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Abstract 
Motivation: Particle tracking coupled with time-lapse microscopy is critical for understanding the dynamics of 

intracellular processes of clinical importance. Under the impulse of advances in microscopic spatiotemporal 

resolution and automated computational methods, this field is increasingly amenable to multi-dimensional high-

throughput data collection schemas (Snijder et al, 2012). Typically, complex particle tracking datasets 

generated by individual laboratories are produced with incompatible methodologies and cannot be compared to 

each other. There is therefore an unmet need for data management systems that facilitate data standardization, 

meta-analysis and structured data dissemination. The integration of analysis, visualization and quality control 

capabilities into such systems would eliminate the need for manually transferring the data to diverse 

downstream analysis tools while at the same time lying the foundations for shared trajectory data, particle 

tracking, and motion analysis standards.  

Results: Here, we present Open Microscopy Environment inteGrated Analysis (OMEGA), a cross-platform 

data management, analysis and visualization system, for particle tracking data with particular emphasis on 

results from viral and vesicular trafficking experiments. OMEGA provides easy to use graphical interfaces to 

implement integrated particle tracking and motion analysis workflows while keeping track of error propagation 

and data provenance. Specifically, OMEGA: 1) imports image data and metadata from data management tools 

such as Open Microscopy Environment Remote Objects (OMERO; Allan et al., 2012); 2) tracks intracellular 

particles moving across time series of image planes; 3) facilitates parameter optimization and trajectory results 

inspection and validation; 4) performs downstream trajectory analysis and motion type classification; 5) 

estimates the uncertainty associated with motion analysis; and, 6) stores and facilitates dissemination of analysis 

results and analysis definition metadata on the basis of our newly proposed Minimum Information About 

Particle Tracking Experiments (MIAPTE; Rigano & Strambio-De-Castillia, 2016; 2017) guidelines in 

combination with the OME-XML data model (Goldberg et al, 2005). 

Availability and implementation: OMEGA is a cross-platform, open-source software developed in Java. 

Source code and cross-platform binaries are freely available on GitHub at 

https://github.com/OmegaProject/Omega, under the GNU General Public License v.3. 

Contact: caterina.strambio@umassmed.edu and alex.rigano@umassmed.edu  
Supplementary information: Supplementary Material is available at BioRxiv.org  
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1 – Introduction 

1.1 Description of the problem 
Dynamic intracellular processes, such as viral and bacterial infection (Chenouard et al, 2009c; Brandenburg 

& Zhuang, 2007; Sun et al, 2013; Mercer et al, 2010; Li et al, 2017; Pereira et al, 2014; Ewers et al, 2005), 

vesicular trafficking (Siebrasse et al, 2016; Aoyama et al, 2017; Gramlich & Klyachko, 2017; Jandt et al, 2011; 

Jandt & Zeng, 2012; Loerke et al, 2009), membrane receptors dynamics (Jaqaman et al, 2016; Sergé et al, 

2008; Block et al, 2016; Saxton & Jacobson, 1997), cytoskeletal rearrangement (Applegate et al, 2011; 

Akhmanova & Steinmetz, 2008), focal adhesion reorganization (Berginski et al, 2011), gene transcription 

(Sinha et al, 2010), and genome maintenance (Agarwal et al, 2011) are important for many clinically relevant 

fields of study including immune regulation, metabolic disorders, infectious diseases, and cancer. In all of these 

cases, diverse individual sub-resolution ‘particles’ (e.g. single molecules, microtubule tips, viruses, vesicles and 

organelles) dynamically interact with a large number of cellular structures that influence trajectory and speed. 

