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ABSTRACT 
Perceptual choices depend not only on the current sensory input, but also on the 
behavioral context. An important contextual factor is the history of one’s own choices. 

Choice history often strongly biases perceptual decisions, and leaves traces in the activity 
of brain regions involved in decision processing. Yet, it remains unknown how such history 
signals shape the dynamics of later decision formation. Models of perceptual choice 
construe decision formation as the accumulation of sensory evidence towards decision 
bounds. In this framework, it is commonly assumed that choice history signals shift the 
starting point of accumulation towards the bound reflecting the previous choice. We here 
present results that challenge this idea. We fit bounded-accumulation decision models to 
behavioral data from perceptual choice tasks, and estimated bias parameters that 
depended on observers’ previous choices. Across multiple task protocols and sensory 
modalities, individual history biases in overt behavior were consistently explained by a 
history-dependent change in the evidence accumulation, rather than in its starting point. 
Choice history signals thus seem to bias the interpretation of current sensory input, akin to 
shifting endogenous attention towards (or away from) the previously selected interpretation. 
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INTRODUCTION 
Decisions are not isolated events, but are embedded in a sequence of choices. Preceding 
choices can exert a large influence even on low-level perceptual judgments (Fernberger, 
1920; Treisman and Williams, 1984). Previous work on the mechanisms of perceptual 
decision-making has largely focused on processing of the current sensory evidence (Gold 
and Shadlen, 2007). Yet, humans (Fründ et al., 2014; Urai et al., 2017), monkeys (Gold et 
al., 2008) and rodents (Busse et al., 2011; Odoemene et al., 2018) base their choices not 
only on current sensory input, but also on choice history, in a way that can be adjusted to 
serial correlations in the sensory environment (Abrahamyan et al., 2016; Kim et al., 2017; 
Braun et al., 2018). History biases are also prevalent in environments lacking such 
structure, and vary substantially across individuals (Fründ et al., 2014; Abrahamyan et al., 
2016; Urai et al., 2017). Choice history biases are ubiquitous also in other domains of 
decision-making (Leopold et al., 2002; Allefeld et al., 2013; Padoa-Schioppa, 2013), likely 
reflecting a general principle of the mechanisms governing decision-making.  

Computational theory (Gao et al., 2009; Glaze et al., 2015) and psychophysical data 
(Kim et al., 2017; Braun et al., 2018) indicate that choice history biases result from the 
accumulation of internal decision variables across trials, with a timescale governed by the 
decision-makers’ internal model of the correlation structure of their environment. Neural 
signals reflecting previous choices have been found across the sensorimotor pathways of 
the cerebral cortex, from sensory to associative and motor regions (de Lange et al., 2013; 
Akaishi et al., 2014; Pape and Siegel, 2016; Purcell and Kiani, 2016a; St. John-Saaltink et 
al., 2016; Thura et al., 2016; Hwang et al., 2017; Scott et al., 2017).  

By which mechanism are choice history signals incorporated into the formation of a 
decision? Current models of perceptual decision-making posit the accumulation of noise-
corrupted sensory evidence over time, resulting in an internal decision variable that grows 
with time (Bogacz et al., 2006; Gold and Shadlen, 2007; Ratcliff and McKoon, 2008; Brody 
and Hanks, 2016). When this decision variable reaches one of two decision bounds, a 
choice is made and the corresponding motor response is initiated. In this framework, a bias 
can be brought about in two ways: (i) by shifting the starting point of accumulation towards 
one of the bounds, or (ii) by selectively changing the rate at which evidence for one versus 
the other choice alternative accumulates (Figure 1). The former mechanism can be thought 
of as adding an offset to the perceptual interpretation of the current sensory evidence 
during the generation of the response. The latter mechanism corresponds to biasing that 
perceptual interpretation itself, analogous to selective attention.  
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Existing computational models of choice history biases postulate a shift in the 
starting point of the decision variables towards the bound of the previous choice (Yu and 
Cohen, 2008; Zhang et al., 2014; Glaze et al., 2015). This is a natural prediction, assuming 
that history biases are due to the slow (passive) decay of the decision variable into the next 
trial (Cho et al., 2002; Gao et al., 2009, 2009; Bonaiuto et al., 2016). However, the cerebral 
cortex is equipped with a hierarchy of timescales (Honey et al., 2012; Murray et al., 2014; 
Chaudhuri et al., 2015; Runyan et al., 2017; Scott et al., 2017). Choice history biases might 
originate from the slow (i.e., tens of seconds) across-trial accumulation of decision 
variables, at higher stages of the hierarchy than those accumulating current evidence on 
timescales of hundreds of milliseconds. Previous experimental work quantifying history 
biases in perceptual choice either did not analyze the within-trial dynamics of decision 
formation (Busse et al., 2011; de Lange et al., 2013; Akaishi et al., 2014; Fründ et al., 2014; 
Urai et al., 2017; Braun et al., 2018), or did not allow for distinguishing between starting 
point and accumulation biases (Cho et al., 2002; Gold et al., 2008; Yu and Cohen, 2008; 
Gao et al., 2009; Wilder et al., 2009; Bode et al., 2012; Jones et al., 2013; Zhang et al., 
2014). Consequently, it remains unknown which of those two computational mechanisms 
accounts for the choice history biases observed in overt behavior.  

Here, we addressed this issue by fitting a bounded-accumulation decision models 
to human behavioral data from perceptual choice tasks. Across a variety of task protocols 
and sensory modalities, we found that history biases in individual choice behavior were 
consistently explained by a history-dependent variation in the accumulation bias, rather 
than the starting point. This indicates that the interaction between choice history and 
decision formation is more complex than previously thought: internal decision signals may 
act like a cue for selective attention, which then biases evidence accumulation towards (or 
away from) the previous chosen perceptual interpretation of the sensory input. 
 

RESULTS 
We fit the drift diffusion model to behavioral data (choices and response times, RT) from a 
total of 194 human participants (Materials and Methods). The drift diffusion model (DDM) is 
one variant of bounded-accumulation models, popular because it provides good fits to RT 
and choice patterns from a large array of two-choice task (Ratcliff and McKoon, 2008) and 
its latent variables (model parameters) seem to correspond to neural signals observed at 
different stages of the sensory-motor pathways of the brain (Gold and Shadlen, 2007). The 
shape of RT distributions and choice fractions jointly constrain the model parameters. We 
here estimated the following parameters: non-decision time (the time needed for sensory 
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encoding and response execution), starting point of the decision variable, separation of the 
decision bounds, mean drift rate, and a stimulus-independent constant added to the mean 
drift (Supplementary Figure 1). We refer to the latter parameter (termed “drift criterion” by 
Ratcliff and McKoon, 2008) as “drift bias”. 
 

 
Figure 1. Two biasing mechanisms within the drift diffusion model. The model postulates that 

noisy sensory evidence is accumulated over time, until the resulting decision variable y reaches one 

of two bounds (dashed black lines at y=0 and y=a) for the two choice options. Repeating this process 

over many trials yields RT distributions for both choices (plotted above and below the bounds). Gray 

line: example trajectory of decision variable from single trial. Black lines: mean drift and resulting RT 

distributions under unbiased conditions. (a) Choice history-dependent shift in starting point. Green 

lines: mean drift and RT distributions under biased starting point. (b) Choice history-dependent shift 

in drift bias. Blue lines: mean drift and RT distributions under biased drift. Both mechanisms 

differentially affect the shape of RT distributions. (c) Conditional bias functions (White and Poldrack, 

2014), showing the fraction of biased choices as a function of RT. 

 

Within the DDM, choice behavior can be biased by two mechanisms: shifting the 
starting point or biasing the drift towards one of the bounds (Figure 1). A shift in starting 
point would be most influential early on in the decision process: it affects the leading edge 
of the RT distribution and shifts its mode. It predicts that the majority of history-dependent 
choice biases occur on trials with fast RTs (Figure 1c, green). A drift bias is instead 
accumulated along with the evidence and therefore grows as a function of elapsed time. 
Thus, drift bias strongly affects the trailing edge of the RT distribution with only a minor 
effect on the mode, altering choice fractions across the whole range of RTs (Figure 1c, 
blue). These biasing mechanisms are hard to differentiate based on the proportion of 
choices alone, but they are readily distinguishable by the shape of RT distributions or the 
relationship between choice bias and RT (Figure 1c).  

We fit different variants of the DDM to data from six different experiments. These 
covered a range of task protocols and sensory modalities commonly used in studies of 
perceptual decision-making (see Figure 2a and Methods section Datasets: behavioral tasks 
and participants): two alternative forced-choice, two interval forced-choice, and yes-no 

a

0

z

a

Time

c Starting point (z)

Drift bias (vbias)

Unbiased

C
ho

ic
e 

bi
as

Response time (s)

b

0

z

a

Time

Biased starting point (z) Drift bias (vbias)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 16, 2018. ; https://doi.org/10.1101/251595doi: bioRxiv preprint 

https://doi.org/10.1101/251595
http://creativecommons.org/licenses/by/4.0/


 5 

(simple forced choice) tasks; RT and so-called fixed duration tasks; visual motion direction 
and coherence discrimination, visual contrast and auditory detection; and experiments with 
and without single-trial performance feedback. As found in previous work (Abrahamyan et 
al., 2016; Urai et al., 2017), observers exhibited a wide range of idiosyncratic choice history 
biases across all experiments (Figure 2b,c). 

To ensure that the DDM is an appropriate (simplified) modeling framework for these 
data, we first fit a basic version of the DDM that contained the above-described 
parameters, without allowing bias parameters to vary with choice history. Several 
observations indicate that the DDM provided fit the data well overall (Supplementary Figure 
2). First, RT distributions matched the model predictions reasonably well (shown separately 
for each combination of stimuli and choices in Supplementary Figure 2b, darker colors 
indicate predicted RTs obtained through model simulations). Second, for the fits obtained 
with a hierarchical Bayesian fitting procedure (see Supplementary Figure 1 and Materials 

and Methods), used for Figures 3-5, the R" for group-level parameters ranged between 
0.9997 and 1.0406 across datasets, indicating good convergence of the sampling 
procedure. Third, individual drift rate estimates correlated with individual perceptual 
sensitivity (d’, Supplementary Figure 2a) and monotonically increased with stronger sensory 
evidence (Supplementary Figure 2a). In fixed duration tasks, the decision-maker does not 
need to set a bound for terminating the decision (Bogacz et al., 2006), so the bounded 
diffusion process described by the DDM might seem inappropriate. Yet, the success of the 
DDM in fitting these data was consistent with previous work (e.g. Ratcliff, 2006; Bode et al., 
2012; Jahfari et al., 2012) and might have reflected the fact that observers set implicit 
decision bounds also when they do not control the stimulus duration (Kiani et al., 2008; but 
see Tsetsos et al., 2015). 
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Figure 2. Behavioral tasks and individual differences. (a) Schematics of perceptual decision-

making tasks used in each dataset. See Methods section Datasets: behavioral tasks and participants. 

(b) Distributions of individual choice history biases for each dataset. Grey bars show individual 

observers, with colored markers indicating the group mean. (c) Each individual’s tendency to repeat 

their choices after correct vs. error trials. The position of each observer in this space reflects their 

choice- and outcome-dependent behavioral strategy. 

