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2 

Abstract 31 

Background 32 

Phenotypic networks describing putative causal relationships among multiple phenotypes can be 33 

used to infer single-nucleotide polymorphism (SNP) effects in genome-wide association studies 34 

(GWAS). In GWAS with multiple phenotypes, reconstructing underlying causal structures among 35 

traits and SNPs using a single statistical framework is essential for understanding the entirety of 36 

genotype-phenotype maps. A structural equation model (SEM) can be used for such purposes.  37 

Methods 38 

We applied SEM to GWAS (SEM-GWAS) in chickens, taking into account putative causal 39 

relationships among body weight (BW), breast meat (BM), hen-house production (HHP), and 40 

SNPs. We assessed the performance of SEM-GWAS by comparing the model results with those 41 

obtained from traditional multi-trait association analyses (MTM-GWAS). 42 

Results 43 

Three different putative causal path diagrams were inferred from highest posterior density (HPD) 44 

intervals of 0.75, 0.85, and 0.95 using the inductive causation algorithm. A positive path coefficient 45 

was estimated for BM→BW, and negative values were obtained for BM→HHP and BW→HHP 46 

in all implemented scenarios. Further, the application of SEM-GWAS enabled the decomposition 47 

of SNP effects into direct, indirect, and total effects, identifying whether a SNP effect is acting 48 

directly or indirectly on a given trait. In contrast, MTM-GWAS only captured overall genetic 49 

effects on traits, which is equivalent to combining the direct and indirect SNP effects from SEM-50 

GWAS.  51 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2018. ; https://doi.org/10.1101/251421doi: bioRxiv preprint 

https://doi.org/10.1101/251421
http://creativecommons.org/licenses/by-nd/4.0/


3 

Conclusions 52 

Although MTM-GWAS and SEM-GWAS use the same probabilistic models, we provide evidence 53 

that SEM-GWAS captures complex relationships and delivers a more comprehensive 54 

understanding of SNP effects compared to MTM-GWAS. Our results showed that SEM-GWAS 55 

provides important insight regarding the mechanism by which identified SNPs control traits by 56 

partitioning them into direct, indirect, and total SNP effects.  57 

Key words: Causal structure, GWAS, multiple traits, path analysis, SEM, SNP effect 58 

 59 

Background 60 

Genome-wide association studies (GWAS) have become a standard approach for investigating 61 

relationships between common genetic variants in the genome (e.g., single-nucleotide 62 

polymorphisms, SNPs) and phenotypes of interest in human, plant, and animal genetics [1-4]. A 63 

typical GWAS is based on univariate linear or logistic regression of phenotypes on genotypes for 64 

each SNP individually while often adjusting for the presence of nuisance covariates [5]. A 65 

statistically significant association indicates that SNPs may be in strong linkage disequilibrium 66 

(LD) with quantitative trait loci (QTLs) that contribute to the trait etiology. Alternatively, multi-67 

trait model GWAS (MTM-GWAS) can be used to test for genetic associations among a set of traits 68 

[6-8]. It has been established that MTM-GWAS reduces false positives and increases the statistical 69 

power of association tests, explaining the recent popularity of this method. MTM-GWAS can be 70 

used to study genetic associations of multiple traits; however, it does not identify factors that 71 

mediate relationships between the detected effects and dependencies involving complex traits. 72 
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Complex traits are the product of various cryptic biological signals that may affect a trait of interest 73 

either directly or indirectly through other intermediate traits [9]. A standard regression cannot 74 

describe such complex relationships between traits and QTLs properly. For instance, some traits 75 

may simultaneously act as both dependent and independent variables. Structural equation modeling 76 

(SEM) is an extended version of Wright’s path analysis [10, 11] that offers a powerful technique 77 

for modeling causal networks. In a complex genotype-phenotype setting involving many traits, a 78 

given trait can be influenced not only by genetic and systematic factors but also by other traits (as 79 

covariates) as well. Here, QTLs may not affect the target trait directly; instead, the effects may be 80 

mediated by upstream traits in a causal network. Indirect effects may therefore constitute a 81 

proportion of perceived pleiotropy, and these concepts apply to sets of heritable traits, organized 82 

as networks, that are common in biological systems. An example from dairy cattle production 83 

systems, described by Gianola and Sorensen [11], is that higher milk yield increases the risk of a 84 

particular disease, such as mastitis, while the prevalence of the disease may negatively affect milk 85 

yield As another example, Varona, et al. [12] explored a causal link from litter size to average 86 

piglet weight in two pig breeds. In humans, obesity is a key factor influencing insulin resistance, 87 

which subsequently causes type 2 diabetes. Lists of causal networks across human diseases and 88 

candidate genes are described in Kumar and Agrawal [13] and Schadt [14].  89 

Although MTM-GWAS is a valuable approach, it only captures correlations or associations among 90 

traits and does not provide information about causal relationships. Knowledge of the causal 91 

structures underlying complex traits is essential, as correlation does not imply causation. For 92 

example, a correlation between two traits, T1 and T2, could be attributed to a direct effect of T1 93 

on T2 or T2 on T1, or to additional variables that jointly influence both traits [15]. Likewise, if we 94 

know a “causal” SNP is linked to a QTL, we can imagine three possible scenarios: 1) causal 95 
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(𝑆𝑁𝑃 →  𝑇1 →  𝑇2), 2) reactive (𝑆𝑁𝑃 →  𝑇2 →  𝑇1), or 3) independent (𝑇1 ←  𝑆𝑁𝑃 →  𝑇2). 96 

