to 214 

integrate its synaptic inputs like a 2-layer artificial neural network, where dendrites 215 

provide the hidden layer and the soma/axon the output layer
32

. To assess whether a 216 

similar mathematical formalization could be ascribed to our FS basket cell models, we 217 

constructed linear and non-linear artificial neural networks (as graphically illustrated 218 

in figure 5) and asked which of them can better capture the spike variance of the 219 

biophysical models. 220 
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Figure 5:  Reducing detailed compartmental models into mathematical abstractions. Two 221 

types of abstractions were used: a) a Linear ANN, in which the input (number of synapses) 222 

was linearly combined at the cell body and b) a 2-layer modular ANN, in which the input was 223 

fed into two parallel, separated hidden layers. The supralinear-layer was fed with the number 224 

of inputs landing onto supralinear branches while the sublinear layer was fed with the number 225 

of inputs landing onto sub-linear dendrites. Neurons in both hidden layers were equipped with 226 

nonlinear transfer functions, a step-sigmoid function in the supralinear layer and a saturating 227 

linear function in the sublinear layer. The somatic transfer functions of both ANNs were 228 

linear.   229 

Specifically, four types of feedforward, backpropagation Artificial Neural Networks 230 

(ANNs) were constructed (see Online Methods). In the 2-layer modular ANN, 231 

supralinear and sublinear dendrites were simulated as 2 parallel hidden layers 232 

consisting of a step-sigmoidal and a saturating linear activation function, 233 

respectively
51

 (figure 5). The total number of activated synapses allocated to 234 

supralinear and/or sublinear dendrites in the biophysical models was used as input to 235 

the respective hidden layers. The output layer represented the soma/axon of the 236 

biophysical model and consisted of a linear activation function. In the linear ANN, 237 
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there was only a single hidden layer consisting of linear activation functions (figure 238 

5). We also constructed two ANNs with the exact same architecture as the linear one, 239 

but with either a) a step-sigmoidal (2-layer supralinear ANN) or b) a saturating linear 240 

(2-layer sublinear ANN) activation function in the hidden layer neurons 241 

(Supplementary figure 7). These ANNs represent FS basket cells with just one type of 242 

non-linear dendrites. The free parameters in all networks were identical 243 

(Supplementary Table 6).  244 

For a given hippocampal and a given mPFC biophysical model cell, the linear and 2-245 

layer modular ANNs were trained using the number of synapses to supra-/sublinear 246 

dendrites as inputs to the respective hidden layers and the mean firing rate of the soma 247 

as target output. A randomly selected 70% of our synaptic activation data set (See 248 

Online Methods) was used to train the model and the rest to assess its generalization 249 

performance (15% Validation, 15% testing). Performance accuracy was estimated 250 

based on regression analysis between the ANN-generated firing rates and those 251 

produced by the biophysical models. The 2-layer modular ANN reached an average 252 

performance accuracy of 96% and 95% (figure 6A, C) in predicting the spike rate 253 

variance in hippocampal and PFC models, respectively, while the linear ANN 254 

captured 85% and 75% of the spike rate variance, respectively (figure 6B, D). As 255 

expected, the supralinear and sublinear ANNs achieved intermediate accuracies for 256 

both hippocampal: 91%, 92% and PFC 90.8%, 92% models, indicating that both types 257 

of non-linear transfer functions are needed to capture the biophysical model 258 

variability (see Supplementary figure 7). 259 

The relatively high performance of the linear ANN can be attributed to the wide range 260 

of activated synapses (2 to 60) which resulted in large differences in the somatic 261 

firing, irrespectively of synapse location, and can thus be captured by any linear 262 

model (also see
32

). To perform a fairer comparison, we also assessed the performance 263 

accuracy of linear and 2-layer modular ANNs to the more challenging task of 264 

discriminating between input distributions corresponding to the exact same number of 265 

synapses. To do so, we subdivided the data into input categories corresponding to 20, 266 