 
HISTORY-DEPENDENT ACCUMULATION BIAS, NOT STARTING POINT BIAS, EXPLAIN INDIVIDUAL 
DIFFERENCES IN CHOICE REPETITION BEHAVIOR 

We then fit the DDM while also allowing starting point, drift bias, or both to vary as a 
function of the observer’s choice on the previous trial (Supplementary Figure 3). Models 

a

0.4 0.5 0.6
P(repeat)

1

24

# O
bs

er
ve

rs

1

22

# O
bs

er
ve

rs

1

62
# O

bs
er

ve
rs

1

27

# 
Ob

se
rve

rs

1

32

# 
Ob

se
rv

er
s

1

26

# 
Ob

se
rve

rs

Visual contrast yes/no (RT), n = 23

Fixation
4-6s

Stimulus
RT

Loudspeaker
Response

Visual contrast
signal+noise noise

or

Auditory yes/no (RT), n = 24

Fixation
3-4s

Stimulus
RT

Loudspeaker
Response

kHz

64

2

signal+noise noise

or

Visual motion 2AFC (RT), n = 26
Fixation
4.3-5.8s

Stimulus
RT

Loudspeaker
Response

Motion coherence

Feedback
0.7s

Fixation color

left or right

Visual motion 2AFC (FD), n = 32
Fixation

0.75-1.5s
Stimulus

0.75s

Loudspeaker
Response

Motion
coherence

Choice
RT+1.5-2.5s

Fixation color

Feedback
2-2.5s up or down

0% 0% 0%

Visual motion 2IFC (FD) #1, n = 27     / #2, n = 62

Loudspeaker
Response

Motion
coherence

Fixation   0.5-1.5s   

Reference (s1) 0.5s / 0.75s

Delay 0.3-0.7
Stimulus (s2) 0.5s / 0.75s

Choice, RT+1.5-2.5s / 1.5-3s

Feedback, 2-2.5s / 2-3s

0%
70%

0% 0% 0%
70±∆%

s1>s2 or s1<s2

2IFC #1
∆% = [0.625, 1.25, 
2.5, 5, 10, 20, 30]
2IFC #2
∆% = individual threshold

Single-trial feedback
No single-trial feedback

0.3 0.5 0.7
P(repeat) after correct

0.3

0.5

0.7

P(
re

pe
at

) a
fte

r e
rro

r

win-stay
lose-switch

staywin-switch
lose-stay

switch

0.3 0.5 0.7
P(repeat) after correct

0.3

0.5

0.7

P(
re

pe
at

) a
fte

r e
rro

r

win-stay
lose-switch

staywin-switch
lose-stay

switch

0.3 0.5 0.7
P(repeat) after correct

0.3

0.5

0.7

P(
re

pe
at

) a
fte

r e
rro

r

win-stay
lose-switch

staywin-switch
lose-stay

switch

0.3 0.5 0.7
P(repeat) after correct

0.3

0.5

0.7

P(
re

pe
at

) a
fte

r e
rro

r

win-stay
lose-switch

staywin-switch
lose-stay

switch

0.3 0.5 0.7
P(repeat) after correct

0.3

0.5

0.7

P(
re

pe
at

) a
fte

r e
rro

r
win-stay

lose-switch

staywin-switch
lose-stay

switch

0.3 0.5 0.7
P(repeat) after correct

0.3

0.5

0.7

P(
re

pe
at

) a
fte

r e
rro

r

win-stay
lose-switch

staywin-switch
lose-stay

switch

cb

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 16, 2018. ; https://doi.org/10.1101/251595doi: bioRxiv preprint 

https://doi.org/10.1101/251595
http://creativecommons.org/licenses/by/4.0/


 7 

with history-dependent biases better explained the data than the baseline model without 
such history dependence (Figure 3a), corroborating the observation that observers’ 
behavior showed considerable dependence on previous choices (Figure 2f). The model with 
both history-dependent starting point and drift bias provided the best fit to all six datasets 
(Figure 3a), based on the Deviance Information Criterion (DIC).  

The above model comparison pointed to the importance of including a history-
dependency into the model. We further examined the ability of each model to explain those 
diagnostic features in the data (Palminteri et al., 2017) that distinguished starting point from 
drift bias. As shown above (Figure 1), a history-dependent shift in the starting point leads to 
biased choices primarily when responses are fast (early RT quantiles), whereas a history-
dependent shift in drift leads to biased choices across all trials, including those with slow 
responses (Figure 1). We simulated choices and RTs from the four different model variants 
and computed so-called ‘conditional bias functions’ (White and Poldrack, 2014): the 
fraction of choices in line with each observer’s choice repetition tendency (i.e., repetition 
probability) within each quantile of their RT distribution. For observers whose choice 
repetition probability was > 0.5, this was the fraction of repetitions; for the other observers, 
this was the fraction of alternations. Consistent with a shift in drift bias, observers exhibited 
history-dependent choice biases across the entire range of RTs (Figure 3b). In particular, 
the biased choices on slow RTs could only be captured by models that included a history-
dependent shift in drift bias (Figure 3c, blue bars). 
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Figure 3. Model comparison and simulations. (a) For each dataset, we compared the DIC between 

models where drift bias, starting point bias or both were allowed to vary as a function of previous 

choice. The DIC for a model without history dependence was used as a baseline for each dataset. 

Lower DIC values indicate a model that is better able to explain the data, after taking into account the 

model complexity; a DDIC of 10 is generally taken as a threshold for considering one model a 

sufficiently better fit. (b) Conditional bias functions (Figure 1c; White and Poldrack, 2014). For the 

history-dependent starting point and drift bias models, as well as the observed data, we divided all 

trials into five quantiles of the RT distribution. Within each quantile, the fraction of choices in the 

direction of an individual’s history bias (repetition or alternation) indicates the degree of choice history 

bias. Error bars indicate mean ± across datasets. (c) Choice bias on slow response trials can be 

captured only by models that include history-dependent drift bias. Black error bars indicate mean ± 

s.e.m. across datasets, bars indicate the predicted fraction of choices in the first and last RT 

quantiles. 
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starting point and drift bias related to each individual’s tendency to repeat their previous 
choices. We call each bias parameter’s dependence on the previous choice its ‘history 
shift’. For instance, in the left vs. right motion discrimination task, the history shift in starting 
point was computed as the difference between the starting point estimate for previous ‘left’ 
and previous ‘right’ choices. The history shift in drift bias, but not the history shift in starting 
point, was robustly correlated to the individual probability of choice repetition (Figure 4a, 
significant correlations indicated with solid regression lines). In five out of six datasets, the 
correlation with the history shift in drift bias was significantly stronger than the correlation 

with the history shift in starting point (Figure 4b, Dr values). 

We quantified the total evidence by computing a Bayes factor for each correlation 
(Wetzels and Wagenmakers, 2012), and multiplying these across datasets (Scheibehenne et 
al., 2016). This further confirmed that individual choice history biases were not captured by 
history shifts in starting point, but consistently captured by history shifts in drift (Figure 4b). 
Specifically, the Bayes factor for the history shift in starting point approached zero, 
indicating strong evidence for the null hypothesis of no correlation. The Bayes factor for the 
history shift in drift indicated strong evidence for a correlation (Kass and Raftery, 1995).  

The same qualitative pattern of results was obtained with an alternative fitting 
procedure (non-hierarchical G2 optimization, Supplementary Figure 4a), as well as a model 
that allowed for additional across-trial variability in non-decision time (Supplementary 
Figure 4b). These findings are thus robust to specifics of the model and fitting method. The 
Visual motion 2IFC #2 also included pharmacological interventions in two sub-groups of 
participants (see Methods); we found the same effects for both drug groups as well as the 
placebo group (Supplementary Figure 5).  

The lack of a correlation between history-dependent starting point shifts and 
individual choice repetition is surprising in light of previous accounts (Yu and Cohen, 2008; 
Gao et al., 2009; Glaze et al., 2015). History shifts in starting point were mostly negative 
(i.e., tendency towards choice alternation) across participants, regardless of their individual 
tendency towards choice repetition or alternation (Supplementary Figure 3, significant in 
two out of six datasets). This small but consistent effect likely explains why our formal 
model comparison favored a model with both history-dependent drift and starting point 
over one with drift bias only. Critically, only the history-dependent shift in drift accounted 
for individual differences in choice repetition (Figure 4).  
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Figure 4. Individual choice history biases are explained by history-dependent changes in drift 

bias, not starting point. (a) Relationship between individual choice repetition probabilities, P(repeat), 

and history shift in starting point (left column, green) and drift (right column, blue). Parameter 

estimates were obtained from a model in which both bias terms were allowed to vary with previous 

choice. Horizontal and vertical lines, unbiased references. Thick black crosses, group mean ± s.e.m. 

in both directions. Black lines: best fit of an orthogonal regression (only plotted for correlations 

significant at p < 0.05). (b) Summary of the correlations (Spearman’s r) between individual choice 

repetition probability and the history shifts in starting point (green; left) and drift bias (blue; right). 

Error bars indicate the 95% confidence interval of the correlation coefficient. Dr quantifies the degree 

to which the two DDM parameters are differentially able to predict individual choice repetition, p-

values from Steiger’s test. The black diamond indicates the mean correlation coefficient across 

datasets. The Bayes factor (BF10) quantifies the relative evidence for the alternative over the null 
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hypothesis, with values < 1 indicating evidence for the null hypothesis of no correlation, and > 1 

indicating evidence for a correlation. 

 
HISTORY-DEPENDENT ACCUMULATION BIAS EXPLAINS INDIVIDUAL CHOICE REPETITION BEHAVIOR 
IRRESPECTIVE OF PREVIOUS CHOICE OUTCOME 

In four out of six tasks, participants received explicit outcome feedback (correct, error) after 
each choice. It is possible that participants experienced positive feedback as rewarding 
and (erroneously) assumed that a rewarded choice is more likely to be rewarded on the 
next trial. Manipulations of reward (probability or magnitude) have been found to change 
starting point (Voss et al., 2008; Leite and Ratcliff, 2011; Mulder et al., 2012), but might also 
bias drift (Liston and Stone, 2008; Afacan-Seref et al., 2018). Given that there were far more 
correct (i.e. rewarded) choices than errors, the history-dependent drift bias could reflect the 
expectation of reward for the choice that was correct on the previous trial. 

Two findings refute this idea. First, the same results hold in the two datasets without 

single-trial outcome feedback (Figure 4a, bottom row), implying that external feedback is 
not necessary for history shifts in drift bias. Second, when separately estimating all model 
parameters (history shift in starting point and drift bias) and model-free measures (choice 
repetition probability) after correct and error trials, we found similar results after both 
(Figure 5a). Across datasets, individual repetition probability was best explained by history 
shifts in drift bias, not starting point, after both correct (Figure 5b) and error (Figure 5c) 
trials. Thus, even erroneous choices bias evidence accumulation on the next trial, in the 
same direction as correct choices. Indeed, most participants were predominantly biased by 
their previous choice (95 ‘stay’, 30 ‘switch’), while a third was biased by a combination of 
the previous choice and its correctness (26 ‘win-stay lose-switch’, 42 ‘win-switch lose-
stay’).  

In sum, history-dependent drift biases did not require external feedback about 
choice outcome and were predominantly induced by the previous choice. These choice 
history-dependent biases in evidence accumulation were accompanied by non-specific 
sequential effects (Supplementary Figure 6) in line with previous work on post-error slowing 
(Dutilh et al., 2012; Goldfarb et al., 2012; Purcell and Kiani, 2016a). 
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Figure 5. History shift in drift bias explains individual choice behavior after both error and 

correct decisions. As in Figure 4, but separately following correct (black) and error (red) trials. (a) 

Relationship between repetition probability and history shifts in starting point and drift bias, 

separately computed for trials following correct (black circles) and error (red squares) responses. (b) 
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Summary of correlations (as in Figure 4c) for trials following a correct response. (c) Summary of 

correlations (as in Figure 4c) for trials following an error response.   

 
HISTORY-DEPENDENT ACCUMULATION BIAS EXPLAINS INDIVIDUAL CHOICE REPETITION BEHAVIOR 
IRRESPECTIVE OF SPECIFICS OF BOUNDED-ACCUMULATION MODELS 

To establish the generality of our conclusions and further pinpoint the nature of the dynamic 
(i.e., time-increasing) bias, we used a variety of bounded-accumulation models with more 
complex dynamics than the standard DDM. These models included variants of the DDM 
(i.e. perfect accumulator) with more complex dynamics of the bias or the decision bounds, 
as well as variants of a leaky accumulator (Busemeyer and Townsend, 1993; Usher and 
McClelland, 2001; Brunton et al., 2013). We focused on the Visual motion 2AFC (FD) 
dataset because it entailed small random dot stimuli (diameter 5° of visual angle), leading to 
large within- and across-trial fluctuations in the sensory evidence which we estimated 
through motion energy filtering (Adelson and Bergen, 1985; Urai and Wimmer, 2016; 
Supplementary Figure 7a,b). These fluctuating motion energy estimates were used as time-
varying sensory input to the models, providing key additional constraints over and above 
nominal sensory evidence levels, choices and RT distributions (Brunton et al., 2013). 