Scenarios (1) and (2) do not cause pleiotropy but produce association.   97 

A SEM methodology has the ability to handle complex genotype-phenotype maps in GWAS, 98 

placing an emphasis on causal networks [16]. Therefore, SEM-based GWAS (SEM-GWAS) may 99 

provide a better understanding of biological mechanisms and of relationships among a set of traits 100 

than MTM-GWAS. SEM can potentially decompose the total SNP effect on a trait into direct and 101 

indirect (i.e., mediated) contributions. However, SEM-derived GWAS has yet not been discussed 102 

or applied fully in quantitative genetic studies yet. Our objective was to illustrate the potential 103 

utility of SEM-GWAS by using three production traits in broiler chickens genotyped for a battery 104 

of SNPs as a case example.  105 

Methods  106 

Data set 107 

The analysis included records for 1,351 broiler chickens provided by Aviagen Ltd. (Newbridge, 108 

Scotland) for three phenotypic traits: body weight (BW), ultrasound of breast muscle (BM) at 35 109 

days of age, and hen-house egg production (HHP), defined as the total number of eggs laid between 110 

weeks 28 and 54 per bird. The sample consisted of 274 full-sib families, 326 sires, and 592 dams. 111 

More details regarding population and family structure were provided by Momen, et al. [17]. A 112 

pre-correction procedure was performed on the phenotypes to account for systematic effects such 113 

as sex, hatch week, pen, and contemporary group for BW, BM, and HHP.  114 

Each bird was genotyped for 580,954 SNP markers with a 600k Affymetrix SNP [18] chip 115 

(Affymetrix, Inc., Santa Clara, CA, USA). The Beagle software program [19] was used to impute 116 

missing SNP genotypes, and quality control was performed using PLINK version 1.9 [20]. After 117 
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removing markers that did not fulfill the criteria of minor allele frequencies < 1%, call rate > 95%, 118 

and Hardy–Weinberg equilibrium (Chi-square test p-value threshold was 10− 6), 354,364 autosomal 119 

SNP markers were included in the analysis.  120 

Multiple-trait model for GWAS  121 

MTM-GWAS is a single-trait GWAS model extended to multi-dimensional responses. When only 122 

considering additive effects of SNPs, the phenotype of a quantitative trait using the single-trait 123 

model can be described as:  124 

𝑦𝑖 = ∑ 𝑥𝑖𝑞𝛽𝑞

𝑘

𝑞=1

+ 𝑤𝑖𝑗𝑠𝑗 + 𝑒𝑖                                         (1) 125 

where 𝑦𝑖 is the phenotypic trait of individual i, 𝑥𝑖𝑞 is the incidence value for the ith phenotype in 126 

the qth level of systematic environmental effects, 𝛽𝑞 is the fixed effect of the qth systemic 127 

environmental effect on the trait, 𝑤𝑗 = (𝑤1, … , 𝑤𝑝) is the number of A alleles (i.e., 𝑤𝑗 ∈ {0,1, 2}) 128 

in the genotype of SNP marker j, and 𝑠𝑗 is the allele substitution effect for SNP marker j. Strong 129 

LD between markers and QTLs coupled with an adequate marker density increases the chance of 130 

detecting marker and phenotype associations. Hypothesis testing is typically used to evaluate the 131 

strength of the evidence of a putative association. Typically, a t-test is applied to obtain p-values, 132 

and the statistic is 𝑇𝑖𝑗 = �̂�j 𝑠𝑒(�̂�j)⁄ , where �̂� is the point estimate of the jth SNP effect and 𝑠𝑒(�̂�j) is 133 

its standard error.  134 

The single locus model described above is naïve for a complex trait because the data typically 135 

contain hidden population structure and individuals have varying degrees of genetic similarity [21, 136 

22]. Therefore, accounting for covariance structure induced by genetic similarity is expected to 137 
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produce better inferences [23]. Ignoring effects that reveal genetic relatedness inflates the residual 138 

terms and compromises the ability to detect association. A random effect 𝑔𝑖, including a covariance 139 

matrix reflecting pairwise similarities between additive genetic effects of individuals, can be 140 

included to control population stratification. The similarity metrics can be derived from pedigree 141 

information or from whole-genome marker genotypes. This model, extended for analysis of 𝑡 traits, 142 

is given by: 143 

 144 

𝑦𝑖𝑙 = ∑ 𝑥𝑖𝑞𝛽𝑞𝑙

𝑘

𝑞=1
+ 𝑤𝑖𝑗𝑠𝑗𝑙 + 𝑔𝑖𝑙 + 𝑒𝑖𝑙                                   (2) 145 

for 𝑖 = 1,2,···, 𝑛, 𝑙 = 1,2,···, 𝑡. In this extension, 𝑦𝑖𝑙 is the phenotypic value of the 𝑙th trait for the 146 

𝑖th subject, 𝛽𝑞𝑗 is the systematic effect of the 𝑞th environmental factor 𝑥𝑖𝑞 on the lth trait, 𝑠𝑗𝑙 is the 147 

additive effect of the 𝑗th marker on the 𝑙th trait, 𝑤𝑖𝑗 is as previously defined, and 𝑔𝑖𝑙 and 𝑒𝑖𝑙 are 148 

the random polygenic effect and model residual assigned to individual i for trait 𝑙, respectively. 149 

Random effects within a trait follow the multivariate normal distribution, 150 

[
𝒈𝑙

𝒆𝑙
] ~N ([

𝟎

𝟎
] , [

𝑲𝜎𝑔𝑙
2 𝟎

𝟎 𝑰𝜎𝑒𝑙
2 ]), where 𝑲 is a genetic relationship matrix, 𝜎𝑔𝑙

2  is the additive genetic 151 

variance of trait 𝑙, 𝑰 is an identity matrix, and 𝜎𝑒𝑙
2  is the residual variance for trait 𝑙. The multiple-152 

trait model accounts for the additive genetic (𝜌𝑙𝑙’) and residual correlation (𝜆𝑙𝑙′) between a pair of 153 

traits 𝑙 and 𝑙’.  154 

The positive definite matrix K may be a genomic relationship matrix (G) computed from marker 155 

data, or a pedigree-based matrix (A) computed from genealogical information. The A matrix 156 

describes the expected additive similarity among individuals, while G measures the realized 157 
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fraction of alleles shared. Genomic relationship matrices can be derived in several ways [24-26]. 158 