40 and 60 synapses, respectively. In this case, the 2-layer modular ANN clearly 267 

outperformed the linear ANN, which failed to explain the variance produced by 268 

differences in input location (Table 1).  269 
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Taken together, this analysis suggests that a 2-layer artificial neural network that 270 

considers both types of dendritic non-linearities is a much better mathematical 271 

abstraction for FS basket cells than the currently assumed linear point neuron. 272 

 273 

Figure 6: Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear 274 

integrators. Linear regression analysis for 2-layer modular (A,C) and linear (B,D) ANNs for 275 

one indicative Hippocampal (top) and one indicative PFC (bottom) model cell.  Actual Mean 276 

Firing Rates (Hz) correspond to the responses of the compartmental model when stimulating -277 

with 50Hz Poisson spike trains- varying numbers of synapses (1 to 60), distributed in several 278 

ways (clustered or dispersed) within both sub- and supra-linear dendrites. Expected Mean 279 

Firing Rates (Hz) are those produced by the respective ANN abstraction when receiving the 280 

same input (number of stimulated synapses) in its respective sub-/supra- or linear input layer 281 

nodes.  282 

 283 

 284 

 285 
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 286 

Table 1: Comparison of ANN prediction accuracy (measured as the correlation coefficient, 287 

R) for all four ANN reductions, when tested on three sets of synaptic inputs consisting of 20, 288 

40 or 60 activated synapses, respectively. Synapses were randomly distributed in various 289 

ways/locations in the biophysical model cells and resulting firing rates were used as target 290 

vectors for the ANNs. The 2-layer modular ANN is clearly superior to the Linear ANN when 291 

it comes to capturing location-induced firing-rate variability.  292 

 293 

DISCUSSION 294 

The role of dendrites in interneuron computations is a rapidly emerging and debatable 295 

subject
39

. Several recent reports present exciting findings according to which 296 

dendrites may serve as key players
2,11,41,42,52

. For example, sodium spikes and 297 

supralinear calcium accumulation have recently been reported in the dendrites of FS 298 

basket cells
2,39,53

, yet the consensus still favors the linear point neuron dogma
6,39,54

.  299 

The present study provides new insight into this ongoing debate by systematically 300 

analyzing the dendritic integration mode of FS basket cells in two widely studied 301 

areas: the Hippocampus and the PFC. We predict that dendrites of both cortical and 302 

hippocampal FS basket cells operate in one of two modes of synaptic integration: 303 

supralinear or sublinear (figure 2). Supralinearity is due to the generation of dendritic 304 

sodium spikes, and can be facilitated –or prohibited as in sublinear dendrites- by the 305 

morphology (diameter, length, volume, (figure 3)) of dendrites. Moreover, we find 306 

that somatic output is influenced by the spatial distribution of activated synapses, with 307 

dispersed stimulation inducing higher firing rates than clustered stimulation (figure 4). 308 

Due to these properties, a 2-layer Artificial Neural Network abstraction with both sub- 309 

and supra-linear hidden neurons captures the spiking profile of biophysical neurons 310 

with much higher accuracy compared to a linear ANN, analogous to a point neuron 311 

(figure 5, 6). These findings suggest that the dendrites of FS basket cells in both the 312 

Table 1. ANN regression performance (R) for individual sets of synapses 

ANN type 20 synapses 40 synapses 60 synapses 

2-layer modular ANN 0.8994(HPC)/  

0.8750 (PFC) 

0.9508 (HPC) / 0.8869 

(PFC) 

0.9406(HPC) 

/0.8399(PFC) 

Linear ANN 0.4862 (HPC) /  

0.4867 (PFC) 

0.6296 (HPC) / 0.5527 

(PFC) 

0.6801 (HPC) / 

0.5136 (PFC) 

2-layer supralinear ANN 0.6486 (HPC) /  

0.7468 (PFC) 