We first re-fit the standard DDM with the two biasing parameters allowed to vary 
with previous choice (see Figure 1), now using single-trial motion energy estimates and a 
non-hierarchical fitting procedure (see Methods). This made these fits directly comparable 
to both the hierarchical fits in Figures 3-4, and the more complex models described below. 
As expected (Figure 3a), the data were better explained by a history-dependent bias in the 
drift, rather than the starting point (Figure 6b1). In these non-hierarchical fits, the hybrid 
DDM (i.e. both bias terms free to vary as a function of previous choice) lost against the drift 
bias-only model (indicated by its higher BIC). Yet the hybrid model allowed for a direct 
comparison of the correlations between these (jointly fit) bias parameters and individual 
choice repetition probability. As in our previous analysis (Figure 4), individual choice 
repetition probability was more strongly predicted by drift than starting point bias (Figure 
6c1).  

 A previous study of reward effects on speeded decisions reported that reward 
asymmetries induced supra-linear bias dynamics (Afacan-Seref et al., 2018). Temporal 
integration of a constant drift bias produces a linearly growing effective bias in the decision 
variable (Figure 1b), whereas integration of a ramping drift bias produces a supra-linear 
growth of effective bias (Figure 6a, left). In our data, a standard DDM with constant drift 
bias provided a better fit than DDMs with either a ramping drift bias, or a combination of 
constant and ramping drift bias (Figure 6b2). Furthermore, in the latter (hybrid) model, the 
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constant drift bias more strongly predicted individual choice repetition behavior (Figure 
6c2), in line with the constant accumulation bias inferred from the standard DDM fits. For 
the fits shown in Figure 6 b2/c2, we used the same protocol as for the standard DDM, in 
which the time-varying sensory evidence fluctuations during stimulus presentation were 
replaced by their time-average to compute a single-trial drift rate (called ‘default protocol’, 
Methods section Extended bounded accumulation models: General assumptions and 
procedures). The same qualitative pattern of results also held for another fitting protocol 

(‘dynamic protocol’, see Methods), in which the time-varying sensory evidence was fed into 

the integrator, as used for the more complex dynamical models described below (DBIC 

relative to no-history model: -766, -658, -341, for constant drift bias, ramping drift bias, and 

hybrid, respectively; correlation with P(repeat): r(30) = 0.5458, p = 0.0012; r(30) = 0.3600, p 

= 0.0429 for constant and ramping drift bias, respectively). 
 

 
Figure 6. Extended dynamic models of biased evidence accumulation. (a) Model schematics. 

See main text for details. In the third panel from the left, the stimulus-dependent mean drift is shown 

in black, overlaid by the biased mean drift in color (as in Figure 1a,b). (b) BIC values for each history-

dependent model, as compared to a standard (left) or dynamic (right) DDM without history. The 

winning model (lowest BIC value) within each model class is shown with a black outline. In 3-5, the 
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dashed line indicates the BIC value of the standard DDM without history that is the baseline in 1-2.  

(c) Correlation (Spearman’s r) of parameter estimates with individual repetition behavior, as in Fig. 

4b. Error bars, 95% confidence interval. *** p < 0.0001, ** p < 0.01, n.s. p > 0.05. (d) Within-trial time 

courses of effective bias (cumulative bias as a fraction of the decision bound) for the winning DDM 

and leaky accumulator models. Effective bias time courses are indistinguishable between both 

dynamical regimes (l < 0 and l > 0) and are averaged here. 

 
It has been proposed that decision bounds might collapse over time, implementing an 
‘urgency signal’ (Figure 6a, middle; Churchland et al., 2008; Cisek et al., 2009). Indeed, 
adding collapsing bounds substantially improved our model fits (Figure 6b3). This indicates 
the presence of a strong urgency signal in this task, which had a relatively short stimulus 
presentation (750 ms) and a tight response deadline (1.25 s after stimulus offset). Critically, 
a history-dependent drift bias best fit the data (Figure 6b3) and captured individual choice 
repetition behavior (Figure 6c3) also in the DDM with collapsing bounds. In other words, 
while there is evidence for collapsing bounds in this dataset, our conclusion about the 
impact of history bias on decision formation does not depend on its inclusion in the model. 

In the brain, a neural representation of the momentary sensory evidence feeds into a 
set of accumulators. These consist of circuits of excitatory and inhibitory populations of 
cortical neurons, which give rise to persistent activity and competitive winner-take-all 
dynamics (Usher and McClelland, 2001; Wang, 2002). Under certain parameter regimes, 
these circuit dynamics can be reduced to lower-dimensional models (Bogacz et al., 2006; 

Wong and Wang, 2006). In such models, the effective accumulation time constant 1/l (with 

l being effective leak) results from the balance of leak within each accumulator (due to self-

excitation and passive decay) and mutual inhibition between two accumulators encoding 
different choices (Usher and McClelland, 2001). Evidence accumulation can then be biased 

through an internal representation of the sensory input or through the way this sensory 
representation is accumulated (Figure 6a, right). We here used a reduced competing 
accumulator model, where the decision variable was computed as the difference of two 
leaky accumulators (Busemeyer and Townsend, 1993; Zhang and Bogacz, 2010; see also 
Brunton et al., 2013) to compare these two accumulation biases and a biased accumulator 
starting point.  

We fit a family of bounded, leaky accumulator models, in which the starting point of 

the accumulators, their input, or their effective leak l could be biased as a function of 

previous choice (Figure 6a, right). Note that a bias of the accumulator starting point would 
also translate into an accumulation bias, due to the model dynamics (see Methods section 
Extended bounded accumulation models: General assumptions and procedures). Even so, 
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comparing this regime with other two biasing mechanism was informative. Also note that 
we here use the term ‘leaky accumulator model’ to denote that the model dynamics 

consisted of a free effective leak parameter l, without implying that l<0 (corresponding to 

activation decay). Our fits allowed l to take either negative (‘forgetful’ regime) or positive 

(‘unstable’ regime) values (Supplementary Figure 7d; see also Brunton et al, 2013). 

Critically, in order to test for choice history-dependent accumulation bias, we allowed l of 

each accumulator to vary as a function of the previous choice, before computing the 
difference between the two accumulator activations. Choice-history dependent biases in 
accumulator starting point or accumulator input were directly applied to the accumulator 
difference (akin to starting point and drift bias within the DDM). Due to the simplicity of its 
dynamics, the DDM cannot distinguish between input and leak bias. Indeed, when 
simulating behavior of leaky accumulator models with either of these two accumulation 

biases and fitting it with the DDM, both input and l bias loaded onto DDM drift bias 

(Supplementary Figure 8g, h).  
Fitting different variants of these leaky accumulator models to participants’ data 

showed that adding a collapsing bound substantially improved the fits, just as in the DDM 
(Figure 6b4, 5, see also Supplementary Figure 7d). Critically, the leaky accumulator with 
biased accumulator input best explained the data, among all the models considered (Figure 

6b4). Furthermore, the individually estimated input bias predicted individual choice 
repetition (Figure 6c5). This suggests that choice history might specifically bias the internal 
representation of the sensory evidence feeding into the evidence accumulation process.   
 

DYNAMICS OF EFFECTIVE BIAS SIGNAL APPROXIMATES RATIONAL COMBINATION OF PRIOR 
INFORMATION WITH CURRENT EVIDENCE 

Taken together, fits and simulations of more complex models provide additional insight into 
the mechanism underlying choice history bias. They also corroborated the conclusion that 
choice history biases are mediated by a biased accumulation of evidence, rather than a 
biased starting point. As a final step, we estimated the time course of the effective bias, 
computed as the fraction of cumulative bias signal and bound height (Hanks et al., 2011). 
We simulated this signal based on the group average parameters for the best-fitting DDM 
and leaky accumulator models (Figure 6d). In the DDM and leaky accumulator (both with 
collapsing bound), the effective bias accelerated. 

The reader may notice that these (supra-linear) effective bias dynamics are similar to 
those predicted by the DDM with a ramping drift bias (Figure 6a, left). Thus, the observation 
that the latter model lost by a wide margin against the two models with more complex 
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dynamics (Figure 6b, see also Materials and Methods) is likely due to features of the data 
other than the (relatively small) selective history bias. Specifically, the RT distributions were 
strongly shaped by the urgency signal incorporated by the bound collapse. In the overall 
best-fitting model (leaky accumulator with collapsing bounds and input bias, Figure 6b5), 
this effective bias depends on the combined effect of two non-linear signals: (i) the 
cumulative bias resulting from the accumulation of biased input and (ii) the hyperbolically 
collapsing bound. In the current fits, the effective bias was dominated by the strong bound 

collapse, but in different circumstances (with weaker urgency signal and for l<0), a biased 

input leaky accumulator can produce a decelerating effective bias. Combination of a biased 
input with some starting point and or leak bias can further change the dynamics. The key 
observation is that, regardless of the modeling framework used, we identified an effective 
bias signal that grew steadily throughout decision formation, in line with the main 
conclusion drawn from the basic fits of the standard DDM. 

Taken together, our results are in line with the idea the impact of choice history bias 
on decision formation grows as a function of elapsed time. Because prior information (here: 
about the previous choice) does not change over time, this observation might be surprising. 

Yet, previous work has identified a principled rationale for such a time-dependent 
combination of prior and evidence. When evidence reliability changes from trial to trial, prior 
information (bias) should be weighted more strongly when sensory evidence is unreliable 
(Hanks et al., 2011; Moran, 2015). This can be achieved by increasing the weight of the 
prior throughout the trial, using elapsed time as a proxy for evidence reliability. This 
prediction was confirmed experimentally for explicit manipulations of prior probability of the 
choice options (Hanks et al., 2011). Indeed, within the framework of the DDM, this way of 
combining prior information with current evidence maximizes reward rate (Moran, 2015; see 
also Drugowitsch and Pouget, 2018). Only when evidence reliability is constant across trials 
should prior information be incorporated as a static bias (i.e., starting point). Evidence 
reliability likely varied from trial to trial across all our experiments (Moran, 2015), due to 
variations in the external input (i.e., mean drift rate in the DDM) or internal factors (i.e., drift 
rate variability in the DDM), such as the inherent variability of sensory cortical responses 
(Arieli et al., 1996; Faisal et al., 2008). In particular, the dataset from Figure 6 entailed strong 
trial-to-trial variations in the external input (Supplementary Figure 7a,b). Thus, the dynamics 
of the effective bias signal uncovered in Figure 6d suggest that participants combined prior 
information with current evidence in a rational fashion. 
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DISCUSSION 
Observers’ perceptual choices often depend on choices made before: how is such history 
information incorporated into the formation of the next decision? Fitting bounded 
accumulation decision models to behavioral data from a range of psychophysical 
experiments, we teased apart two possible effects of choice history on the current decision 
process: a shift in the starting point of the decision variable, or a change in the rate at which 
evidence for one versus the other option is accumulated. These two scenarios can lead to 
identical (history-dependent) asymmetries in choice fractions, but can be distinguished 
based on their effects on RT distributions. We obtained consistent evidence for the second 
scenario: history shifts in accumulation bias are the dominant source of individual variability 
in choice history biases. This result calls for a revision of current models of choice history 
biases (Yu and Cohen, 2008; Zhang et al., 2014). 