Here, we used the form proposed by VanRaden 2008 [24]: 159 

𝐆 =
𝐌𝐌′

2 ∑ pjqj
                                                     (3) 160 

where 𝐌 is an 𝑛 × 𝑝 matrix of centered SNP genotypes and  𝑝𝑗  and 𝑞𝑗 = 1 − 𝑝𝑗  are the allele 161 

frequencies at marker locus 𝑗.  We evaluated both A and G in the present study.  162 

 163 

Structural equation model association analysis 164 

A SEM consists of two essential parts: a measurement model and a structural model. The 165 

measurement model depicts the connections between observable variables and their corresponding 166 

latent variables. The measurement model is also known as confirmatory factor analysis. The critical 167 

part of a SEM is the structural model, which can have three forms. The first consists of observable 168 

exogenous and endogenous variables. This model is a restricted version of a SEM known as path 169 

analysis [10]. The second form explains the relationship between exogenous and endogenous 170 

variables that are only latent. The third type is a model consisting of both manifest and latent 171 

variables. 172 

SEM can be applied to GWAS as an alternative to MTM-GWAS to study how different causal 173 

paths mediate SNP effects on each trait. The following SEM model was considered:  174 

𝑦𝑖𝑙 = 𝜇𝑙 + ∑ 𝑦𝑚𝝀𝑙𝑚

𝑚∈𝐶

+ 𝑤𝑗(𝑙)𝑠𝑗(𝑙) + 𝑔𝑖𝑙 + 𝜀𝑖𝑙                    (4)   175 

where C is the set of phenotypic traits that directly affect the trait 𝑙, 𝝀𝑙𝑚is a structural coefficient 176 

representing the effect of trait m on trait l, and 𝑔𝑙~𝑁(0, 𝑲𝜎𝑙
2) is the polygenic effect of the 𝑙th trait. 177 

The remaining terms are as presented earlier with one important difference: the SNP effects are not 178 
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interpreted as overall effects on trait 𝑙 but instead represent direct effects on trait 𝑙. Additional 179 

indirect effects from the same SNP may be mediated by phenotypic traits in C. Each marker is 180 

entered into equation (4) one at a time, and its significance is tested. For a discussion of how SEM 181 

represents genetic signals on each trait through multiple causal paths, see Wu et al. [27] and 182 

Jamrozik and Schaeffer [28]. Despite the difference in interpretation, the distribution of the vector 183 

of polygenic effects is assumed to be the same as in the MTM-GWAS model. The same applies to 184 

residual terms within a trait. We also consider trait-specific residuals to be independent within an 185 

individual. This restriction is required to render structural coefficients likelihood-identifiable. In 186 

addition, the interpretation of inferences as having a causal meaning requires imposing the 187 

restriction that the residuals’ joint distribution be interpreted as the causal sufficiency assumption 188 

[29]. In the present study, all exogenous and endogenous variables were observable, and there was 189 

no latent variable. Hence, causal structure was assumed between the endogenous variables BM, 190 

BW, and HHP. 191 

We considered the following GWAS models, which their causal structures were recovered by the 192 

inductive causation (IC) algorithm [29]: (1) MTM-GWAS with pedigree-based kinship A (MTM-193 

A) or marker-based kinship G (MTM-G), and (2) SEM-GWAS with A (SEM-A) or G (SEM-G). 194 

Although nuisance covariates such as environmental factors can be omitted in the graph, they may 195 

be incorporated into the models as exogenous variables. The SEM representation allowed us to 196 

decompose SNP effects into direct, indirect, and total effects.  197 

A direct SNP effect is the path coefficient between a SNP as an exogenous variable and a dependent 198 

variable without any causal mediation by any other variable. The indirect effects of a SNP are those 199 

mediated by at least one other intervening endogenous variable. Indirect effects are calculated by 200 

multiplying path coefficients for each path linking the SNP to an associated variable, and then 201 
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summing over all such paths [30]. The overall effect is the sum of all direct and indirect effects. 202 

By explicitly accounting for complex relationship structure among traits in such a way, SEM 203 

provides a better understanding of a genome-wide SNP analysis by allowing us to decompose 204 

effects into direct, indirect, and overall effects within a predefined casual framework [31]. MTM-205 

GWAS and SEM-GWAS were compared with the logarithm of the likelihood function (log L), 206 

Akaike’s Information Criterion (AIC), and the Bayesian Information Criterion (BIC). The model 207 

providing the lowest values for these information criteria is considered to fit the data better [27]. 208 

MTM-GWAS and SEM-GWAS were fitted using the SNP Snappy strategy, which is implemented 209 

in the Wombat software program [32].  210 

Searching for a phenotypic causal network in a mixed model  211 

In the SEM-GWAS formulation described earlier, the structure of the underlying causal phenotypic 212 

network needs to be known. Because this is not so in practice, we used a causal inference algorithm 213 

to infer the structure. Residuals are assumed to be independent in all SEM analyses, so associations 214 

between observed traits are viewed as due to causal links between traits and by correlations among 215 

genetic values (i.e., 𝑔1, 𝑔2, and 𝑔3). Thus, to eliminate confounding problems when inferring the 216 

underlying network among traits, we used the approach of Valente, et al. [32] to search for acyclic 217 

causal structures through conditional independencies on the distribution of the phenotypes, given 218 

the genetic effects. A causal phenotypic network was inferred in two stages: 1) an MTM model 219 

[33] was employed to estimate covariance matrices of additive genetic effects and of residuals, and 220 