0.8172 (HPC) / 0.7995 

(PFC) 

0.8474 (HPC) 

/0.6633 (PFC) 

2-layer sublinear ANN 0.7645 (HPC) /  

0.8130 (PFC) 

0.8816 (HPC) / 0.8487 

(PFC) 

0.8617 (HPC) 

/0.7674 (PFC) 
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hippocampus and the cortex can support two types of non-linear computations and are 313 

the first to explicitly challenge the point neuron dogma. 314 

Mediators of supralinear and sublinear dendritic integration in FS basket cells 315 

A bimodal dendritic integration is predicted for all hippocampal and PFC 316 

morphologies analyzed. In all cases, supralinearity is due to the occurrence of 317 

dendritic sodium spikes. Several mechanisms can influence the generation of such 318 

dendritic spikes: ionic conductances (primarily of sodium currents but also potassium 319 

currents) and morphological features. In our models, biophysical mechanisms are 320 

constrained by existing experimental data and dendritic sodium conductances are kept 321 

to a minimum (10 times smaller than the soma
6
), so as to minimize the probability of 322 

non-physiological dendritic spiking. Sensitivity analysis further demonstrates that 323 

results are robust to physiological variations in a wide range of dendritic 324 

conductances. These findings strongly suggest that dendritic spiking in certain 325 

dendrites of FS basket cells are highly likely to occur under physiological conditions, 326 

in line with recent experimental reports
2
.  327 

Apart from sodium currents as a universal enabling mechanism, we find a key role of 328 

morphology in gating local dendritic spikes. A combination of dendritic length and 329 

mean diameter, or otherwise the dendritic volume, is statistically different between 330 

sub- (smaller) and supralinear (larger) dendrites across all morphologies tested. These 331 

results are in line with other studies reporting a similar effect of morphology on the 332 

ability of dendrites to generate local spikes
55

. 333 

Functional coexistence of sub- and supra-linear dendrites within FS basket cells 334 

Our simulations predict the co-existence of both sublinear and supralinear dendrites in 335 

all simulated FS basket cells (figure 2, Supplementary figures 4,5). Similar bimodal 336 

dendritic integration has been reported in hippocampal CA1 pyramidal neurons
31,34

 337 

and predicted in PFC pyramidal neurons
33

. However, the functional consequences of 338 

this coexistence in interneurons requires further investigation.  339 

The existence of sublinear dendritic branches supports the idea of inhibitory neurons 340 

acting as coincidence detectors by aggregating spatially disperse and nearly 341 

synchronous synaptic inputs
6
. Moreover, sub-linear dendrites can compute complex 342 

non-linear functions similar to those computed by sigmoidal dendrites
50

, thus 343 
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substantially extending the processing capacity of these neurons compared to a linear 344 

integrator. Why have two types of nonlinearity then?  345 

One possibility is to enable the detection of few but highly correlated inputs: via 346 

spatial clustering onto supralinear dendrites these inputs would reliably induce 347 

dendritic spikes capable of overcoming the dampening effects of inhibitory 348 

conductances, thus generating strong somatic responses. Another possibility entails 349 

increases in flexibility through the ability to (a) engage intrinsic plasticity 350 

mechanisms (e.g. regulation of potassium channels) and/or (b) to dynamically tune 351 

the neuronal operation mode from generic (sublinear domination) to specific 352 

(supralinear domination), depending on the behavioral state. As dendrites of FS 353 

basket cells often cross layers and receive input from different afferent pathways
56