The path followed by individual particles varies significantly depending on molecular composition, cargo, and 

destination. Given the changing and multi-step nature of several of these processes, many questions would 

benefit from studying them in living cells. The fundamental spatial and temporal heterogeneity of these 

trafficking processes emphasizes the importance of utilizing single-particle measurements, rather than ensemble 

averages or flow measurements, in order to gain insight into molecular mechanisms, predict outcome, and 

rationally design effective therapeutic interventions. The time-resolved visualization of individual 

heterogeneous intracellular particles by fluorescence-microscopy, coupled with feature point tracking 

techniques - referred to as Single-Particle Tracking (SPT) (De Brabander et al, 1985) or Multiple-Particle 

Tracking (MPT) (Genovesio et al, 2006) - and mathematical analysis of motion, is ideally suited to follow the 

fate of particles as they progress within the cell, to map fleeting interactions with other cellular components, and 

to dissect individual transport steps. For example, single viral imaging experiments coupled with MPT have 

improved understanding of the early phases of viral entry and revealed previously un-recognized entry stages 

(Brandenburg & Zhuang, 2007; Flatt & Greber, 2017; Sun et al, 2013; Greber & Way, 2006; Wang et al, 2017; 

Ewers et al, 2005; Helmuth et al, 2007; Yamauchi et al, 2011). 

As a consequence of the steady improvement of the spatiotemporal resolution of microscopic techniques, 

advances in automated particle tracking and motion analysis (Sbalzarini & Koumoutsakos, 2005; Arhel et al, 

2006; Jaqaman et al, 2008; Chenouard et al, 2014; Smith et al, 2015; Genovesio et al, 2006), and the 

availability of software tools (Carpenter et al, 2012; Schindelin et al, 2012; de Chaumont et al, 2012; Eliceiri et 

al, 2012; Perry et al, 2012; Swedlow & Eliceiri, 2009; Tinevez et al, 2016; Jaqaman et al, 2008; Kalaidzidis, 

2009; Incardona & Sbalzarini, 2014), MPT holds the promise of becoming amenable to multi-dimensional high-

throughput data collection schemas (Damm & Pelkmans, 2006; Snijder et al, 2012; Rämö et al, 2014; Taute et 

al, 2015).  
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However, many of the fundamental image data management limitations holding back  “[…] the routine 

application of automated image analysis […] to large volumes of information generated by digital imaging” 

(verbatim from: Swedlow et al, 2003) are still in place even fourteen years after the initial identification of the 

problem . As a case in point, the utilization of viral particle tracking to draw direct real-time correlations 

between alterations in viral mobility and underlying perturbations in the viral and cellular states, remains a 

considerable challenge even at low-throughput, and it is difficult if not impossible to scale to the systems 

biology level (Arhel et al, 2006; McDonald et al, 2002; Mamede et al, 2017; Mamede & Hope, 2016; Sood et al, 

2017). As a result, most virology studies to date rely on biochemical and genetic analyses conducted in bulk and 

on the microscopic analysis of fixed cells, which fail to capture viral heterogeneity and the complexity of viral 

infection processes. Moreover, when particle tracking data is obtained, the datasets produced at individual 

laboratories are difficult to compare with analogous data generated at other times or places, making integration 

with different data types, and meta-analysis, impossible.  

This situation reveals the presence of an unmet need for tools that would allow the management of large 

datasets of intracellular trafficking data in a manner that would speed up the analysis workflow, facilitate results 

inspection, quality control, and validation, foster dissemination and meta-analysis, and, ultimately, lay the 

foundation for a particle tracking data community. 

1.2 Statement of purpose 
A major hurdle preventing particle tracking from becoming a routine high-throughput cell biology 

technique, the results of which can be reproduced and compared across different data production sites, is related 

to the size and complexity of the data. The number of particles within each cell may be in the hundreds, images 

typically contain MBs of data, experiment may produce thousands of images and the correct interpretation of 

results depends on the knowledge of the experimental, optical and image-analysis context. Hence it follows that 

automated image acquisition, processing, and analysis have to be closely coupled with robust and standardized 

data management methods, and with accurate accounting of error propagation and data provenance, in order to 

tackle the problem. Although software tools exist to execute some steps of the particle tracking workflow, tools 

for several key data management and error evaluation functions do not exist (Table I) (Tinevez et al, 2016; de 

Chaumont et al, 2012). 