2) the causal structure among phenotypes from the covariance matrix between traits, conditionally 221 

on additive genetic effects, was inferred by the IC algorithm. The residual (co)variance matrix was 222 

inferred using Bayesian Markov-chain Monte Carlo [27, 32], with samples drawn from the 223 

posterior distribution. The reason for our use of the residual (co)covariances is that the residual 224 
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structure could bear information from the joint distribution of all phenotypic traits conditional on 225 

their polygenic effects, such that they correct the confounding issues caused by such effects when 226 

the traits are genetically correlated [29]. For each query testing statistical independence between 227 

traits 𝑦𝑙and 𝑦𝑙′, the posterior distribution of the residual partial correlation 𝜌𝑦𝑙,𝑦
𝑙′ |𝑆 was obtained, 228 

where 𝑆 is a set of variables (traits) that are independent. Three highest posterior density (HPD) 229 

intervals of 0.75, 0.85, and 0.95 were used to make statistical decisions for SEM-GWAS. We thus 230 

considered SEM-A75 (HPD > 0.75), SEM-A85 (HPD > 0.85), SEM-A95 (HPD > 0.95), and SEM-231 

G75 (HPD > 0.75). An HPD interval that does not contain zero declares 𝑦𝑙  and 𝑦𝑙′  to be 232 

conditionally dependent. 233 

Results 234 

Figure 1 shows phenotypic relationship structures recovered by the IC algorithm for the three 235 

different HPD intervals. Edges connecting two traits represent non-null partial correlations as 236 

indicated by HPD intervals. We compared the two MTM-GWAS and four SEM-GWAS by using 237 

the three chicken traits (BW, BM, and HHP). Only causal structures among the three traits are 238 

shown in Figure 1, because other parts were the same across the different SEM models. Fully 239 

recursive SEM-A75 and SEM-G75 revealed direct effects of BM on BW and HHP, and those of 240 

BW on HHP, as well as an indirect effect of BM on HHP. In addition, SEM-A85 detected a direct 241 

effect of BM on BW, the direct effect of BW on HHP, and the indirect effect of BM on HHP 242 

mediated by BW. Finally, SEM-A95 only identified a direct effect of BM on BW because of a 243 

statistically stringent HPD cutoff imposed.   244 
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Given the causal structures inferred from the IC algorithm, the following SEM was fitted: 245 

{

𝒚
1 = 𝜇 + 𝒁𝑖𝒈1 + 𝑊𝑖𝑗𝑆𝑗 + 𝜺𝑖

𝒚2 = 𝜇 + 𝜆21𝒚1 + 𝒁𝑖𝒈2 + 𝑊𝑖𝑗𝑆𝑗 + 𝜺𝑖

𝒚3 = 𝜇 + 𝜆31𝒚𝟏 + 𝜆32𝒚2 + 𝒁𝑖𝒈3 + 𝑊𝑖𝑗𝑆𝑗 + 𝜺𝑖

                        (5)  246 

Note that only a small number of the entries in the structural coefficient matrix (𝜆 in equation 5) 247 

are nonzero due to sparsity. These nonzero entries specify the effect of one phenotype on other 248 

phenotypes. The corresponding directed acyclic graph is shown in Figure 2 assuming the causal 249 

relationships among the three traits, where y1 , 𝑦2 , and 𝑦3 represent BM, BW, and HHP, 250 

respectively; 𝑆𝑁𝑃𝑗  is the genotype of the jth SNP; 𝑆𝑗𝑙 is the direct SNP effect on trait 𝑙; and the 251 

remaining variables are as presented earlier. This diagram depicts a fully recursive structure in 252 

which all recursive relationships among the three phenotypic traits are shown. Arrows represent 253 

causal connections, whereas double-headed arrows between polygenic effects are correlations.  254 

<< Figure 1 about here>> 255 

   << Figure 2 about here>> 256 

We examined the fit of each model implemented to assess how well it describes the data (Table 1). 257 

Varona, et al. [12] and recently Valente, et al. [34] showed that re-parametrization and reduction 258 

of a SEM mixed model yield the same joint probability distribution of observation as in MTM, 259 

suggesting that the expected likelihood of SEM and MTM should be the same. As expected, SEM-260 

GWAS and MTM-GWAS showed very similar results (e.g., SEM-A75 vs. MTM-A and SEM-G75 261 

vs. MTM-G). Among the models considered, those involving G exhibited slightly better fits. SEM-262 

A85 and SEM-A95, sharing a subset of the SEM-A75 structure, presented almost identical AIC 263 

and BIC values. Since these results imply that the recursive model and standard mixed model for 264 

GWAS are statistically equivalent in terms of the fitting criteria, the focus of the remainder of the 265 
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analysis will be on the modeling of SNP (or QTL) effects in the SEM context as an extension of 266 

MTM, which accounts for recursive links among the three measured traits. 267 

 268 

<<Table 1 about here>> 269 

Structural coefficients 270 

Table 2 presents the causal structural path coefficients for endogenous variables (BM, BW, and 271 

HHP). All models have positive effects for BM→BW, whereas the BM→HHP and BW→HHP 272 

relationships have negative path coefficients. The latter confirmed the fact that chicken breeding is 273 

divided into broiler and layer sections due to the negative genetic correlation between BW and 274 

HHP. 275 

<<Table 2 about here>> 276 

Also shown in Table 2 are the magnitudes of the SEM structural coefficient reflecting the intensity 277 

of the causality. The positive coefficient 𝜆21 quantifies the (direct) causal effect of BM on BW. 278 

This suggests that a 1-unit increase in BM results in a 𝜆21-unit increase in BW. Likewise, the 279 

negative causal effects 𝜆31 and 𝜆32 offer the same interpretation.  280 

Decomposition of SNP effect paths using a fully recursive model 281 

We can decompose SNP effects into direct and indirect effects using Figure 2. The direct effect of 282 

the SNP 𝑗 on 𝑦3 (HHP) is given by 𝑑𝑆𝑁𝑃𝑗→𝑦3
: �̂�𝑗(𝑦3), where 𝑑 denotes the direct effect. Note there 283 

are only one direct and many indirect paths. We find three indirect paths from 𝑆𝑁𝑃𝑗  to 𝑦3 mediated 284 

by 𝑦1  and 𝑦2  (i.e., the nodes formed by other traits). The first indirect effect is 𝑖𝑛𝑑(1)𝑆𝑁𝑃𝑗→𝑦3
: 285 