, 354 

another possibility is that feedback vs. feedforward pathways target dendrites with 355 

distinct modes of integration. These scenarios can be tested in future studies engaging 356 

network models and/or experimental probing.  357 

Not that Simple: FS basket cells as 2-layer modular ANNs  358 

Artificial Neural Network analysis demonstrates that a FS basket cell is better 359 

described by a 2-stage abstraction, which takes into account both modes of dendritic 360 

integration. This work, along the lines of the 2-stage model proposed for pyramidal 361 

neurons
32

, strongly challenges the prevailing point neuron dogma. The 2-stage 362 

abstraction is supported by experimental reports of dendritic sodium spikes and 363 

supralinear calcium accumulations
2
 while it also explains sublinear dendritic 364 

integration
6,11,26,57

, providing a unifying framework for interneuron processing. 365 

Possible limitations of our work include the imprecise modeling of ionic and synaptic 366 

mechanisms given the shortage of sufficient information for FS basket cells. This 367 

limitation is counteracted by the sensitivity analysis of the mechanisms that mostly 368 

influence our findings and their consistency across several cortical and hippocampal 369 

morphologies. Another limitation is the lack of inhibitory inputs (except from the 370 

autaptic GABAa current that is incorporated in all models) and gap junctions on our 371 

model cells. Inhibitory inputs consist of just 6% of all incoming contacts in Fast 372 

Spiking interneurons
6,44,58

. Thus, our results are unlikely to be affected by inhibitory 373 

inputs. FS basket cells in the hippocampus and the neocortex are highly 374 

interconnected by gap junctions
6
, that can speed the EPSP time course, boost the 375 
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efficacy of distal inputs and increase the average action potential frequency after 376 

repetitive synaptic activation.
6
 All of these effects would contribute to stronger 377 

responses but unless gap junctions are spatially specific to certain branches and not 378 

others, they are unlikely to influence the non-linear integration modes of dendrites. 379 

 380 

Conclusion 381 

This work provides a novel view of dendritic integration in FS basket cells, that 382 

extends in hippocampal and cortical areas
59

. To our knowledge, we are the first to 383 

suggest a new reductionist model for interneuron processing, in which dendrites play 384 

a crucial role. Experimental validation of this new model is likely to change the way 385 

we think about interneuron processing, attribute new and exciting roles to FS basket 386 

cells and open new avenues for understanding interneuron contributions to brain 387 

function. 388 

 389 

Online Methods 390 

 391 

Simulations were performed on a High-Performance Computing Cluster equipped 392 

with 312 CPU cores and 1.150 Gigabytes of RAM, under 64-bit CentOS 6.7 Linux. 393 

The source code will be publicly available in ModelDB upon acceptance for 394 

publication.  395 

 396 

Compartmental modeling 397 

All 8 model neurons were implemented within the NEURON simulation environment 398 

(version 7.3)
47

. Detailed morphological reconstructions of the 5 Fast spiking Basket 399 

cells of the rat Hippocampus were adopted from Tukker et al. 2013
44

, via the 400 

NeuroMorpho.org database (figure 1). Due to the lack of axonal reconstructions, we 401 

used the axon from the B13a.CNG.swc reconstruction for all 5 hippocampal neuron 402 
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models. The 3 PFC morphologies were adopted from Rotaru et al. 2011
45

, via the 403 

NeuroMorpho.org database (figure 1) and included their respective axons.   404 

Dendritic branches with mean diameter values larger than 1.2 μm were excluded from 405 

all simulations and data analysis procedures, based on Emri et al. 2001
60

. The NLM 406 

Morphology Viewer Software was used to transform morphological reconstructions 407 

into .hoc files. 408 

   409 

Biophysical properties 410 

All model neurons were calibrated with respect to their biophysical properties so as to 411 

conform to experimental data. The same active and passive properties were used in all 412 

model cells, with the exception of very small modifications in the conductances of 413 

somatic/axonal Sodium and Kdr mechanisms (Supplementary Tables 1 and 2). The 414 

latter were necessary to account for the influence of morphological variability on 415 

neuronal responses.   416 

Conductances of all active ionic mechanisms were adapted from Konstantoudaki et al. 417 