To fill this void we are developing a cross-platform, open-source software called Open Microscopy 

Environment inteGrated Analysis (OMEGA; Figure 1), which provides a rich graphical user interface (GUI; 

Figure 2; Supplemental Information 1) to aid the user with particle tracking data production, analysis, 

validation, and visualization. OMEGA carries out these functions within the framework of our newly proposed 

Minimum Information About Particle Tracking Experiments (MIAPTE) guidelines (Rigano & Strambio-De-

Castillia, 2016; 2017), so that management, annotation, storage, and dissemination of the entire data cascade, is 

accomplished in a standardized manner, permitting results reproduction and comparison across laboratories.  
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While OMEGA is intended to assist experimental biologists wishing to quantitate in real time the movement 

of intracellular particles (i.e. vesicles, virions and organelles), to analyze image data stored within OMERO 

(Allan et al, 2012), it also provides the basic infrastructure for improved annotation, error monitoring, 

standardization and dissemination in the particle tracking field, facilitating re-interpretation and meta-analysis. 

The benefit of this approach has been well established in other fields, where data management and 

dissemination infrastructure is more mature (Data models to GO-FAIR., 2017; Wilkinson et al, 2016; UniProt 

Consortium, 2015; Benson et al, 2012; Berman et al, 2003; Wenger et al, 2000). The development of user-

oriented, freely available, data storage and analysis systems for particle tracking data thus offers a timely next 

step for the field. By unifying the entire image processing and analysis workflow, and by combining it with 

standardized data management and error propagation handling, OMEGA extends what is currently available, 

further reduces the need for users to transfer data manually across several downstream analysis tools, and lays 

the foundation for a particle tracking data dissemination and meta-analysis ecosystem. All OMEGA algorithmic 

components were tested on artificial image and trajectory data (as described in Supplemental Information 1). 

All OMEGA supported motion analysis workflows were validated using standard MPT benchmarking datasets 

(Chenouard et al, 2014) as well as real-life datasets depicting retroviral particle trafficking within living human 

cells (Clark et al, 2013; Pereira et al, 2012).  

2 – Tool description and functionality 

2.1 Multiple particle tracking and motion analysis workflow 
In a typical particle tracking experiment (Figure 1A), time series of image-frames are recorded from living 

cells. If the image quality is sufficient, and the spatiotemporal resolution is adequate, MPT algorithms are then 

used to convert movies depicting particle motion (i.e., viral particles in the example shown) into statistical 

ensembles of individual trajectories specifying the coordinates and fluorescence intensity of each particle across 

time (Saxton, 2008; Rust et al, 2011). Subsequently, in a process that is often referred to as motion analysis 

(reviewed in, Meijering et al, 2012; Brandenburg & Zhuang, 2007), trajectories are used as input to compute 

quantitative measures describing the motion state of individual particles as well as their displacement, velocity, 

and intensity. The aim of this process is to correlate biochemical composition and functional readouts with 

particle dynamics and ultimately provide readouts that can be used to interpret the mechanisms governing 

motion and underlying intracellular interactions.  

The OMEGA application (Figure 1; Supplemental Information 1) carries out all steps of the complete 

tracking and motion analysis workflow described above. In addition, because of its flexibility and modularity, it 

can also be used to support other data-flows depending on user needs (Supplemental Figure 1). OMEGA 

operates by way of a rich graphical user interface (GUI; Figure 2; Supplemental Information 1), a modular 

structure and a relational database in the back end to store data arising from image analysis (Figure 3 and 
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Supplemental Figure 2). The functional logic of the OMEGA Java application (Supplemental Information 1) is 

organized around six analysis and data management modules (i.e., Image Browser, Particle Tracking, Signal-to-