𝜆32(𝜆21�̂�𝑗(𝑦1)) in the path mediated by y1 and y2, where 𝑖𝑛𝑑 denotes the indirect effect. The second 286 
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indirect effect  𝑖𝑛𝑑(2)𝑆𝑁𝑃𝑗→𝑦3
: 𝜆32�̂�𝑗(𝑦2) , is mediated by 𝑦2 . The last indirect effect, is 287 

𝑖𝑛𝑑(3)𝑆𝑁𝑃𝑗→𝑦3
: 𝜆31�̂�𝑗(𝑦1), mediated by y1. Therefore, the overall effect is given by summing all four 288 

paths, 𝑇𝑆𝑁𝑃𝑗→𝑦3
: 𝜆32(𝜆21�̂�𝑗(𝑦1)) + 𝜆32�̂�𝑗(𝑦2) + 𝜆31�̂�𝑗(𝑦1) + �̂�𝑗(𝑦3). The fully recursive model of the 289 

overall SNP effect is then: 290 

{

𝑇�̂�𝑗→𝑦1
: �̂�𝑗(𝑦1)

𝑇�̂�𝑗→𝑦2
: 𝜆21(�̂�𝑗(𝑦1))+�̂�𝑗(𝑦2)

𝑇�̂�𝑗→𝑦3
: 𝜆32[ 𝜆21(�̂�𝑗(𝑦1))+�̂�𝑗(𝑦2)]+𝜆31(�̂�𝑗(𝑦1))+�̂�𝑗(𝑦3)

                                      (6) 291 

For 𝑦1 (BM), there is only one effect, so the overall effect is equal to the direct effect. For 𝑦2 (BW) 292 

and 𝑦3  (HHP), direct and indirect SNP effects are involved. There are two paths for 𝑦2 : one 293 

indirect, 𝑖𝑛𝑑𝑆𝑗→𝑦2
: �̂�𝑗(𝑦1) → 𝑦1 → 𝑦2, and one direct, 𝑑𝑆𝑗→𝑦2

: �̂�𝑗(𝑦2) → 𝑦2. Here, the SNP effect is 294 

direct and mediated thorough other phenotypes according to causal networks in SEM-GWAS 295 

(Figures 1 and 2). For instance, the overall SNP effect for 𝑦3 into four direct and indirect paths is 296 

𝑇�̂�𝑗→𝑦3
: 𝜆32𝜆21�̂�𝑗(𝑦1) + 𝜆32�̂�𝑗(𝑦1) + 𝜆31�̂�𝑗(𝑦1) + �̂�𝑗(𝑦3).  297 

The scatter plots in Figure 3 compare the estimated total effects for HHP (𝑇�̂�𝑗→𝑦3
) obtained from 298 

SEM-GWAS and those from MTM-GWAS. We observed good agreement between SEM-GWAS 299 

and MTM-GWAS. The total SNP signals derived from SEM and MTM are the same but SEM  300 

provides biologically relevant additional information.  301 

<<Figure 3 about here>> 302 

Supplementary Figures S1–S4 present scatter plots of MTM-GWAS and SEM-GWAS signals 303 

(SEM-A75, SEM-G75, SEM-A85, and SEM-A95) for the 𝐵𝑀 → 𝐵𝑊 path, which was a common 304 

path across all SEM-GWAS considered. These two traits have a genetic correlation of 0.5 (results 305 

not shown). We partitioned the SEM causal link into direct, indirect, and overall effects based on 306 
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directed links inferred from the IC algorithm with HPD > 0.85, whereas MTM-GWAS captures an 307 

overall SNP effect on BW. Scatter plots of the overall effects from SEM-GWAS and those of the 308 

total effects from MTM-GWAS indicated almost perfect agreement (top left plots, Supplementary 309 

Figures S1–S4). We also observed concomitance between estimated overall and direct effects (top 310 

right plots, Supplementary Figures S1–S4). In contrast, there was less agreement in the magnitude 311 

of the SNP effects when comparing overall vs. indirect effects (bottom left plots, Supplementary 312 

Figures S1–S4). There was no linear relationship between the indirect and direct SNP effects 313 

(bottom right plots, Supplementary Figures S1–S4). In short, genetic signals detected in SEM-314 

GWAS were close to those of MTM-GWAS for overall effects because both models are based on 315 

a multivariate approach with the same covariance matrix. In all SEM-GWAS, results showed that 316 

direct effects contributed to overall effects more than the indirect effects.  317 

Manhattan plot of direct, indirect, and overall SNP effects 318 

Figure 4 depicts a Manhattan plot summarizing the magnitude of direct (SEM-75A), indirect 319 

(SEM-75A), and overall SNP effects (MTM-75A). We plotted the decomposed SNP effects on 320 

BW along chromosomes to visualize estimated marker effects from SEM-GWAS and MTM-321 

GWAS. The indirect and direct effects provide a view of SNP effects from a perspective that is not 322 

available for the total effect of MTM-GWAS. For instance, many pleiotropic QTLs have positive 323 

direct effects on BW but negative effects on BM.  There were two estimated SNP effects on 324 

chromosomes 1 and 2 that deserve particular attention.  These two SNPs are highlighted with black 325 

circles and red ovals. The overall effect of the first SNP consisted of large indirect and small direct 326 

effects on BM, whereas the opposite pattern was observed for the second SNP, which showed large 327 

direct and small indirect effects. Although the overall effects of these SNPs were similar (top 328 

Manhattan plot, Figure 4), use of decomposition allowed us to determine that the trait of interest is 329 
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affected in different manners: the second SNP effect acted directly on BW without any mediation 330 

by BM, whereas the first SNP reflected a large effect mediated by BM on BW. Collectively, new 331 

insight regarding the direction of SNP effects can be obtained using the SEM-GWAS methodology. 332 

The corresponding Manhattan plot based on –log10 (p-values) is shown in Supplementary Figure 333 