2014
61

. Both hippocampal and PFC models include fast voltage-dependent sodium 418 

channels (gnafin), delay rectifier potassium channels (gkdrin), slow inactivation 419 

potassium channels (gslowin), slow calcium dependent potassium channels (gkcain), A-420 

type potassium channels for proximal and distal dendritic regions (gkadin, gkapin), h 421 

currents (ghin), and L-, N- and T- type voltage-activated calcium channels (gcal, gcan 422 

and gcat, respectively).  Sodium current conductances were substantially larger in 423 

axonal compared to somatic compartments, which were in turn an order of magnitude 424 

larger than dendritic sodium conductances
6
. Moreover, dendritic branches located 425 

beyond 100 microns from the soma (distal dendrites) had smaller sodium 426 

conductances than proximal branches (located less than 100 microns from the soma) 427 
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as per
6,40

. A calcium buffering mechanism was included in all compartments. Details 428 

about all biophysical mechanisms are listed in Supplementary Table 2. 429 

 430 

Synaptic conductances 431 

Calcium permeable (GluR2-lacking) AMPA, NMDA and autaptic GABAa synaptic 432 

currents were incorporated in all model cells. Synaptic weights were validated so as to 433 

reproduce the current waveforms depicted in Wang Gao et al 2009
62

 and Bacci et al 434 

2003
19

  and are shown in Supplementary Table 4 and Supplementary figure 2. 435 

 436 

Electrophysiological validation   437 

All model neurons were heavily validated against experimental data in order to ensure 438 

biological plausibility. Averaged electrophysiological values for the model cells and 439 

respective experimental values are shown in Supplementary Table 3. 440 

 441 

Bi-modal dendritic integration in Fast Spiking Basket cells 442 

To map the dendritic integration profiles of our model neurons, we activated 443 

increasing numbers of synapses (1 to 20, with step 1) in each dendrite and recorded 444 

the voltage responses both locally and at the cell body for 100 ms. Synaptic input was 445 

simulated as a single depolarizing pulse, as per Poirazi et al 2003a
31

. Sodium 446 

conductances in somatic and axonal compartments were set to zero in order to avoid 447 

backpropagation effects. 12 autaptic events were also activated in somatic 448 

compartments
63

.  449 

 450 

Integration modes were deduced by comparing the measured dendritic/somatic 451 

responses (Actual maximum EPSP) against what would be expected if synaptic 452 
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depolarizations summed linearly (Expected maximum EPSP). A dendrite was termed 453 

supralinear if Actual responses were larger than Expected, even if this was true only 454 

for a short range of synaptic inputs. A dendrite was considered sublinear if the Actual 455 

EPSPs were smaller than the Expected values for all synaptic inputs tested.  456 

 457 

Sensitivity analysis was performed by modifying the conductances of NMDA, 458 

calcium-permeable AMPA receptors, Voltage gated Calcium Channels (VGCCs), 459 

Sodium, and A-type (proximal and distal) mechanisms by ± 20%. Increasing numbers 460 

of synapses (for 1 to 40) were used to assess possible changes in single branch 461 

integration. Results for all manipulations are shown in Supplementary figure 4. 462 

 463 

Morphological determinants of dendritic integration mode 464 

Mean dendritic diameter and total dendritic length for supralinear and sublinear 465 

dendrites were measured for all reconstructed neurons. Dendritic volume was 466 

calculated according to the following formula: 467 

       
    

 
 
 

                   468 

Statistical analysis for all morphological features was performed using Student’s t-test 469 

with equal sample sizes and assuming unequal variances (Welch’s t-test). 470 

 471 

Synaptic Stimulation Protocols 472 

In all stimulation protocols, inputs were activated using a 50 Hz Poisson spike train. 473 

The maximum number of activated synapses was 60, as it was sufficient to induce 474 

firing at gamma related frequencies (30-100 Hz). The spatial arrangement of activated 475 

synapses was defined according to each of the following stimulation protocols: 476 
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Randomly dispersed, whole tree stimulation 477 