Noise Ratio (SNR) Estimation, Trajectory Manager, Tracking Measures, and Data Browser; Figure 3 and 

Supplemental Figure 2, solid lines boxes) which in turn implement nine interchangeable plugins (Figure 3, 

dashed lines boxes) that work sequentially to implements the typical steps of particle tracking and motion 

analysis experiments (Figures 1 and 4). At time of writing, workflows supported by OMEGA are mainly 

interactive, requiring user supervision at each subsequent step. In subsequent releases, we plan to develop batch 

processing of entire image datasets. Extensive validation of OMEGA components was conducted 

(Supplemental Information 1). Additional validation results will be presented in a parallel manuscript (Rigano 

et al). 

2.2 Data selection and loading 
OMEGA supports two data import modalities, which are designed to assist users in the task of preserving 

data provenance links between different data processing steps. The first modality utilizes an Image Browser 

plugin (Figure 2-2 and 3) to import of image data and metadata from available repositories. The second 

modality utilizes the Data Browser plugin (Figure 2-14) to directly import pre-computed particles or 

trajectories. 

2.1.1 Image Browser: 
OMEGA is designed to import BioFormats (OME Consortium, 2017) compatible image data and metadata 

from available image repositories. At the time of writing OMEGA ships with a custom-designed OMERO 

Image Browser (Figure 2-2 and 3), which provides a minimal interface for the user to navigate through the 

OMERO (Allan et al, 2012) Project, Dataset, and Image hierarchy, display available content belonging to a 

specific user in either a list or grid mode, select images to be analyzed and import them into OMEGA. This 

interface is specifically designed to visualize relevant image information while at the same time avoiding over-

cluttering and undue duplication of functionalities already available elsewhere. Only image thumbnails and 

metadata essential for image selection are shown, while additional viewing options are delegated to available 

OMERO clients (Allan et al, 2012). 

2.1.2 Trajectory import in the Data Browser 
In order to promote interoperability, users can use the Data browser module (Figure 2-12) to import 

particles and trajectories previously computed using third-party applications, into OMEGA for further 

processing and downstream analysis. If images corresponding to these particles and trajectories are available in 

OMEGA, the detection and linking results can be associated directly with them and made available in the Data 

Browser for all subsequent data navigation and selection operations. Alternatively, these externally computed 

tracking data can be associated with a specifically designed “Orphaned Analyses” element. Examples of 

analyses that were performed on imported, pre-computed trajectories are presented in Figures 5B and 6 and 
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Supplemental Figure 3. 

2.3 Particle Tracking: detection and linking of spots to form trajectories 
Once image time-series have been selected and uploaded into OMEGA, the particle tracking module (Figure 

2-5) converts movies depicting particle motion (Figure 2-4) into trajectories (Figure 2-6) consisting of the 

coordinates and fluorescence intensities of each particle across time (Saxton, 2008; Rust et al, 2011). Particle 

Tracking is generally subdivided into two independent steps: 1) Particle Detection: identifies the centers of 

individual fluorescent spots that are significantly distinguishable from local background and estimates their sub-

pixel coordinates and intensities in each time frame. 2) Particle Linking: generates trajectories by linking the 

position of each bright spot in one time frame with its position in subsequent frames.  

Recent systematic and objective comparisons of available particle tracking algorithms on standardized 

benchmarking data sets (Chenouard et al, 2014; Saxton, 2014), have shown that no single algorithm or set of 

algorithms can optimally solve all tracking problem sets. What is clear is that for any given experimental 

context and scientific question, multiple algorithms or combinations thereof should be rigorously evaluated 

before moving to production. This situation makes parameterization and testing of algorithms an essential 

component of the process. To facilitate this task the OMEGA MPT module is designed to accommodate three 

different plugin designs: 1) Particle Detection stand-alone; 2) Particle Linking stand-alone; and 3) integrated 

Particle Tracking plugin merging both detection and linking functionalities into a single element. This flexible 

plug-in strategy facilitates the integration of diverse tracking algorithms regardless of their specific 

implementation style and allows the user to “mix and match” compatible particle detection and linking 

algorithms originating from different sources with a significant improvement in tracking quality and efficiency. 