S5. As with the magnitude of effect sizes, the results showed that –log10 (p-values) of estimated 334 

overall effects from SEM-A75 and those from MTM-A75 yielded the same significant peaks. We 335 

found that some significant indirect SNP effects reached genome-wide significance after correction 336 

for multiple-testing using a 5% FDR threshold level (2.752). The most significant SNPs were on 337 

chromosomes 1 and 4 (GGA1 and GGA4).  338 

<<Figure 4 about here>> 339 

As an illustration, the six most significant SNPs with the highest –log10 (p-values) for each type of 340 

decomposed SNP effect are presented in Table 3. Seven candidate genes were identified near the 341 

significant SNPs derived from the SNP effects decomposition, with two on GGA7 (OLA1 and 342 

ZNF385B), one on GGA3 (EPHA7), three on GGA4 (LOC422264, LOC422265, and MAEA), and 343 

one on GGA14 (GRIN2A). We found that only genes on GGA4 and GGA1 are linked to significant 344 

indirect SNP effects that impact HHP. Some studies reported QTLs for BM on GGA1 and for BW 345 

on GGA4, stating that these genomic regions contain QTLs related to abdominal fat and growth 346 

traits that were detected across diverse chicken populations [35, 36]. One of the two detected genes 347 

on GGA14, i.e., GRIN2A, which was linked to the SNP Gga_rs313620413, showed significant 348 

direct and overall SNPs effects using SEM as well as MTM. Collectively, Gga_rs15390496, 349 

Gga_rs16591372, and Gga_rs313620413 SNPs on GGA3, GGA7, and GGA14, which were linked 350 

to EPHA7, OLA1, and GRIN2A, respectively, represent candidate genes identified from overall 351 

effects of both SEM and MTM (Table 3).  352 
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We noted that the six SNPs selected according to the –log10 (p-values) from the direct effect on 353 

HHP ( i.e.,  𝑑𝑆𝑁𝑃𝑗→𝑦(𝐻𝐻𝑃)
) had small indirect effects ranging from –0.9018 to 0.2983. These indirect 354 

effects were negligible compared with their corresponding direct and total effects. Also, exploring 355 

the indirect effect sizes of the six most significant SNPs showed that indirect effects that are 356 

transmitted from inferred causal networks have the ability to change the magnitude of overall SNP 357 

effects, even changing them to the opposite direction (i.e., from positive to negative or vice versa).  358 

It should also be noted that the estimated additive SNP effects obtained from the four SEM-GWAS 359 

can be used for inferring pleiotropy. For instance, a pleiotropic QTL may have a large positive 360 

direct effect on BW but may exhibit a negative indirect effect coming from BM, which in turn 361 

reduces the total QTL effect on BW. Arguably, the methodology employed here would be most 362 

effective when the direct and indirect effects of a QTL are in opposite directions. If the direct and 363 

indirect QTL effects are in the same direction, the power of SEM-GWAS may be the same as the 364 

overall power of MTM-GWAS. The overall effect (𝑇�̂�𝑗→𝑦(𝐻𝐻𝑃)
) of a given SNP consisted of large 365 

indirect (𝑖𝑛𝑑�̂�𝑗→𝑦(𝐻𝐻𝑃)
) and small direct (𝑑�̂�𝑗→𝑦(𝐻𝐻𝑃)

) effects on HHP, as observed for the top most 366 

significant indirect SNPs localized on GGA4 and GAA1, whereas the opposite pattern was 367 

observed for the most significant direct SNPs on GAA3, GGA7, and GGA14, which showed large 368 

direct and small indirect effects. Although the overall effects of these SNPs from SEM-GWAS and 369 

MTM-GWAS were similar, the use of decomposition allowed us to determine that the trait of 370 

interest is affected in different manners. For instance, a given SNP effect may largely act directly 371 

on HHP without any mediation by BM and BW, whereas another SNP may be transmitting a large 372 

effect through a causal path mediated by BM and BW. Collectively, new insight regarding the 373 

direction of SNP effects can be obtained using the SEM-GWAS methodology. 374 
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<<Table 3 about here>> 375 

 376 

Discussion 377 

It is becoming increasingly common to analyze a set of traits simultaneously in GWAS by 378 

leveraging genetic correlations between traits [37, 38]. In the present study, we illustrated the 379 

potential utility of a SEM-based GWAS approach for causal inference and mediation analysis of 380 

SNP effects, which has the potential advantage of embedding a pre-inferred causal structure across 381 

phenotypic traits [32]. SEM-GWAS, as an extension of standard MTM, accounts for recursive 382 

linking of mediating variables that could be either dependent or independent with restriction on a 383 

residual covariance. This is a useful approach when multiple mediators influence the final 384 

outcomes via either common or distinct biological pathways [39, 40]. SEM-GWAS is achieved by 385 

first inferring the structure of networks between phenotypic traits. For this purpose, we used a 386 

modified version of the IC algorithm described by Pearl [29] and modified for implementing in 387 

quantitative genetics by Valente, et al. [32]. The IC algorithm was used to explore putative causal 388 

links among phenotypes obtained from a residual covariance matrix, in a model that accounted for 389 

systematic and genetic confounding factors such as polygenic additive effects. It then produced a 390 

posterior distribution of partial residual correlations between any possible pairs of variables. Three 391 

different causal path diagrams were inferred from HPD intervals of 0.75, 0.85, and 0.95. We 392 

observed that the number of identified paths decreased with an increase in the HPD interval value. 393 

Only a path connecting BM and BW was present in all HPD intervals considered. Moreover, we 394 

found that the partial residual correlation between BM and HHP was weaker than that between BM 395 
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and BW. This may explain why the path between BM and HHP was not detected with HPD 396 

intervals larger than 0.75.  397 

Estimated path coefficients reflect the strength of each causal link, quantifying the proportion of 398 

direct and indirect effects of a given SNP or genes on the outcome of interest via the mediator 399 

phenotypic traits or the predefined causal pathway between a set of mediators and the target 400 

outcome. For instance, a positive path coefficient from BM to BW suggests that a unit increase in 401 