Different numbers of synapses (Nsysn = 5, 10 up to 60) were randomly placed on 478 

randomly selected dendrites. For a given number of synapses Nsyn, at each allocation 479 

step, one dendrite was chosen at random and one synapse was placed at a random 480 

location within this dendrite. For the selected dendrite, synaptic location was 481 

randomly changed 5 times. This process was repeated N times, where N was the 482 

number of dendrites for each model cell. This process ensured a realistic distribution 483 

of activated synapses within the entire dendritic tree of each modelled neuron. 484 

 485 

Clustered, whole tree stimulation 486 

The only difference of this protocol from the one described above is that each selected 487 

dendrite received a cluster (of size Sclu = 10 or 20) of synapses as opposed to a single 488 

synapse. For example, for Nsyn=60 and Sclu = 10, a total of 6 dendrites were randomly 489 

selected to receive 10 synapses each. We followed the same experimental design as in 490 

the disperse, whole tree protocol. Thus, for a given number of synapses Nsyn, at each 491 

allocation step, one dendrite was chosen at random and one synapse was placed at a 492 

random location within this dendrite. For the selected dendrite, synaptic location was 493 

randomly changed 5 times. This process was repeated N times, where N was the 494 

number of dendrites for each model cell.  495 

 496 

Artificial Neural Network Models 497 

 498 

We constructed four feed-forward, backpropagation Artificial Neural Networks with 499 

customized code written in MATLAB, version 2009: a) a 2-layer modular ANN 500 

whereby hidden neurons were divided in two parallel layers (1 & 2). In hidden layer 501 
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1, neurons consisted of supralinear (step-sigmoid) transfer functions while neurons in 502 

hidden layer 2 consisted of sublinear (saturating linear) transfer functions. The two 503 

types of transfer functions corresponded to respective supra- and sublinear dendrites 504 

of the biophysical model cells
50

. b) a 2-layer ANN with one hidden layer, whereby all 505 

hidden neurons had supralinear transfer functions, c) a 2-layer ANN with one hidden 506 

layer, whereby all hidden neurons had sub-linear transfer functions and d) a linear 507 

ANN whereby the hidden and output neurons had a linear transfer function (classical 508 

linear point neuron). In all ANNs, the output neuron had a linear transfer function. All 509 

ANNs were trained with the same input/output data sets and performance accuracy 510 

was estimated according to the correlation among predicted (by the ANN) and actual 511 

mean firing rates generated by the biophysical model, for a wide range of stimulation 512 

protocols. The parameters of each ANN are listed in Supplementary Table 6. Firing 513 

rate corresponding to this particular configuration. 514 

 515 

ANN training/testing datasets:  516 

Input to the four ANNs consisted of the number of synapses located in the modelled 517 

dendritic branches and the target output consisted of the mean firing rate generated by 518 

the biophysical model in response to synaptic stimulation. In the biophysical model, 519 

these synapses were activated with the Dispersed and Clustered protocols described 520 

above as well as five new protocols using the same pattern of repetition trials as 521 

described above:  1) Randomly dispersed activation of synapses (Nsyn=2:2:60) in the 522 

entire dendritic trees. 2,3) Clustered (Sclu=3, Nsyn=20) or 4,5) Dispersed (Nsyn 10) 523 

synaptic allocation on supralinear dendrites and Clustered or Dispersed synaptic 524 

allocation on sublinear dendrites, respectively. Data shown in Figure 5 and 525 

Supplementary Figure 6 correspond to PFC3 and HIPP2 model neurons and are 526 
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representative of all model cells. 527 

 528 

Linear Regression and Statistical Analysis. 529 

We calculated the correlation coefficient (R) between Actual Mean Firing Rates 530 

(Target rates, in Hz) generated from the biophysical models and Predicted Mean 531 

Firing Rates (Predicted rates, in Hz) generated by the trained ANNs, respectively.  532 

Statistical analysis between Target and Predicted firing rates was performed using 533 