Previous quantitative treatments of perceptual decision-making have commonly 
ignored endogenously generated biases. Choice history biases vary dynamically from trial 
to trial as a function of the history of previous choices (and possibly other experimental 
events, such as choice outcomes). Ignoring choice history leads to underestimation of the 
observer’s true perceptual sensitivity (Fründ et al., 2014; Abrahamyan et al., 2016; Braun et 
al., 2018). More generally, trial-to-trial behavioral variability resulting from dynamic internal 
biases has commonly been attributed to ‘noise’ in the decision computation (Shadlen et al., 
1996; Renart and Machens, 2014; Wyart and Koechlin, 2016). Our results imply that choice 
history accounts for a significant portion of the trial-to-trial variability in evidence 
accumulation. Tracking internal factors in perceptual decision-making, such as choice 
history, allows for partitioning behavioral variability into systematic components, and 
residual variability that might reflect noise at the level of the underlying neural 
computations. 

Our results are in line with the observation that for the DDM in heterogeneous 
environments (i.e., variations in evidence reliability), reward is maximized by incorporation 
prior information into both starting point and drift bias (Moran, 2015). It is instructive to 
relate our results with previous studies that manipulated choice bias through asymmetries 
in prior probability or reward magnitude. Such biases have mostly been associated with 
shifts in starting point (Leite and Ratcliff, 2011; Mulder et al., 2012; White and Poldrack, 
2014; Rorie et al., 2010; Gao et al., 2011; but only for decisions without time pressure, see 
Afacan-Seref et al., 2018). Yet, one study provided clear evidence for an accumulation bias 
induced by manipulations in prior probability, under variations of external evidence strength 
(Hanks et al., 2011). Accumulation biases could also be induced through variations in 
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arbitrary boundaries between stimulus categories - for example, whether there are ‘many’ 
or ‘few’ items in a display (Leite and Ratcliff, 2011; White and Poldrack, 2014). The biases 
studied in this previous work were under experimental control, whereas the choice history 
biases we studied emerge spontaneously and in an idiosyncratic fashion (Figure 2e).  

The question of how prior information is combined with new evidence during 
decision formation is distinct from the question of why participants used choice history as a 

prior for their decisions. In our experiments the sensory evidence was by design 
uncorrelated across trials (as in the vast majority of studies into perceptual decision-
making). Thus, any history bias can only reduce performance below the level that could be 
achieved given the observer’s evidence sensitivity. One possible explanation is that 
decision-makers learn the stability of real-world sensory evidence (auto-correlated across 
various timescales) and erroneously apply this model to randomized laboratory experiments 
(Yu and Cohen, 2008). This internal model of the environmental stability is the so-called 
subjective hazard rate, the inferred probability of changes in the sources generating 
sensory evidence (Yu and Cohen, 2008; Glaze et al., 2015). Experimental evidence shows 
that hazard rate governs the adaptive use of choice history information (as a prior that 
evolves slowly across trials) in human perceptual decision-making (Glaze et al., 2015; Kim 
et al., 2017; Braun et al., 2018). Consequently, any bias in the subjective hazard rate (i.e., a 
systematic deviation from the objective hazard rate, which equals 0.5 in our experiments) 
will produce maladaptive choice history biases: it will push decision-makers towards choice 
repetition or alternation. Subjective hazard rates might be biased, for example, through an 
erroneous inference about the environmental stability. Under natural conditions, not only 
the sources of the evidence may change, but also the rate of changes between these 
sources (i.e. hazard rate). Along with their history prior about the current source, agents 
may also continuously update their subjective hazard rates based on sequences of choices, 
evidence, and/or feedback (Yu and Dayan, 2005; Mathys et al., 2014; Meyniel et al., 2016; 
Glaze et al., 2018; Hermoso-Mendizabal et al., 2018). In this framework, the individual 
differences in choice history biases that we exploited in this study (i.e., correlation analyses) 
can be accounted for by individual differences in subjective hazard rates. Combined with 
our conclusions from the time course of the effective bias signal (see Results section 
Dynamics of the effective bias signal approximate rational combination of prior information 

with current evidence), these considerations suggest that participants may have applied a 
rational strategy, but based on erroneous assumptions about the structure of the 
environment.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 16, 2018. ; https://doi.org/10.1101/251595doi: bioRxiv preprint 

https://doi.org/10.1101/251595
http://creativecommons.org/licenses/by/4.0/


 20 

The conclusion that choice history biases evidence accumulation provides a better 
explanation of our results than several possible alternative scenarios. First, it is possible 
that participants’ choices were due to computations altogether different from those 
incorporated in the bounded accumulation models assessed here. All our models imply 
simple neural accumulators with persistent activity. At least on a subset of trials, 
participants may make fast guesses (Noorbaloochi et al., 2015), or engage in automatic 
decision processing (Servant et al., 2014; Ulrich et al., 2015) or post-accumulation biases 
(Erlich et al., 2015). Also, the decision computation may entail noise-driven attractor 
dynamics (Wang, 2002; Braun and Mattia, 2010) possibly with sudden ‘jumps’ between 
neural activity states (Latimer et al., 2015), or probability summation across time (Watson, 
1979) instead of linear accumulation to a threshold level. Even if the accumulation dynamics 
postulated in our models cannot be reduced to the dynamics of single neurons, the history-
dependent accumulation bias we inferred here would constitute a valid description of the 
collective computational properties of the neural system producing choice behavior.   

Second, within bounded accumulation models, any directed change in the decision 
variable can be mimicked by some selective (i.e. asymmetric) change in one of the decision 
bounds (see Supplementary Figure 8 for simulations). For example, in the standard DDM 
the combination of a linearly collapsing bound for the favored choice and a linearly 
expanding bound for the other choice has the same effect on choice fractions and RT 
distributions as a drift bias (Supplementary Figure 8, compare b and c). We are not aware 
of any empirical evidence for such asymmetric changes in decision bounds. Preparatory 
neural activity in association and motor cortex seems to always reach a fixed threshold 
level just before response, irrespective of the prior probability of choice options (Hanks et 
al., 2011) or the speed-accuracy trade-off (Hanks et al., 2014; Murphy et al., 2016), while 
the build-up of this activity is biased by prior information (Hanks et al., 2011). On the other 
hand, a large body of work on selective attention has established that the brain is equipped 
with powerful machinery by which neural representations of sensory evidence are biased in 

a top-down fashion (Reynolds and Heeger, 2009). Attentional cues induce top-down signals 
in higher-level cortical regions that are also implicated in evidence accumulation. Those 
top-down signals then feed back across the cortical hierarchy to bias representations of 
sensory evidence in visual cortex towards specific features of the input (Desimone and 
Duncan, 1995). Choice history signals could act as sources of this top-down modulation of 
sensory cortex (Nienborg and Cumming, 2009; Wimmer et al., 2015; St. John-Saaltink et 
al., 2016; but see Gold et al., 2008) In sum, our findings are in line with the idea that choice 
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history signals may act as internal ‘cues’ that direct (feature-based) attention towards or 
away from previously chosen options.   

A growing body of evidence suggests that perceptual decision-making arises from 
accumulation of neural signals over multiple timescales. Behavioral analyses have revealed 
effective (within-trial) evidence accumulation over timescales ranging from a few hundred 
milliseconds (Kiani et al., 2008; Tsetsos et al., 2015) to several seconds (Tsetsos et al., 
2012; Wyart et al., 2012; Cheadle et al., 2014). Further, humans can flexibly accumulate the 
same sensory input with different timescales, dependent on their model of environmental 
statistics (Ossmy et al., 2013; Glaze et al., 2015). They can accumulate internal signals 
(decision variables) across trials, over tens of seconds to build up choice history biases 
(Abrahamyan et al., 2016; Purcell and Kiani, 2016b; Braun et al., 2018). This behavioral 
evidence sits well with hierarchy of intrinsic timescales of cortical circuits inferred from 
neural dynamics in different cortical regions (Honey et al., 2012; Murray et al., 2014; 
Chaudhuri et al., 2015; Runyan et al., 2017; Scott et al., 2017). It is tempting to speculate 
that the history-dependent evidence accumulation biases we have uncovered here result 
from long timescale (across-trial) accumulators at higher stages, that are also involved in 
the control of attention. These high-level accumulators, then bias low-level sensory 
representations, in turn giving rise to evidence accumulation biases at intermediate stages 
of the cortical hierarchy.  
 

MATERIALS AND METHODS  
DATASETS: BEHAVIORAL TASKS AND PARTICIPANTS 

We analyzed six different datasets, four of which were previously published. These spanned 
different modalities (visual or auditory), decision-relevant sensory features (motion direction, 
contrast, tone presence, motion coherence), and tasks (detection or discrimination). In each 
dataset, the number of participants was determined to allow for robust estimation of the 
original effects of interest. No participants were excluded from the analyses. 

Those tasks where the decision-relevant sensory evidence was presented until the 
observer generated a response were called response time (RT) tasks; those tasks where the 
sensory evidence is presented for a fixed duration, and its offset cues the observer’s 
response, were called fixed duration (FD) tasks in line with the terminology from Mazurek et 
al. (2003). These two protocols have also been termed ‘free response protocol’ and 
‘interrogation protocol’ (Bogacz et al., 2006). In all datasets, stimulus strength (i.e., decision 
difficulty) was kept constant, or varied systematically across levels, within all main 
experimental sessions that were used for fitting the DDM. 
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2AFC VISUAL MOTION DIRECTION DISCRIMINATION TASK (RT) 

These data were previously published (Murphy et al., 2014), and are available at 
https://doi.org/10.5061/dryad.tb542. Twenty-six observers (22 women and 4 men, aged 18-
29) performed a motion direction (left vs. right) discrimination task. Stationary white dots 
were presented on a black screen for an interval of 4.3-5.8 s. After this fixation interval, the 
decision-relevant sensory evidence was presented: some percentage of dots (the ‘motion 
coherence’ level) moved to the left or the right. The coherence was individually titrated to 
yield an accuracy level of 85% correct, estimated from a psychometric function fit, before 
the start of the main experiment, and kept constant afterwards. The moving dots were 
presented until observers indicated their choice with a button press. After the response, the 
fixation cross changed color for 700 ms to indicate single-trial feedback. Each observer 
performed 500 trials of the task (one session). We refer to this task as ‘Visual motion 2AFC 
(RT)’. 
 
2AFC VISUAL MOTION DIRECTION DISCRIMINATION TASK (FD) 

Participants and informed consent. Thirty-two participants (aged 19-35 years, 43 women 
and 21 men) participated in the study after giving their informed consent. The experiment 
was approved by the ethical review board of the University Medical Center Hamburg-
Eppendorf.  
Task and procedure. Observers performed a fixed duration version of the random dot 
motion discrimination (up vs. down) task in the MEG scanner. White dots were displayed on 
a grey background screen, with a density of 6 dots/degree2, resulting in 118 dots on the 
screen at each frame. The stimuli were confined to a circle of 2.5° radius, which was placed 
in the lower half of the visual field at 3.5° from the fixation. After a fixation interval of 0.75-
1.5s, random dot motion stimuli (0, 3, 9, 27 or 81% motion coherence) were displayed for 
750 ms. Signal dots moved with a speeds of 11.5 degree/s, and noise dots were randomly 
displaced within the circle on each frame. We used the single-trial dot coordinates to 
construct time courses of fluctuating external evidence (see Methods section Motion 

energy filtering and psychophysical kernels; Supplementary Figure 7a,b). Observers 
received auditory feedback 1.5-2.5s after their response, and the ISI started 2-2.5s after 
feedback. Observed performed 1782 trials over 3 sessions, in which the stimulus transition 
probability varied (0.2, 0.5 or 0.8) between blocks of 99 trials. To maximize trial counts for 
the non-hierarchical leaky accumulator fits, we here collapsed across blocks. We refer to 
this task as ‘Visual motion 2AFC (FD)’.  
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VISUAL MOTION COHERENCE DISCRIMINATION 2IFC TASK (FD): DATASET 1 

These data were previously published in (Urai et al., 2017), and are available at 
http://dx.doi.org/10.6084/m9.figshare.4300043. Twenty-seven observers (17 women and 
10 men, aged 18-43) performed a two-interval motion coherence discrimination task. They 
viewed two consecutive intervals of random dot motion, containing coherent motion signals 
in a constant direction towards one of the four diagonals (counterbalanced across 
participants) and judged whether the second test interval (variable coherence) contained 
stronger or weaker motion than the first reference (constant coherence) interval. After a 
fixation interval of 0.5-1s, they viewed two consecutive intervals of 500 ms each, separated 
by a delay of 300-700 ms. The decision-relevant sensory evidence (i.e., the difference in 
motion coherence between intervals), was chosen pseudo-randomly for each trial from the 
set (0.625, 1.25, 2.5, 5, 10, 20, 30%). Observers received auditory feedback on their choice 
after a delay of 1.5-2.5s. After continuing to view noise dots for 2-2.5 s, stationary dots 
indicated an inter-trial interval. Observers self-initiated the start of the next trial (range of 
median inter-trial intervals across observers: 0.68–2.05 s). Each observer performed 2500 
trials of the task, divided over five sessions. We refer to this task as ‘Visual motion 2IFC 
(FD) #1’. 
 