In addition, the architecture of the MPT plugin in OMEGA emphasizes modularity and open APIs in order to 

facilitate the integration of different third-party detection and linking algorithms to be tested on each 

experimental case. Last but not least, the Data Browser component of OMEGA (Figure 2-14; see below) allows 

the user to store not only the results of different MPT runs, but also all associated parameter-settings metadata. 

This enormously facilitates the systematic comparison of runs and the selection of the best tracking method for 

a given experimental situation of interest. 

As a proof of concept, we split the ImageJ-compatible Java implementation of the MOSAICsuite Particle 

Tracker (Sbalzarini & Koumoutsakos, 2005; Incardona & Sbalzarini, 2014) to generate an independent Particle 

Detection and Particle Linking plugins for OMEGA, which we thoroughly benchmarked (Supplemental 

Information 1). This algorithm was selected because its performance was formally assessed in a recent objective 

comparison, where it was found to be one of the most versatile and computationally fastest among the evaluated 

algorithms (Chenouard et al, 2014). In addition, the algorithm has been specifically designed for images with 

low SNR where prior knowledge of motion modalities is absent, such as during the exploration and 

optimization phases of a tracking assay. The integration of additional Particle Detection and Particle Linking 
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plugins in OMEGA is planned for future releases. 

2.4 SNR Estimation: image quality control 
The accuracy and precision of particle detection as well as that of all downstream trajectory analysis steps 

depend very closely on the local SNR observed in the immediate surroundings of each identified particle. The 

OMEGA SNR Estimation module implements plugins that estimate the SNR associated with each tracked 

particle allowing the identification of images whose quality does not support reliable particle detection and 

tracking. At time of writing, OMEGA ships with a single local SNR Estimation plugin consisting of a custom 

Java implementation of the MOSAICsuite’s Local SNR Estimation algorithm originally developed by the 

MOSAIC group in Matlab (Xiao et al, 2016; Gong & Sbalzarini, 2016). This routine, which was benchmarked 

as described (Supplemental Information 1), uses the particle coordinates obtained from the Particle Detection 

plugin to extract intensity values from each associated image plane and estimate background, noise and SNR 

pertaining to the area immediately surrounding each particle. Moreover, the plugin computes aggregate SNR 

values at both the plane and the image level. Briefly, the algorithm first determines the global background and 

noise associated with the entire image plane where individual particles are localized. It then takes the particle 

radius as defined by the user to draw a square area around each particle’s centroid and identify the brightest 

pixel within the particle area (i.e., peak intensity). Finally, it estimates local noise, local background and local 

SNR. Specifically the latter is calculated using three independent models: two are based on the Bhattacharyya 

distance (i.e., Bhattacharyya Poisson, and Bhattacharyya Gaussian) and the third is based on the method 

proposed by Cheezum (Cheezum et al, 2001).  

After calculating local SNR values, the algorithm returns aggregate SNR values at the trajectory, plane and 

image level, which are utilized two-fold in OMEGA. The global local SNR average over the entire image is 

used to estimate the minimum detectable Observed Diffusion Constant (ODC; Supplemental Information 1). 

The global minimum local SNR each given trajectory is utilized to estimate the confidence associated with both 

ODC and SMSS estimations and with motion type classification (Rigano et al). In addition, image averages, 

minimum and maximum local SNR values can be utilized by the user to evaluate the overall image quality and 

general performance of the particle detector as specified by the algorithm developer (see below). For example, 

in the case of the MOSAICsuite Particle Detection algorithm, which is currently implemented in OMEGA, an 

SNR value lower than a threshold of 2 as calculated according to Cheezum (Cheezum et al, 2001), indicates to 

the user that particle detection and motion analysis will not be reliable and better images should be acquired.  