Student’s t-test with equal sample sizes and assuming unequal variances (Welch’s t-534 

test). 535 

 536 
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Supplementary Information 552 

 553 

Supplementary Table S1:  Passive properties common to the 8 biophysical models 554 

 555 

Supplementary Table S2: Active membrane conductances across somatic, axonal, proximal 556 

(<=100 microns from the soma) and distal (>100 microns from the soma) dendritic 557 

compartments. Sodium current conductances are larger in axonal than somatic compartments. 558 

Dendritic sodium conductances are ~10 times smaller than axo-somatic conductances. 559 

 560 

 561 

Table S1. Passive properties of biophysical models 
 Soma Axon Proximal 

dendrites 

Distal 

Dendrites 

Leak conductance (g_pas)
12

  1.315e-4 

S/cm
2
 

3.55e-6 

S/cm
2
 

1.315e-4 

S/cm
2
 

1.34e-5 

S/cm
2
 

Resting Membrane Potential 

(e_pas)
12,19

 

-68 mV -68 mV -68 mV -68 mV 

Membrane capacitance (cm) 
12

 1.2 uf/cm
-2

 1.2 uf/cm
-2

 1.2 uf/cm
-2

 1.2 uf/cm
-2

 

Axial Resistance (Ra) 
12

 172 ohm/ 

cm 

172 ohm/ cm 142 ohm/ cm 142 ohm/ 

cm 

Table S2. Active properties of biophysical models 

Ion 

channel 

(S/cm
2
) 

Soma Axon Proximal 

dendrites 

Distal 

Dendrites 

Nav 
6,26,64

 0.145(PFC1-3) 

/0.396 (Hipp1-3) 

/0.828(Hipp4,5) 

0.675(PFC1-3) 

/1.296(Hipp1-3) 

/1.512(PFC4,5) 

0.018 0.014 

Hv 0.00001 X x X 

Kdrv 0.036 (PFC)/ 

0.0432(Hipp) 

0.108 (PFC)/ 

0.144 (Hipp) 

0.0009 0.009 

Kslowv 0.000725 X x X 

Kctv 0.0001 X x X 

Kcav 0.02 X x X 

Kav 

(proximal 

type) 64
 

0.0032 X 0.001 0.0009 

Kav (distal 

type) 48 
x X x 0.00216 

Calv x X 0.00003 0.00003 

Canv x X 0.00003 0.00003 

Catv x X 0.0002 0.0002 

Calcium 

buffering 

dynamics 

Yes No Yes Yes 
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Table S3. Synaptic mechanisms of biophysical models 

Synaptic Current Conductance Weight 

Autaptic GABAa 71.1e-4 

Ca permeable AMPA 7,5e-4 

NMDA 16e-4 

Supplementary Table S3: Validated Synaptic conductance weight values of Autaptic GABAa 562 

Calcium permeable AMPA and NMDA currents, used in all simulations . 563 

 564 
 565 

Table S4. Electrophysiological properties of biophysical models 

Value Model Experimental data 

rHeobase (pA)
15

 150.0 ± 30.0 123 ± 58 

Input Resistance (Ohm)
15

 97.7 ± 30.0 182 ± 83 

Spike threshold (mV)
15

 -37.0 ± 3.0 -34 ± 2 

Spike amplitude (mV)
15

 52.0 ± 2.0 53.0 ± 8.0 

Spike half width (msec)
15

,
19

 0.5 ± 0.1 0.2 ± 0.01/0.38 ± 0.008 

f-i slope (Hz/pA)
19

 0.26 ± 0.03 0.2 ± 0.002 

AHP (mV)
19

  24.6 ± 2.6 24.3 ± 0.7/23 ± 5 

Supplementary Table S4: Validation of electrophysiological properties.  566 

Supplementary Table S5: Number of supralinear and sublinear dendrites per cell. 567 