2IFC VISUAL MOTION COHERENCE DISCRIMINATION TASK (FD): DATASET 2 

Participants and informed consent. Sixty-two participants (aged 19-35 years, 43 women 

and 19 men) participated in the study after screening for psychiatric, neurological or 
medical conditions. All subjects had normal or corrected to normal vision, were non-
smokers, and gave their informed consent before the start of the study. The experiment 
was approved by the ethical review board of the University Medical Center Hamburg-
Eppendorf.  
Task protocol. Observers performed 5 sessions, of which the first and the last took place in 
the MEG scanner (600 trials divided over 10 blocks per session) and the three sessions in 
between took place in a behavioral lab (1500 trials divided over 15 blocks per session). The 
task was as described above for ‘Visual motion 2IFC (FD) #1’, with the following 
exceptions. The strength of the decision-relevant sensory evidence was individually titrated 
to an accuracy level of 70% correct, estimated from a psychometric function fit, before the 
start of the main experiment and kept constant for each individual throughout the main 
experiment. Each stimulus was presented for 750 ms. In the MEG sessions, auditory 
feedback was presented 1.5-3 s after response, and an inter-trial interval with stationary 
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dots started 2-3 s after feedback. Participants initiated the next trial with a button press 
(across-subject range of median inter-trial interval duration: 0.64 to 2.52 s, group average: 
1.18 s). In the training sessions, auditory feedback was presented immediately after the 
response. This was followed by an inter-trial interval of 1 s, after which the next trial started. 
In this experiment, three sub-groups of observers received different pharmacological 
treatments prior to each session, receiving placebo, atomoxetine (a noradrenaline reuptake 
inhibitor), or donepezil (an acetylcholinesterase inhibitor). These groups did not differ in their 
choice history bias and were pooled for the purpose of the present study (Supplementary 
Figure 5b). We refer to this task as ‘Visual motion 2IFC (FD) #2’. 
 

VISUAL CONTRAST YES/NO DETECTION TASK (RT) 

These data were previously published (de Gee et al., 2014), and are available at 
https://doi.org/10.6084/m9.figshare.4806559. Twenty-nine observers (14 women and 15 
men, aged 18–38) performed a yes/no contrast detection task. During a fixation interval of 
4-6 seconds, observers viewed dynamic noise (a binary noise pattern that was refreshed 
each frame, at 100 Hz). A beep indicated the start of the decision-relevant sensory 
evidence. On half the trials, a vertical grating was superimposed onto the dynamic noise; on 
the other half of trials, only the dynamic noise was shown. The sensory evidence 
(signal+noise or noise-only) was presented until the observers reported their choice (yes, 
grating was present; or no, grating was absent), or after a maximum of 2.5s. The signal 
contrast was individually titrated to yield an accuracy level of 75% correct using a method 
of constant stimuli before the main experiment, and kept constant throughout the main 
experiment. Observers performed between 480–800 trials over 6-10 sessions. Six 
observers in the original paper (de Gee et al., 2014) performed a longer version of the task 
in which they also reported their confidence levels and received feedback; these were left 
out of the current analysis, leaving twenty-three subjects to be included. We refer to this 
task as ‘Visual contrast yes/no (RT)’. 
 
AUDITORY TONE YES/NO DETECTION TASK (RT) 

These data were previously published (de Gee et al., 2017), and are available at 

https://doi.org/10.6084/m9.figshare.4806562. Twenty-four observers (20 women and 4 
men, aged 19–23) performed an auditory tone detection task. After an inter-trial interval of 
3-4 seconds, decision-relevant sensory evidence was presented: on half the trials, a sine 
wave (2 KHz) superimposed onto dynamic noise (so-called TORCS; McGinley et al., 2015) 
was presented; on the other half of trials only the dynamic noise was presented. The 
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sensory evidence was presented until the participant reported their choice button press or 
after a maximum of 2.5s. No feedback was provided. Each individual’s signal volume was 
titrated to an accuracy level of 75% correct using an adaptive staircase procedure before 
the start of the main experiment, and kept constant throughout the main experiment. 
Participants performed between 1320 and 1560 trials each, divided over two sessions. We 
refer to this task as ‘Auditory yes/no (RT)’. 
 

MODEL-FREE ANALYSIS OF SENSITIVITY AND CHOICE HISTORY BIAS 

We quantified perceptual sensitivity in terms of signal detection-theoretic d’ (Green and 
Swets, 1966): 

d$ = Φ'((H) −	Φ'((FA) (1) 
where Φ was the normal cumulative distribution function, H was the fraction of hits and FA 
the fraction of false alarms. In the 2AFC and 2IFC datasets, one of the two stimulus 
categories was arbitrarily treated as signal absent. Both H and FA were bounded between 
0.001 and 0.999 to allow for computation of d’ in case of near-perfect performance 
(Stanislaw and Todorov, 1999). We estimated d’ separately for each individual and, for the 
two datasets with varying difficulty levels, for each level of sensory evidence. 
 We quantified individual choice history bias in terms of the probability of repeating a 
choice, termed P(repeat), regardless of the category of the (previous or current) stimulus. 
This yielded a measure of bias that ranged between 0 (maximum alternation bias) and 1 
(maximum repetition bias), whereby 0.5 indicated no bias.  

 

CONDITIONAL BIAS FUNCTIONS 

For each variant of the model and each dataset, we simulated data using the best-fitting 
parameters. Specifically, we simulated 100 responses (choices and RTs) for each trial 
performed by the observers. These predicted patterns for the ‘baseline model’ (without 
history-dependent bias parameters) were first used to compare the observed and predicted 
patterns of choices and RTs (Supplementary Figure 2b). 
 We also used the simulated data, as well as the participants’ choices and RTs, to 
visualize specific features in our data that distinguish the different biased models (Palminteri 
et al., 2017). Specifically, we computed conditional bias functions (White and Poldrack, 
2014) that visualize choice history bias as a function of RTs. Each choice was recoded into 
a repetition (1) or alternation (0) of the previous choice. We then expressed each choice as 
being either in line with or against the observer’s individual bias (classified into ‘repeaters’ 
and ‘alternators’ depending on choice repetition probability). To generate conditional bias 
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functions, we divided each (simulated or real) observer’s RT distribution into five quantiles 
(0.1, 0.3, 0.5, 0.7 and 0.9) and computed the fraction of biased choices within each 
quantile. This allowed us to visualize the effect of choice history bias as a function of time 
within each trial, together for all observers in each dataset. The shape of the conditional 
bias functions for models with z and vbias confirm that z predominantly produces biased 
choices with short RTs, whereas vbias leads to biased choices across the entire range of RTs 
(Figure 3b). 

 

DRIFT DIFFUSION MODEL (DDM) FITS 

GENERAL  

This section describes the general DDM, with a focus on the biasing mechanisms 
described in Results and illustrated in Figure 1 (Ratcliff and McKoon, 2008). Ignoring non-
decision time, drift rate variability, and starting point variability (see below), the DDM 
describes the accumulation of noisy sensory evidence as follows: 

dy = s ∙ v ∙ dt + cdW (2) 
where y is the decision variable (gray example traces in Figure 1), s is the stimulus category 

(coded as [-1,1]), v is the drift rate, and cdW is Gaussian distributed white noise with mean 
0 and variance c2dt (Bogacz et al., 2006). In an unbiased case, the starting point of the 
decision variably y(0) = z, is situated midway between the two decision bounds 0 and a: 

y(0) = 	z =
a
2

 (3) 

where a is the separation between the two decision bounds. A bias in the starting point is 

implemented by an additive offset z<=>? from the midpoint between the two bounds (Figure 
1a): 

y(0) = 	z =
a
2
+ z<=>? (4) 

A drift bias can be implemented by adding a stimulus-independent constant v<=>?, also 
referred to as drift bias (Ratcliff and McKoon, 2008), to the (stimulus-dependent) mean drift 
(Figure 1b). This adds a bias to the drift that linearly grows with time: 

dy = (s ∙ v + v<=>?)dt + cdW (5) 
We allowed both bias parameters to vary as a function of observers’ previous choice, to 
test their relative contributions to the individual differences in overt choice history biases. 
These two biasing mechanisms result in the same (asymmetric) fraction of choices, but they 
differ in terms of the resulting shapes of RT distributions (Figure 1). In previous work, z<=>?  

and v<=>? have also been referred to as ‘prior’ and ‘dynamic’ bias (Moran, 2015) or 
‘judgmental’ and ‘perceptual’ bias (Liston and Stone, 2008). 
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ESTIMATING HDDM BIAS PARAMETERS 

We used hierarchical drift diffusion modeling as implemented in the HDDM toolbox (Wiecki 
et al., 2013) to fit the model and estimate its parameters. As recommended by the HDDM 
toolbox, we specified 5% of responses to be contaminants, meaning they arise from a 
process other than the accumulation of evidence - for example, a lapse in attention (Ratcliff 
and Tuerlinckx, 2002). We fit the DDM to RT distributions for the two choice categories, 
conditioned on the stimulus category for each trial (s in eq. 2) - a procedure referred to as 
‘stimulus coding’. This fitting method deviates from a widely used expression of the model, 
where RT distributions for correct and incorrect choices are fit (also called ‘accuracy 
coding’). Only the former can fit decision biases towards one choice over the other.  

First, we estimated a model without history-dependent bias parameters. Overall drift 
rate, boundary separation, non-decision time, starting point, and drift bias were estimated 
for each individual (Supplementary Figure 1). Across-trial variability in drift rate and starting 
point were estimated at the group-level only (Ratcliff and Childers, 2015). For the datasets 
including variations of sensory evidence strength (Visual motion 2AFC (FD) and Visual 
motion 2IFC (FD) #1), we separately estimated drift rate for each level of evidence strength. 
This model was used to confirm that the DDM was able to fit all datasets well, and to serve 
as a baseline for model comparison. 
 Second, we estimated three different models of history bias, allowing (i) starting 
point, (ii) drift or (iii) both to vary as a function of the observer’s immediately preceding 
choice (thus capturing only so-called first-order sequential effects; cf Gao et al., 2009; 
Wilder et al., 2009). The effect of the preceding choice on each bias parameter was then 
termed its ‘history shift’. For example, for the visual motion direction discrimination task we 
separately estimated the starting point parameter for trials following ‘left’ and ‘right’ 
choices. The difference between these two parameters then reflected individual observers’ 
history shift in starting point, computed such that a positive value reflected a tendency 
towards repetition and a negative value a tendency towards alternation. The history shift in 
drift bias was computed in the same way.  
 

HDDM MODEL FITTING PROCEDURES 

The HDDM (Wiecki et al., 2013) uses Markov-chain Monte Carlo sampling for generating 
posterior distributions over model parameters. Two features of this method deviate from 
more standard model optimization. First, the Bayesian MCMC generates full posterior 
distributions over parameter estimates, quantifying not only the most likely parameter value 
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but also the uncertainty associated with that estimate (see e.g. Supplementary 
Supplementary Figure 3). Second, the hierarchical nature of the model assumes that all 
observers in a dataset are drawn from a group, with specific group-level prior distributions 
that are informed by the literature (Supplementary Supplementary Figure 1; Wiecki et al., 
2013). In practice, this results in more stable parameter estimates for individual subjects, 
who are constrained by the group-level inference. Note that we also repeated our model fits 
with more traditional G2 optimization (Ratcliff and Tuerlinckx, 2002) and obtained 
qualitatively identical results (Supplementary Figure 4a). 