BM directly results in an increase in BW. Our results showed that MTM-GWAS and SEM-GWAS 402 

were similar in terms of the goodness of fit as per the AIC and BIC criteria. This finding is in 403 

agreement with theoretical work of Gianola and Sorensen [11] and Varona, et al. [12] showing the 404 

equivalence between models. Thus, MTM-GWAS and SEM-GWAS produced the same marginal 405 

phenotypic distributions and goodness of fit values. A similar approach has been proposed by Li, 406 

et al. [16], Mi, et al. [41], and Wang and van Eeuwijk [42]. The main difference between our 407 

approach and theirs is that they used SEM in the context of standard QTL mapping, whereas our 408 

SEM-GWAS is developed for GWAS based on a linear mixed model. 409 

The advantage of SEM-GWAS over MTM-GWAS is that the former decomposes SNP effects by 410 

tracing inferred causal networks. Our results showed that by partitioning SNP effects into direct, 411 

indirect, and total components, an alternative perspective of SNP effects can be obtained. As shown 412 

in Table 3 and Figure 4, direct and indirect effects may differ in magnitude and sign, acting in the 413 

same direction or in an antagonistic manner. Note that the total SNP effects inferred from SEM-414 

GWAS were the same as the estimated SNP effects from MT-GWAS (Table 3). However, 415 

knowledge derived from the decomposition of SNP effects may be critical for animal and plant 416 

breeders in breaking unfavorable indirect QTL effects or obtaining better SNP effect estimates than 417 

those from MTM-GWAS [e.g., 41]. 418 
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Conclusion 419 

SEM offers insights into how phenotypic traits relate to each other. We illustrated potential 420 

advantages of SEM-GWAS relative to the commonly used standard MTM-GWAS by using three 421 

chicken traits as an example. SNP effects pertaining to SEM-GWAS have a different meaning than 422 

those in MTM-GWAS. Our results showed that SEM-GWAS enabled the identification of whether 423 

a SNP effect is acting directly or indirectly, i.e. mediated, on given trait. In contrast, MTM-GWAS 424 

only captures overall genetic effects on traits, which is equivalent to combining direct and indirect 425 

SNP effects from SEM-GWAS together. Thus, SEM-GWAS offers more information and provides 426 

an alternative view of putative causal networks, enabling a better understanding of the genetic 427 

quiddity of traits at the genomic level.   428 
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Tables 553 

 554 

Table 1. Model comparison criteria: logarithm of the restricted 

maximum likelihood function (log L), Akaike's information 

criteria (AIC), Schwarz Bayesian information criteria (BIC) to 

evaluate model fit for two MTM and four SEM models. 

Model Maximum log L -1/2 AIC -1/2 BIC 

MTM-A -7093.480 -7105.48 -7142.436 

SEM-A75 -7098.370 -7110.415 -7147.321 

SEM-A85 -7095.188 -7107.188 -7144.143 

SEM-A95 -7097.517 -7109.517 -7146.470 

MTM-G -6529.270 -6541.276 -6578.232 

SEM-G75 -6537.391 -6549.391 -6586.34 

A: pedigree-based relationship matix, G: VanRaden’s mrker-based relationship 

matrix 
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 564 

 565 

 566 

Table 2 Estimates of three causal structural coefficients (𝝀) derived from four 

different structural models. BM: breast meat. BW: body weight. HHP: hen-

house production. SEM-75: HPD > 0.75. SEM-G75: HPD > 0.75. SEM-A85: 

HPD > 0.85. SEM-A95: HPD > 0.95. 

 Structural Models 

Path SEM-A75 SEM-G75 SEM-A85 SEM-A95 

𝜆𝐵𝑀→𝐵𝑊(𝜆21) 2.13 2.19 2.14 2.14 

𝜆𝐵𝑀→𝐻𝐻𝑃(𝜆31) -0.17 -0.28 *** *** 

𝜆𝐵𝑊→𝐻𝐻𝑃(𝜆32) -0.27 -0.096 -0.31 *** 

567 
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 568 

Table 3. Six most significant SNPs selected according –log10 (p-values) and their effects, using the full recursive SEM (SEM-A75) and MTM (MTM-

A75). 𝑑𝑆𝑗→𝑦(𝐻𝐻𝑃)
, 𝑖𝑛𝑑𝑆𝑗→𝑦(𝐻𝐻𝑝), 𝑇𝑆𝑗→𝑦(𝐻𝐻𝑃)

 and 𝑀𝑇𝑀𝑆𝑗→𝑦(𝐻𝐻𝑃)
, represents, direct, indirect and overall from SEM and MTM effects of j-th SNP on 

HHP.  

  
  

–log10 (p-values)  Type of SNP effect 

 CHR SNP name 
candidate 

genes 
𝑑𝑆𝑗→𝑦(𝐻𝐻𝑃) 𝑖𝑛𝑑𝑆𝑗→𝑦(𝐻𝐻𝑃) 𝑇𝑆𝑗→𝑦(𝐻𝐻𝑃)

 𝑀𝑇𝑀𝑆𝑗→𝑦(𝐻𝐻𝑃)
  𝑑𝑆𝑗→𝑦(𝐻𝐻𝑃) 𝑖𝑛𝑑𝑆𝑗→𝑦(𝐻𝐻𝑃) 𝑇𝑆𝑗→𝑦(𝐻𝐻𝑃)

 𝑀𝑇𝑀𝑆𝑗→𝑦(𝐻𝐻𝑃)
 