 568 

Table S6. ANN properties 

Train function Levenberg-Marquardt backpropagation 

Error Function Mean squared normalized error performance  

Number of epochs 1000 

Type of network feedforward  

Supplementary Table S6: Network parameters of all ANNs.  569 

Table S5. Nonlinearity distributions 

Cell ID Number of supralinear dendrites Number of Sublinear dendrites 

Hipp 1 95 67 

Hipp 2 13 38 

Hipp 3 10 41 

Hipp 4 89 98 

Hipp 5 27 32 

PFC 1 36 7 

PFC 2 48 5 

PFC 3 43 14 
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Supplementary Figures 570 

 571 

 572 

 573 

Supplementary Figure 1. Model cell firing profiles. Somatic Current-clamp traces of 574 

Hippocampal (A) and PFC (B) model cells, after a depolarizing current injection in somata 575 

(500 pA; 1000 ms) evoked a high-frequency firing pattern. A hyperpolarizing current 576 

injection in somata (-300pA, 1000ms) induced a realistic hyperpolarizing response. 577 

 578 

 579 

 580 

 581 
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 582 

 583 

Supplementary Figure 2:  Mean firing frequencies in response to injected currents of 584 

different amplitudes (600 ms duration) in Hippocampal (A) and PFC (B) model cells.  585 
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 586 

 587 

Supplementary Figure 3: Validation of synaptic currents in Fast Spiking basket cells.  588 

A,C: A three-step voltage clamp of voltage changes from −70 mV to 10 mV (duration 1 ms) 589 

and back to −70 mV was used to produce a self-inhibitory (autaptic) current. During the 590 

validation of this current, the reversal potential of Cl− was adjusted from −80 to −16 mV, in 591 

order to reproduce the experimental set up of Bacci et al., 2003
19

. However, a physiological 592 

reverse potential (−80 mV) was used for all other simulations. B,D: Model reproduction of 593 

cp-AMPA (−70 mV) and NMDA (+60 mV) currents in response to stimulation of 2 synapses 594 

as per Wang et al., 2009
62

. * Each trace represents the mean of all Hippocampal and PFC cells 595 

respectively. 596 

 597 

 598 

 599 

 600 
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 601 

 602 

Supplementary Figure 4: Related to figure 2. Bimodal non-linear integration in Fast Spiking 603 

basket cells. Supralinear (blue) and sublinear (magenta) dendrites shown in each model cell.  604 

 605 

 606 

 607 
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 608 

 609 

Supplementary Figure 5: Related to figure 2. Bimodal non-linear integration in Fast Spiking 610 

basket cells. Representative Somatic EPSPs after stimulation (single pulse) of an increasing 611 

number of synapses (1:1:20), uniformly distributed within dendrites.   612 

 613 

 614 

 615 

 616 

 617 

 618 
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 619 

Supplementary Figure 6: Related to figure 2. Sensitivity analysis of biophysical dendritic 620 

mechanisms reveals minor changes in the synaptic threshold for spike generation in 621 

supralinear dendrites across Hippocampus (A) and PFC (B). 622 

 623 

 624 
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 625 

Supplementary Figure 7. Related to figure 6. Challenging the point neuron dogma: FS 626 

basket cells as 2-stage nonlinear integrators. Linear regression analysis for one hidden layer 627 

supralinear (A,C) and one hidden layer sublinear (B,D) ANNs for one indicative 628 

Hippocampal (top) and one indicative PFC (bottom) model cell.  Actual Mean Firing Rates 629 

(Hz) correspond to the responses of the compartmental model when stimulating -with 50Hz 630 

Poisson spike trains- varying numbers of synapses (1 to 60), distributed in several ways 631 

(clustered or dispersed) within both sub- and supra-linear dendrites. Expected Mean Firing 632 

Rates (Hz) are those produced by the respective ANN abstraction when receiving the same 633 

input (number of stimulated synapses) in its respective sub-/supra- or linear input layer nodes.  634 

 635 

 636 
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