For each variant of the model, we ran 30 separate Markov chains with 5000 samples 
each. Of those, half were discarded as burn-in and every second sample was discarded for 
thinning, reducing autocorrelation in the chains. This left 1250 samples per chain, which 
were concatenated across chains. Individual parameter estimates were then estimated from 
the posterior distributions across the resulting 37500 samples. All group-level chains were 

visually inspected to ensure convergence. Additionally, we computed the Gelman-Rubin R" 
statistic (which compares within-chain and between-chain variance) and checked that all 

group-level parameters had an R" between 0.98-1.05. 
 Formal comparison between the different model variants (see above) was performed 
using the Deviance Information Criterion (Spiegelhalter et al., 2002), a commonly used 
method for assessing the goodness of fit in hierarchical models, for which a unique 
‘likelihood’ is not defined, and the effective number of degrees of freedom is often unclear. 
Lower DIC values indicate a better fit, while taking into account the complexity of each 
model. A difference in DIC values of more than 10 is considered evidence for the winning 
model to capture the data significantly better.    
 

MOTION ENERGY FILTERING AND PSYCHOPHYSICAL KERNELS 

For the Visual motion 2AFC (FD) dataset, we used motion energy filtering (using the filters 
described in Urai and Wimmer, 2016) to reconstruct the time-course of fluctuating sensory 
evidence over the course of each individual trial, averaging over the spatial dimensions of 
the display (Supplementary Figure 7a,b). These single-trial traces then served as the time-
resolved input to a set of extended DDM and leaky accumulator models (Figure 6). 
Specifically, filtering the stimuli at 60 Hz (the refresh rate of the LCD projector) resulted in 
45 discrete samples for the 750 ms viewing period of each trial. The first 13 samples of the 
motion energy filter output (first 200 ms of the viewing interval) corresponded to the ‘rise 
time’ of the filter (Kiani et al., 2008), yielding outputs that were a poor representation of the 
actual motion energy levels (see also Supplementary Figure 7a). In order to prevent those 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 16, 2018. ; https://doi.org/10.1101/251595doi: bioRxiv preprint 

https://doi.org/10.1101/251595
http://creativecommons.org/licenses/by/4.0/


 29 

uninterpretable filter outputs from contributing, we discarded the first 15 samples (250 ms) 
before model fitting (see below). Using constant interpolation, we expanded the remaining 
30 samples onto 150 samples, which, given that the simulation Euler step was 5 ms (dt= 
0.005), corresponded to a 750 ms long input time series. In the model descriptions below 

we denote the input time series with 𝑀 = {𝑀B: 𝑡 ∈ 𝑇} and 𝑇 = {1,2, … ,150}. 
We also used these motion energy traces to construct so-called psychophysical 

kernels. Within each stimulus identity (motion direction and coherence, excluding the 
easiest 81% coherence trials), we subtracted the average motion energy traces 
corresponding to ‘up’ vs. ‘down’ choices. The resulting trace represents the excess motion 
energy that drives choices, over and above the generative stimulus coherence 
(Supplementary Figure 7c).  

 

EXTENDED BOUNDED ACCUMULATION MODELS 

GENERAL ASSUMPTIONS AND PROCEDURES 

In the 2AFC (FD) visual motion experiment participants viewed the stimulus for 0.75 s 
(hereafter called ‘viewing period’) and could respond only after the stimulus offset.  This 
required specifying the input to the evidence accumulation process. In the models 
described below we used separate simulation protocols, based on different assumptions 
about this input. In the ‘dynamic’ protocol, where the input was the time-varying sensory 
evidence from each trial, the accumulation process was assumed to start at stimulus onset, 
and responses could happen during the motion viewing interval. The average activity of the 
accumulator(s) at stimulus offset served as input for accumulation during the post-offset 
period. For fitting models using this protocol, empirical RTs were calculated relative to the 
stimulus onset. Motion energy estimates were used as time-resolved input to the model.  

By contrast, in the ‘default’ protocol, the motion energy fluctuations were averaged 
across the viewing interval excluding the filter rise time (i.e., from 250 to 750 s after stimulus 
offset), and the average motion energy was then used as a single-trial drift rate for the 
accumulation process. In other words, the accumulation-to-bound dynamics only took 
place during the post-offset period. Accordingly, when fitting models with this protocol, the 
empirical RTs were calculated relative to stimulus offset. Using this protocol was necessary 
for replicating our basic result from the standard DDM fits: For the ‘dynamic’ protocol, any 
starting point bias would turn into a drift bias because it would feed into accumulation 
process after stimulus offset, precluding the comparison between the two forms of bias. 
Thus, we used only the default protocol for the standard DDM fits, which aimed at 
differentiating between starting point and accumulation biases. For comparison, we also 
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used the same simulation protocol when fitting an extended DDM with a both a constant 
and a ramping component in the drift bias (see below). We then switched to the more 
realistic dynamic protocol for the subsequent models with more complex dynamics.  

The BIC scores of models using the default protocol were generally lower (better) 
compared to the respective models that used the dynamic protocol. This difference is likely 
due to the fact that the dynamic protocol is more constrained by using as input to the 
models the exact motion energy traces rather than just their mean for each trial. BIC is blind 
to such latent flexibility differences that do not map onto differences in number of 
parameters. Thus, BIC may have “under-penalized” models in the default protocol relative 
to those in the dynamic protocol. 

In all models and in both simulation protocols, model predictions were derived via 
Monte Carlo simulation. The variance of the processing noise was set to c2 = 1. One 
simulation time-step corresponded to 5 ms (Euler step, dt = 0.005). Finally, in the standard 
protocol the accumulation process could last for a maximum of 300 time-steps (or 1500 
ms) and in the dynamic protocol for a maximum of 450 time-steps (or 2250 ms). After these 
time points, the process timed-out and a response was assigned to the alternative 
according to the state of the diffusion variable (e.g., in the standard DDM right if y > a/2 and 
left if y < a/2). 
 
DDM VARIANTS WITH DEFAULT SIMULATION PROTOCOL 

For all basic DDM variants described in this section, we used the default simulation 
protocol: the time-averaged motion energy for each trial provided the drift-rate (𝑣) driving 
the subsequent diffusion process. DDM models had 5 generic parameters: threshold (𝑎), 
noise scaling (𝑔), non-decision time (𝑇𝑒𝑟), drift-rate variability (𝑠𝑣) and starting-point 

variability (𝑠𝑧). 

 

Naïve DDM. We denote with y the state of the diffusion variable. At time 0: 

y(0) = z =
a
2
+ 𝑈(−𝑠𝑧, 𝑠𝑧) (6) 

where U was a uniform random variable (rectangular distribution) in the (−𝑠𝑧, 𝑠𝑧) range. The 
evolution of y was described by: 

dy = g ∙ v̈ ∙ dt + cdW	 (7) 
Above, g was the scaling parameter that controls the signal-to-noise-ration (given that 𝑐 is 

fixed at 1). The variable v̈ was the effective drift-rate, i.e. a Gaussian variable with 𝑁(𝑚, 𝑠𝑧Y) 
where 𝑠𝑧 was the drift-rate variability and 𝑚 was the average of the motion energy on each 

trial. A response was generated when the decision variable y exceeded a (right choice) or 
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surpassed 0 (left choice). The moment that either of these boundaries was crossed plus a 
non-decision time 𝑇𝑒𝑟, determined the per-trial RT. 
 
Starting point DDM. This model was the same as the naïve model but with an extra 

parameter 𝑧Z[\] such that at time 0: 

y(0) =
a
2
+ 𝑈(−𝑠𝑧, 𝑠𝑧) + 𝑧Z[\] ∙ 𝑝𝑟𝑒𝑣 (8) 

The variable 𝑝𝑟𝑒𝑣 here encoded the previous choice (1: right, -1: left). If 𝑧Z[\] was positive 
the model implemented repetition and if negative it implemented alternation. 
 

Drift bias DDM. Same as the naïve model but with an extra biasing parameter 𝑣Z[\] such 
that: 

dy = (g ∙ v̈ + 𝑣Z[\] ∙ 𝑝𝑟𝑒𝑣)dt + cdW	 (9) 

 

Hybrid DDM. This version combined the starting point DDM and drift bias DDM using two 

biasing parameters. 
 
Simple Ramping DDM. This model was the same as the naïve model but with an extra 
parameter 𝑠_\`a such that: 

dy = (g ∙ v̈ +
𝑠_\`a ∙ 𝑡 ∙ 𝑝𝑟𝑒𝑣

𝑡`\b
)dt + cdW	 (10) 

where 𝑡 denoted time elapsed in terms of Monte-Carlo time-steps and tmax = 300 time-
steps, which was the maximum duration that a given trial could run for. 
 
Hybrid Ramping DDM. Same as the naïve model but with 2 extra parameters 𝑠_\`a and 

𝑠cde]B\eB   such that: 

dy = (g ∙ v̈ + (𝑠cde]B\eB +
𝑠_\`a ∙ 𝑡
𝑡`\b

)𝑝𝑟𝑒𝑣) ∙ dt + cdW		  (11) 

This model thus implemented a drift bias that is nonzero at the start of the trial (𝑠cde]B\eB ), 

and also linearly increases until the end of the trial (with slope 𝑠_\`a).  

 
EXTENDED MODELS WITH DYNAMIC SIMULATION PROTOCOL 

For all subsequently described models, we used the dynamic simulation protocol (see 
section General Assumptions and Procedures), with the motion energy time courses serving 
as input to the accumulation process. To illustrate the details of the dynamic protocol, we 
next describe how the decision variable was updated in the case of the naïve DDM. The 
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decision variable during the viewing period evolved according to the following differential 
equation: 

dy(t) = g ∙ 𝑀B ∙ dt + cdW	 (12) 

where 𝑀B was the value of the input signal at time t. Following stimulus offset (at t=T), after 
150 time-steps, the diffusion variable carried on being updated as follows:  

dy(t) =
𝑦(𝑇)
𝑇

+ cdW (13) 

In other words, after the stimulus disappeared, accumulation was driven by the average 
evidence accumulated up to the point of stimulus offset. This post-stimulus accumulation 
could continue for a maximum of 300 extra time-steps, at which point the process timed-
out. 
 
Simple and Hybrid Ramping DDM. This model was the same as the above Simple and 

Hybrid Ramping DDMs, only now fit by using the dynamic simulation protocol (i.e. the 
ramping drift-criterion bias is applied for the viewing period only and, following stimulus 
offset, the decision variable is updated according to equation 13).  
 
Dynamic DDM with Collapsing Bounds.  
In the “collapsing bounds” DDM models, a response was generated when the diffusion 
variable (y) exceeds bha (right choice) or surpasses bidje (left choice). The two thresholds, 

bha and bidje, vary across time as follows:  

	bha(𝑡) = ka − a
t

𝑡 + 𝑐
k
>/Y

>
 (14.1) 

bidje(𝑡) = ka
t

𝑡 + 𝑐
k
m

>/Y
 

(14.2) 

In the above, the notation |𝑥|`[e`\b indicates that x was clamped such that 𝑥 ∈ [𝑚𝑖𝑛,𝑚𝑎𝑥]. 

The moment that either of these boundaries was reached, plus a non-decision time 𝑇𝑒𝑟, 

determined the per-trial RT. The dynamic DDM model had 5 basic parameters: threshold 
initial value (𝑎), threshold collapse rate (𝑐), noise scaling (𝑔), non-decision time (𝑇𝑒𝑟), and 
starting-point variability (𝑠𝑧). 
 