2.5 Trajectory Manager: trajectory curation 
This module provides interactive graphical support for the inspection of trajectory data quality, correction of 

linking errors and subdivision of trajectories in segments of uniform mobility.  
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2.5.1 Trajectory editing  
Linking algorithms generally perform satisfactorily provided certain signal to noise ratios, spatiotemporal 

sampling and observation times criteria are met (Jaqaman & Danuser, 2009). However, despite steady 

improvements in particle linking methods (Sbalzarini & Koumoutsakos, 2005; Chenouard et al, 2014; 2009a; 

2009b; Jaqaman et al, 2008; Sergé et al, 2008; Tinevez et al, 2016; Genovesio et al, 2006; Ku et al, 2007; Jug 

et al, 2014; Kalaidzidis, 2009) it is often necessary to manually inspect and edit individual links. The OMEGA 

Trajectory Editing plugin is implemented as part of the Trajectory Manager module and uses our custom 

Trajectory Browser graphical interface to facilitate splitting and merging of trajectories that upon inspection 

appear to be faulty (Figure 2-9). The most frequent linking errors are due to the following: 1) excessive particle 

density; 2) insufficiently temporal sampling (i.e., particles move too fast with respect to time interval employed 

during acquisition); 3) splitting or merging of trajectories, which might result either from an artifact (i.e., two or 

more particles are close enough that their distance is below the diffraction limit) or from the actual interaction 

between particles; and 4) particle blinking or moving temporarily out of focus. 

2.5.2 Trajectory segmentation 
The movement of intracellular objects, such as viral particles or vesicles, is often characterized by frequent 

switches between different dynamic behaviors the analysis of which can be used to infer interactions between 

the moving object and its immediate surroundings (Helmuth et al, 2007). For example the interaction of viral 

particles with motor proteins might result in directed motion along microtubules (Brandenburg & Zhuang, 

2007; Arhel et al, 2006; McDonald et al, 2002; Sun et al, 2013; Fernandez et al, 2015). On the opposite side of 

the spectrum, interaction with relatively immobile cellular structures such as nuclear pore complexes or 

membrane rafts, might result in the transient confinement of particles to restricted zones (Schelhaas et al, 2008; 

Burckhardt & Greber, 2009; Kusumi et al, 2014; 1993).  

Because motion characteristics can be reliably estimated only when trajectories describe stationary and 

ergodic processes, it is often necessary to decompose trajectories into individual uniform polyline segments to 

be individually subjected to motion analysis. One additional advantage of this process, herein referred to as 

Trajectory Segmentation is that events can be defined as specific series of segment types whose frequency can 

chance as a result of specific molecular or cellular events.  

The Trajectory Segmentation plugin of OMEGA provides a specialized version of the Trajectory Browser 

GUI to assists the user in decomposing trajectories into uniform tracts, each of which can then be analyzed 

separately (Figure 2-8). The tool allows users to select manually the start and end point of segments and assign 

a putative motion type to each segment (i.e., yellow, confined; fuchsia, sub-diffusive; blue, diffusive; purple, 

super-diffusive; maroon, directed; Supplemental Table II; Figures 5B and 6; Supplemental Figure 3). This 

manual method can be used in conjunction with an iterative validation process to reliably obtain homogeneous 

trajectory segments (see below and Figures 5 and 6). In subsequent releases, we plan to integrate automated 
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methods for trajectory segmentation in OMEGA (Helmuth et al, 2007; Wagner et al, 2017; Huet et al, 2006; 

Persson et al, 2013; Wang et al, 2017). 

2.6 Tracking Measures: trajectory analysis, motion type classification and error 
estimation 

Trajectory analysis reduces a sequence of spatial coordinates into scalar quantification parameters that are 

computed using various averaging techniques applied along the length of the trajectory (Supplemental Table I). 