T
o
p
 S

N
P

s 
fo

r 

d
ir

ec
t 

ef
fe

ct
s 

14 Gga_rs313620413 GRIN2A 7.4242 0.1499 9.6599 7.4525  -5.7827 -0.0498 -5.8326 -5.78511 

7 Gga_rs16591372  OLA1 7.0868 0.2220 9.0119 6.9783  -22.5681 0.2983 -22.2698 -22.3520 

3 Gga_rs15390496  EPHA7 7.0209 0.2214 8.6122 7.0297  -22.4233 -0.2149 -22.6382 -22.4098 

1 Gga_rs314001234 ----- 7.0147 1.1067 9.0710 7.1653  -26.6538 -0.9018 -27.5556 -26.9360 

7 Gga_rs315626061 ----- 6.8300 0.3360 8.9974 6.9529  5.1767 0.0910 5.26783 5.22295 

7 Gga_rs316509306 ----- 6.8241 0.3442 8.9952 6.9485  5.1742 0.0928 5.267116 5.22105 

T
o
p
 S

N
P

s 
fo

r 

in
d
ir

ec
t 

ef
fe

ct
s 4 Gga_rs316082590 LOC422264 0.7137 3.6868 0.4754 0.5696  -1.2913 0.4505 -0.84073 -1.07339 

4 Gga_rs313358833 LOC422265 0.6449 3.2345 0.4310 0.5202  -1.2067 0.4235 -0.78322 -1.01618 

4 Gga_rs314615897 MAEA 0.1170 2.9505 0.0474 0.0387  -0.2799 0.3853 0.105456 -0.09807 

1 Gga_rs15301842  ----- 0.0393 2.9408 0.1436 0.0149  -0.1301 0.5053 0.375199 0.050463 

1 Gga_rs314551852 ----- 0.0632 2.8858 0.1100 0.0065  -0.2038 0.4994 0.295514 -0.02218 

1 Gga_rs317379325 ----- 0.1599 2.8473 0.0070 0.0931  -0.4789 0.5000 0.021148 -0.29321 

O
v

er
al

l 
ef

fe
ct

s 14 Gga_rs313620413 GRIN2A 7.4242 0.1499 9.6599 7.4525  -5.7827 -0.0498 -5.83262 -5.7851 

1 Gga_rs314001234 ----- 7.0147 1.1067 9.0710 7.1653  -26.653 -0.9018 -27.5556 -26.9360 

7 Gga_rs315626061 ----- 7.0868 0.2220 9.0119 6.9783  -22.5681 0.2983 -22.2698 -22.3520 

7 Gga_rs315626061 ----- 6.8300 0.3360 8.9974 6.9529  5.1767 0.0910 5.26783 5.2229 

7 Gga_rs316509306 ----- 6.8241 0.3442 8.9952 6.9485  5.1742 0.0928 5.267116 5.2210 

7 Gga_rs15850017 ZNF385B 6.6582 0.0499 8.6397 6.6176  -20.8591 -0.0718 -20.9310 -20.7681 

M
T

M
 

14 Gga_rs313620413 GRIN2A 7.4242 0.1499 9.6599 7.4525  -5.7827 -0.0498 -5.8326 -5.7851 

1 Gga_rs314001234  ----- 7.0147 1.1067 9.0710 7.1653  -26.6538 -0.9018 -27.5556 -26.936 

3 Gga_rs15390496 EPHA7 7.0209 0.2214 8.6122 7.0297  -22.4233 -0.2149 -22.6382 -22.4098 

7 Gga_rs16591372  OLA1 7.0868 0.2220 9.0119 6.9783  -22.5681 0.2983 -22.2698 -22.352 

7 Gga_rs315626061 ----- 6.8300 0.3360 8.9974 6.9529  5.1767 0.0910 5.26780 5.2229 

7 Gga_rs316509306 ----- 

 

 

 

6.8241 0.3442 8.9952 6.9485  5.1742 0.0928 5.2671 5.2210 

The bold values are –log10 (corrected p-value) for each type of significant SNP effects categories. 
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Figures 570 

 571 

 572 

Figure 1 Causal graphs inferred using the IC algorithm among three traits: breast meat 573 

(BM), body weight (BW) and hen-house production (HHP) in the chicken data. SEM-A75 and 574 

SEM-G75 were the inferred fully recursive causal structures with HPD > 0.75 and corrected for 575 

genetic confounder using A (pedigree-based) and G (marker-based) matrices. SEM-A85 and SEM-576 

A95 were obtained with HPD > 0.85 and HPD > 0.95, respectively, corrected with A. Arrows 577 

indicate direction of causal relationships. Dashed lines indicate negative coefficients, and the 578 

continuous arrows indicate positive coefficients. 579 

 580 

 581 

 582 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2018. ; https://doi.org/10.1101/251421doi: bioRxiv preprint 

https://doi.org/10.1101/251421
http://creativecommons.org/licenses/by-nd/4.0/


 

29 

 583 

 584 

 585 

 586 

 587 

 588 

 589 

Figure 2 A diagram for causal path analysis of SNP effects in a fully recursive structural 590 

equation model for three traits, 𝒑  exogenous independent SNP variables, and three 591 

correlated polygenic effects. Arrows indicate the direction of causal effects and dashed lines 592 

represent associations among the three phenotypes. Genetic correlation between traits ( 𝑟𝑔 ), 593 

polygenic effects (𝑔𝑙), environmental effect on trait 𝑙 (𝑒𝑙), effects of 𝑗 th SNP on 𝑙 th trait (𝑆𝑗(𝑦𝑙)),  594 

and recursive effect of phenotype 𝑙′ on phenotype 𝑙 (𝜆𝑙,𝑙′).  595 

 596 
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 605 

 606 

 607 

 608 

 609 

Figure 3 Comparison of multiple trait (MTM) and fully recursive overall SNP effects 610 

obtained with A (pedigree-based) and G (marker-based) from structural equation modeling 611 

(SEM)-based GWAS. Overall effects in SEM are the sum of all direct and indirect effects. HHP: 612 

hen-house egg production.  613 

 614 
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 615 

 616 

Figure 4 Manhattan plot showing overall, direct, and indirect SNP effects using a full recursive model based on A matrix for 617 

body weight (BW).  618 

 619 
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