Starting point dynamic DDM. Here, the state of the diffusion variable was initialized 

according to equation 8. Thus, the starting point model had 6 free parameters (the 5 basic 
ones plus the starting point bias, 𝑧Z[\]). 
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Drift-bias dynamic DDM. The diffusion variable at time 0 was initialized according to 
equation 8. Also, the diffusion variable in the viewing period was not updated according to 
equation 9 but according to: 

dy(t) = (g ∙ 𝑀B + 𝑣Z[\] ∙ 𝑝𝑟𝑒𝑣) ∙ dt + cdW (15) 
The drift-bias model had the 5 basic parameters plus the drift-bias parameter (𝑣Z[\]). 

Finally, the hybrid dynamic DDM had 2 biasing parameters (𝑧Z[\] and 𝑣Z[\]) and overall 7 
free parameters. The diffusion variable was initialized according to equation 8 and evolved 
in the viewing period according to equation 12 and in the post-stimulus period according to 
equation 13.  
 

Leaky Accumulator Models – General. The leaky accumulator model was based on models 
described before (Busemeyer and Townsend, 1993; Zhang and Bogacz, 2010), constituting 
an extension of the DDM: 

dy = (s ∙ v + λ ∙ y)dt + cdW (16) 
where the rate of change of y now also depends on its current value, with a magnitude 
controlled by the additional parameter λ, the effective leak which reflects the time constant 

of the accumulation process.  
We defined three dynamic variants (c.f. dynamic DDM above) of the leaky 

accumulator model in order to account for history biases. These different biasing 
mechanisms were further crossed with two different bound regimes: static or collapsing 
bounds, as described for the DDM above. 
 
Leaky Accumulator with Starting Point Bias. Here, the diffusion variable was initiated 
according to equation 8. During the viewing period, it was updated according to: 

dy(t) = (λ ∙ y(t) + g ∙ 𝑀B) ∙ dt + cdW (17.1) 
After stimulus offset, accumulation continued according to: 

dy(t) = λ ∙ y(t) +
𝑦(𝑇)
𝑇

+ cdW 
(17.2) 
 
 

Leaky Accumulator with Input Bias. Here, the diffusion variable was initiated according to 

equation 6. The evolution of the decision variable during the viewing period was described 
by:  

dy(t) = (λ ∙ y(t) + g ∙ 𝑀B + 𝑣Z[\] ∙ 𝑝𝑟𝑒𝑣) ∙ dt + cdW (18) 
After stimulus offset accumulation continued according to equation 17.2. Responses were 
determined by a static threshold crossing mechanism, as in the standard DDM models 
described above.  
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The third leaky accumulator model we defined, the λ-bias model, accounted for 
history biases by introducing an asymmetry in the dynamics of evidence accumulation. In 
this model, we followed a different implementation in order to enable biasing the effective 
leak (λ) parameter: we reformulated the model to describe two separate accumulators that 

integrate the sensory evidence. We define the diffusion variable y as y = 𝑦v − 𝑦w, with 𝑦v 
and 𝑦w being two independent accumulators coding the right and left choice. The two 
accumulators were initialized as follows: 

𝑦v(0) = 𝑈(−𝑠𝑧, 𝑠𝑧) (19.1) 
𝑦w(0) = 0 (19.2) 

Starting point variability was thus applied only to one accumulator, which was equivalent to 
applying this variability on their difference (diffusion variable y). 
During the viewing period the two accumulators were updated according to: 

d𝑦v(t) = x𝜆v ∙ 𝑦v(t) + g ∙ 𝑓v(𝑀B){ ∙ dt +
𝑐𝑑𝑊
√2

 (20.1) 

d𝑦w(t) = x𝜆w ∙ 𝑦w(t) + g ∙ 𝑓w(𝑀B){ ∙ dt +
𝑐𝑑𝑊
√2

 (20.2) 

The variance of the processing noise applied to each accumulator was divided by 2 such as 
the processing variance of the accumulators’ difference (variable y) is c2, as in the DDM. 

The functions 𝑓v and 𝑓w were threshold linear functions with 𝑓v setting negative 
values to 0 and 𝑓w	setting positive values to 0. Specifically: 

𝑓v(𝑥) = �𝑥, 𝑖𝑓	𝑥 > 0
0, 𝑖𝑓	𝑥 ≤ 0 (20.3) 

𝑓w(𝑥) = � 0, 𝑖𝑓	𝑥 > 0
−𝑥, 𝑖𝑓	𝑥 ≤ 0 (20.4) 

Thus, the 𝑦v accumulator “listened” only to the negative values of the input stream 
while the 𝑦w only to positive values. The effective leak parameters for each accumulator 

were defined as follows: 
𝜆v = 𝜆 + 𝑓v(𝑝𝑟𝑒𝑣) ∙ 𝜆Z[\] (20.5) 
𝜆w = 𝜆 + 𝑓w(𝑝𝑟𝑒𝑣) ∙ 𝜆Z[\] (20.6) 

 
Leaky Accumulator with Static Bounds. A response was initiated when the difference 

between the two accumulators (y) exceeded a positive threshold +a (right choice) or 
surpassed a negative threshold –	a (left choice). These leaky accumulator models had 1 
biasing parameter each as well as the following 5 basic parameters: threshold value (a), 

effective leak (𝜆), noise scaling (𝑔), non-decision time (𝑇𝑒𝑟), and starting-point variability (𝑠𝑧). 
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Leaky Accumulator with Collapsing Bounds. We implemented versions of the leaky 
accumulator models described above using collapsing bounds. For the input and starting 
point bias models, the time-varying bounds are described in equations 14.1 and 14.2. For 
the 𝜆 − 𝑏𝑖𝑎𝑠 model, collapsing bounds had the same functional form but their asymptote 

was set to 0 (mirroring the fact that in this model the neutral point of the y = 𝑦v − 𝑦w 
decision variable was at 0, rather than at a/2 as in all other models involving a single 
accumulator): 

	bha(𝑡) = ka − 𝑎
t

𝑡 + 𝑐
k
m

>
 (21.1) 

bidje(𝑡) = ka
t

𝑡 + 𝑐
− ak

'>

m
 

(21.2) 

 
MODEL FITTING PROCEDURES 

We fit the extended models using a Quantile Maximal Likelihood (QMPE) approach. Under 
this approach, empirical RT values are classified into bins defined by the 0.1, 0.3, 0.5, 0.7 
and 0.9 quantiles of the RT distribution (6 bins overall). RT quantiles were derived 
separately for the various coherence levels. We excluded the 81% coherence trials and 
pooled together the 0% and 3% coherence trials as RT quantiles in these trials were not 
distinguishable. This resulted in quantiles for each of 3 difficulty levels (0% and 3%, 9% 
and 27%), for each of the two responses (correct/ error), and for 2 history conditions 
(motion direction in current trial consistent or inconsistent with the previous response), 
leading to 6 bins x 3 coherence x 2 response x 2 history = 72 bins per participant. Denoting 
the number of empirical observations in a particular bin k by nk and the probability 

predicted by the model to derive a response in a particular bin k by Pk, the likelihood L of 
the data given the model is defined as: 

𝐿 =�𝑃�
e�

�

	 (23) 

We applied a commonly used multi-stage approach to fit our simulation-based models (e.g. 
Teodorescu et al., 2016). First, each fitting session started by generating 20 random 
parameter sets, drawn from a uniform distribution bounded by the range of each 
parameter. To improve the precision of likelihood estimates, we generated 10 synthetic 
trials for each experimental trial, replicating the trials for a given participant. We then 
computed the likelihood of the model parameters given the data. The parameter set with 
the best fit out of the initial 20 was used as the starting point for a standard optimization 
routine (“fminsearchbnd.m” function in Matlab, which implements a constrained version of 
the Nelder-Mead simplex algorithm). In total, we ran 50 of such fitting sessions, each with a 
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different random seed. Second, we chose the best-fitting parameter set from each of the 50 
sessions and recomputed the likelihood while replicating 20 synthetic trials for each 
experimental trial. Third, the 5 best-fitting of these 50 sets were used as starting points 
fminsearchbnd, which further refined the local minima of the fit. Fourth, we recalculated the 
likelihood of the single best parameter set in simulations with 30 synthetic trials for each 
experimental trial (see eq. 6). For each model, f, BIC values were calculated at the group 
level: 

𝐵𝐼𝐶� = −2�ln	(ℒ])
�

]

+𝑁𝑚��ln	(𝑘])
�

]

 (24) 

where N is the total number of participants and s is the participants index. ℒ]	and 𝑘]	denote 
the maximum likelihood estimate and number of trials for each participant s. Finally, 𝑚� is 

the number of free parameters for a given model f.  
 

MODEL SIMULATIONS 

We simulated conditional bias functions for various biasing mechanisms within the 
frameworks of the DDM and the leaky accumulator models. Per biasing mechanism, we 
simulated 100K traces in timesteps of 10 ms using equations 2 (DDM) and 18 (leaky 
accumulator).  

For the DDM simulations, the main parameters were: boundary separation = 1; drift 
rate = 1; non-decision time = 0.1; starting point = 0.5 (expressed as a fraction of the 
boundary separation); drift bias = 0; drift rate variability = 0.5. We simulated three levels of 
starting point bias (0.56, 0.62 and 0.68; Fig. Supplementary Figure 8a), three levels of 
constant drift bias (0.2, 0.5 and 0.8; Supplementary Figure 8b), three levels of a time-
dependent linear increase in drift bias (1.5/s, 2.5/s and 3.5/s; Supplementary Figure 8c), 
three levels of constant drift bias (0.2, 0.5 and 0.8) in combination with hyperbolically 
collapsing bounds (given by equation 16 and using 𝑐 = 3; Supplementary Figure 8d), and 
three levels of one time-dependent collapsing and one expanding bound: 0.2/s, 0.5/s and 
0.8/s. 

For the leaky accumulator simulations, the main parameters for each accumulator 
were: input = 1; boundary = 0.42; λ = −2.5; starting point = 0; input bias = 0. The negative 

λ’s determined that the accumulators were self-excitatory in nature (as opposed to leaky). 
We choose this to match the primacy effects observed in the data (Supplementary Figure 
7). We simulated three levels of starting point bias (0.05, 0.10 and 0.15; Supplementary 
Figure 8f), three levels of input bias (0.2, 0.5 and 0.8; Supplementary Figure 8g), and three 
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levels of λ-bias between the two accumulators: (-3 vs -2, -4 vs -1, and -5 vs 0; 
Supplementary Figure 8h).  

We then fit DDM models separately to each of the three simulated leaky 
accumulator datasets (Supplementary Figure 8b, bottom). We fit the parameters boundary 
separation, drift rate, non-decision time, starting point, drift bias and drift rate variability. 

 

EFFECTIVE BIAS SIGNAL 

We calculated the effective bias signal (as in Hanks et al., 2011) for the winning DDM and 
leaky accumulator models with collapsing bounds (Figure 6d). We focused on those two 
models because they provided the best fits to the data overall (Figure 6b). We assumed that 
the current choice is biased in the direction of the previous choice (repetition bias). We 
arbitrarily set the previous choice to “right” (prev = 1), which means that the biasing 
mechanisms pushes the decision variable closer to the upper boundary. In both models, 
the effective bias signal at time t was obtained by dividing the value of the cumulative bias 
signal by the value of the upper bound on that moment.  

For both models, we took the average of the absolute input bias parameter, so as to 
emulate a repetition bias. For the DDM, we averaged parameters across all participants. For 
the input bias leaky accumulator model, participants were divided in two groups based on 
the sign of the fitted parameter λ. Here, we calculated the effective bias signal in two 
instances: a) by averaging parameters across participants with λ>0 and b) by averaging 
parameters across participants with λ<0. Because the time courses were very similar in 

these two cases, in Fig. 6d we plotted the average of the two effective bias signals.  
For the input bias DDM we computed the cumulative bias signal by taking the 

difference between the deterministic (i.e., ignoring the noise term and the starting point 
variability) time course of the decision variable in the input bias model (equation 11) and the 
deterministic time course of the decision variable in the unbiased model (equation 9). The 
time course of the upper bound was computed according to equation 16.1. 
Correspondingly, for the input bias leaky accumulator model we estimated the cumulative 
bias signal by subtracting the deterministic decision variable obtained from equation 19.1 
from the deterministic decision variable obtained from equation 20. The time course of the 
upper bound was obtained using equation 22.1. 
 

STATISTICAL TESTS 

We quantified across-subject correlations between P(repeat) and the individual history 
components in DDM bias parameter estimates using Spearman’s rank correlation 
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coefficient. The qualitative pattern of results does not depend on the choice of a specific 
correlation metric. Even though individual subject parameter estimates are not independent 
due to the hierarchical nature of the HDDM fit, between-subject variance in parameter point 
estimates can reliably be correlated to an external variable - in our case, P(repeat) - without 
inflation of the false positive rate (Katahira, 2016). The difference between two correlation 
coefficients that shared a common variable, and its associated p-value, was computed 
using Steiger’s test (Steiger, 1980). 
 We used Bayes factors to quantify the strength of evidence across our different 
datasets. We first computed the Bayes factor for each correlation (between P(repeat) and 
the history shift in starting point, and between P(repeat) and the history shift in drift bias) 
(Wetzels and Wagenmakers, 2012). We then multiplied these Bayes factors across datasets 
to quantify the total evidence in favor or against the null hypothesis of no correlation 
(Scheibehenne et al., 2016). BF10 quantifies the evidence in favor of the alternative versus 
the null hypothesis, where BF10 = 1 indicates inconclusive evidence to draw conclusions 
from the data. BF10 < 1/10 or > 10 is taken to indicate substantial evidence for H0 or H1 
(Kass and Raftery, 1995).  

 

DATA AND CODE AVAILABILITY 

All behavioral data, model fits and analysis code is available at 
10.6084/m9.figshare.7268558. 
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Supplementary Figure 1. The hierarchical DDM. (a) Graphical representation of the hierarchical 

model structure. The full model (with both history-dependent drift bias and starting point) is depicted. 

Round nodes represent random variables, and the shaded node x represented the observed data 

(choices and RTs for all observers within each task). Subject-specific parameter estimates were 

distributed according to the group-level posterior values, thereby ‘shrinking’ individual values towards 

the group average. Colors indicate the distributions used for each node. For the datasets with 

multiple stimulus difficulty levels, we additionally estimated a separate drift rate (v) for each 

(Supplementary Figure 2a, inset). Between-trial variability in non-decision time was only included in 

the model shown in Supplementary Figure 3b. (b) Prior distributions used for each node, with colors 

indicating their distribution. See (Wiecki et al., 2013) for the full set of prior specifications. 
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Supplementary Figure 2. Drift diffusion model and choice history patterns. (a) Correlation 

between drift rate (v) and d’. In the two datasets with multiple stimulus difficulty levels (Visual motion 

2AFC (FD) and Visual motion 2IFC (FD) #1), drift rates were estimated separately for each level of 

stimulus difficulty. In these two datasets, the correlation coefficient displayed is a partial correlation 

between v and d’, while accounting for stimulus difficulty (inset, colors indicate discrete stimulus 

difficulty levels). As expected, the mean drift rate increased monotonically as a function of evidence 

strength. (b) Measured and predicted RT distributions, across all trials and observers within each 

dataset. Observed (light) and predicted (dark) RT distributions are separately shown for each 

combination of stimulus and choice (green/purple), with the low-probability distributions indicating 

error trials. (c) Probability of repeating previous choices, for each of 1-7 trials back. Thick, colored line 

indicates the average over participants. (d) Repetition probability after correct vs. error trials, 

averaged over lag 2-7 (complementary to Figure 2c). 
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Supplementary Figure 3. Group-level posterior distributions of history bias parameters. History 

shift in (a) starting point and (b) drift bias, separately for each dataset. The posteriors were taken from 

the model where history-dependent z and vbias were fit simultaneously. Distributions were smoothed 
using kernel density fits. Shaded regions represent the 95% BCI, and white lines indicate the 

posterior mean. 
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Supplementary Figure 4. Control model fits. (a) Summary figure based on non-hierarchical G2 fits 

(Ratcliff and Tuerlinckx, 2002). Rather than the full RT distribution, we fit each observers’ RT quantiles 

(0.1, 0.3, 0.5, 0.7, 0.9) and correlated history shifts in the DDM bias parameters to individual 

P(repeat), as in Figure 4. (b) Summary figure based on the full hierarchical model, where across-trial 

variability in non-decision time (st) was added as a free parameter. Like the across-trial variability in 

drift rate (sv) and starting point (sz), the st parameter was only estimated at the group level (Ratcliff 

and Childers, 2015). 
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Supplementary Figure 5. Same biasing mechanism under two pharmacological interventions. 

(a) Participants in the MEG study were assigned to one of three pharmacological groups. At the start 

of each experimental session, they orally took 40 mg atomoxetine (Strattera®), 5 mg donepezil 

(Aricept®), or placebo. Since the time of peak plasma concentration is 3 hours for donepezil (Rogers 

and Friedhoff, 1998) and 1-2 hours for atomoxetine (Sauer et al., 2005), we used a placebo-
controlled, double-blind, double-dummy design, entailing an identical number of pills at the same 

times before every session for all participants. Participants in the donepezil group took 5 mg of 

donepezil 3 hours, and placebo 1.5 hours before starting the experimental session. Participants in the 

atomoxetine group took placebo 3 hours, and 40 mg of atomoxetine 1.5 hours before the 

experimental session. Those in the placebo group took identical-looking sugar capsules both 3 and 

1.5 hours before starting the session. This ensured that either drug reached its peak plasma 

concentration at the start of the experimental training. The drug doses were based previous studies 

with healthy participants (Chamberlain et al., 2009; Rokem and Silver, 2010). Blood pressure and 
heart rate were measured and registered before subjects took their first and second pill. In the three 

hours before any MEG or training session, participants waited in a quiet room. In total, 19 people in 

the placebo, 22 in the atomoxetine, and 20 in the donepezil group completed the full study. (b, c) 

Choice history biases separately for each pharmacological group. Since we did not observe 

differences in choice history bias between these groups, we pooled all observers for the main 

analyses. 
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Supplementary Figure 6. Post-error slowing. (a) We computed post-error slowing as the 

difference in average RT after error and correct trials. In four of the six datasets, observers showed 

significant post-error slowing (permutation test against zero; *** p < 0.001, ** p < 0.01, n.s. p > 0.05). 

We then fit an HDDM model where the overall drift rate, as well as the boundary separation, were 

allowed to vary depending on the outcome (correct vs. error) of the previous trial.  (a) Changes in 

boundary separation after error vs. correct trials. (b) Changes in drift rate after error vs. correct trials. 

For the two datasets with multiple levels of stimulus strength, the effect of previous error vs. correct 

on drift rate is shown separately for each discrete level of stimulus strength (weak to strong evidence 
from left to right; see also Methods and Supplementary Figure 2a). Distributions were smoothed 

using kernel density fits. Shaded regions represent the 95% BCI, and white lines indicate the 

posterior mean. Errors were succeeded by a decrease in mean drift rate in most datasets and by an 

increased boundary separation in some datasets: both effects conspired to slow down decisions 

after an error.  
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Supplementary Figure 7. Motion energy filtering, psychophysical kernels and the effective 

time-constant of evidence integration. (a) Within each generative coherence level, the average 

motion energy traces were rescaled to express motion energy in % coherence. The initial 200ms of 

the trial fall within the rise-time of the spatiotemporal motion energy filter. (b) The average motion 

energy is a linear function of coherence, with substantial trial-by-trial fluctuations that arise from the 

stochastically generated noise dots. Note that while we previously used motion energy filtering on the 

dot coordinates in the Visual motion 2IFC (FD) #1 dataset (Urai et al., 2017), the large stimulus display 
in that study resulted in most noise fluctuations being averaged out over space. This resulted in only 

small trial-by-trial differences in the effective decision-relevant input). (c) Psychophysical kernels, 

indicating the effect of fluctuations in motion energy (using the three weakest coherence levels) on 

observers’ choice over time. Shaded errorbars indicate group s.e.m., black dots show significant (p < 

0.05, FDR-corrected) group-level deviations from zero. (d) Individual effective leak parameters, 

estimated from an leaky accumulator model either without (left) or with (right) collapsing. A positive l 

indicates that the accumulators accelerate towards the decision bound, depending on the value of 

the decision variable. When including a collapsing bound in the model, which captures an overall 

urgency in the decision process, overall effective leak biases are no longer significantly different from 

zero. *** p < 0.001, ** p < 0.01, n.s. p > 0.05, permutation test against zero. 
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Supplementary Figure 8. Extended model simulations. (a-e) Simulated conditional bias functions 

(fraction of biased choices as a function of RT; 100K trials per model) for various biasing mechanisms 

within the framework of the DDM (see Methods). (a) The effect of a biased starting point on choice 

declines rapidly with elapsed time, as the decision variable is increasingly governed by the drift rate. 

(b) The effect of a constant drift bias on choice stays relatively constant within the trial, decreasing 

but remaining positive also for slow RTs. (c) The effect of a linearly increasing drift bias on choice 

increases with elapsed time, as the decision variable is increasingly governed by the drift bias. (d) The 

effect of a drift bias combined with hyperbolically collapsing bounds (Figure 6a; Hanks et al., 2011) 

closely resembles that of drift bias alone; differences include overall shorter and slightly less accurate 

decisions. (e) One time-dependent collapsing and one expanding bound are equivalent to time-

dependent changes in the decision variable due to drift bias. These different biasing mechanisms 
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produce identical changes in the conditional response functions. (f-h) Simulated conditional bias 

functions (100K trials per model) for various biasing mechanisms within the framework of the leaky 

accumulator model with collapsing bounds, corresponding to Figure 6b5 (Materials and Methods). To 

match the empirical data (Supplementary Figure 7d), we choose the overall leak parameter 𝜆 to be 

>0, producing a primacy effect through self-excitatory accumulators, whereby evidence early on in 

the trials has a stronger leverage on choice. We verified that the same conclusions hold for 𝜆 ≤ 0 

(data not shown). (f) The effect of a biased starting point on choice declines rapidly with elapsed 

time, as the decision variable is increasingly governed by the input. Bottom: A starting point bias 

within the leaky accumulator model loads on both DDM starting point and drift bias within the 

standard DDM. This can be explained by the 𝜆 parameter, which determines that any starting point 

bias of the accumulators will have a longer lasting effect on the decision variable. (g) The effect of 

biased input to the accumulation stage within the leaky accumulator model is uniquely captured by 

drift bias within the DDM. Also, the effect input bias on choice increases with elapsed time, as the 

decision variable is increasingly governed by the 𝜆 bias. (h) The effect of biased leak of the 
accumulators (henceforth termed ‘𝜆 bias’) on choice increases with elapsed time, as the decision 

variable is increasingly governed by the 𝜆 bias. Note the close correspondence with a linearly 

increasing DDM drift bias (e). Bottom: leaky accumulator 𝜆 bias is primarily explained by DDM drift 
bias; the DDM fits an additionally starting point bias in the opposite direction to push down the 

predicted fraction of biased choices for early RTs. All panels: Gray line, example trajectory of decision 

variable from single trial; dashed lines in the conditional response function plots, conditional response 

function for unbiased model; the numbers printed in the condition response function plots are overall 

probabilities, regardless of RT.  

It noteworthy that 𝜆 bias in the leaky accumulator model (h) predicts the strongest choice 
bias for long RTs, while both DDM starting point and drift bias predict the strongest choice bias for 

short RTs (a, b). This implies that if a major source of choice bias in any dataset is due to a leak bias, 

the DDM is not going to be able to easily account for this. Our simulations show that the best-fitting 

DDM such data shows: (i) a drift bias, in order to explain the choice bias for relatively long RTs, and 

(ii) a starting point of opposite sign, in order to push down the expected choice bias for relatively 

short RTs. Indeed, these opposing effects of starting point and drift bias can be observed in the bars 

in (h), and are present in some of the datasets used here (Supplementary Figure 3). The present 

simulation results suggest that even stronger choice repetition (or alternation) effects as measured 

here would give rise to opposite effects on starting point and drift bias in DDM fits.  
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