The ultimate goal is to gain new understanding about the system under study by computing “biologically 

meaningful quantitative measures from these coordinates” (verbatim from: Meijering et al, 2012). Specifically, 

OMEGA computes Intensity Tracking Measures (ITM), Mobility Tracking Measures (MTM) and Velocity 

Tracking Measures (VTM), which are only subject to localization accuracy (i.e., algorithmic systematic bias) 

and precision (i.e., noise associated random errors) and are therefore considered deterministic (Figures 1, 2 and 

4). In addition, OMEGA calculates quantities such as Diffusivity Tracking Measures (DTM) whose values are 

strongly influenced by sample size, and are therefore statistical (Figures 1, 2 and 4). To facilitate all analysis 

tasks, the OMEGA Tracking Measure plugins provide a rich interface for users to select trajectory segments 

using a specialized Segment Browser panel (Figure 2-9), perform quantitative motion analysis on selected 

segments, examine results in both a tabular and graphical form, export data for downstream processing using 

third-party application and produce publication grade figures (Figures 4-8). All Tracking Measures plugins 

(Figure 4) calculate and display both local (i.e., pertaining to an individual particle) and global measures (i.e., 

pertaining to a whole trajectory or trajectory-segment) as applicable. Furthermore, these plugins can perform 

limited statistical analysis by computing frequency distributions at the image level. In order to compare results 

obtained across different images and datasets the user can export results and perform downstream statistical 

analysis using tools such as R or Matlab (MATLABMathWorks:2018tc; The R Foundation, 2018). 

In addition to calculating tracking measures, OMEGA facilitates the classification of either full trajectories 

or individual uniform segments based on motion type using the ODC vs. SMSS phase space method developed 

by Ewers et al. (Figures 5 and 6; Supplemental Figure 3; Supplemental Table II; Ewers et al, 2005; Schelhaas et 

al, 2008; Sbalzarini & Koumoutsakos, 2005). Last but not least, OMEGA estimates the effect of spot detection 

uncertainty, limited trajectory length and motion type on the reliability of downstream motion analysis results as 

an essential pre-requisite for scientists to critically evaluate and compare results (see below).  

2.6.1 Trajectory analysis 
Intensity Tracking Measures 

Fluorescently labeled particles might display changes in fluorescence intensity as a result of addition or loss 

of labeled components as well as of photo-bleaching and -toxicity. It is therefore often important to report 

changes in the signal intensity of tracked objects (Figure 4 and Supplemental Table I). For example, when 

tracking dual-color enveloped viral particles carrying a membrane marker, a sudden drop in intensity might 
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indicate fusion between the viral envelope and the acidic endocytic compartment (Mamede et al, 2017; Sood et 

al, 2017; Padilla-Parra et al, 2013; Sood et al, 2016; Itano et al, 2018). Alternatively, when studying endocytic 

trafficking, changes in intensity might inform about specific cargo sorting events (Navaroli et al, 2012). Most 

tracking algorithms compute either centroid intensity, peak intensity or both. In addition, the mean intensity of 

the particle might also be computed when the area of the particle is available. The OMEGA ITM plugin gathers 

relevant intensity values for each identified particle either directly from the Particle Detection plugin or if 

necessary from the SNR Estimation plugin and makes them available for visualization on screen as well as for 

downstream analysis. 

Mobility Tracking Measures 
Mobility measures are relatively easy to compute and assess the quantity of motion away from the origin or 

from a reference point, the duration of motion and the persistence along a specific direction (Figures 4 and 6; 

Supplemental Figure 3; Supplemental Table I). For example, in viral trafficking it is important to quantify what 

proportion of viral particles move consistently towards the cell center versus those that remain confined near the 

site of viral entry at the cellular periphery (Yamauchi et al, 2011; Navaroli et al, 2012; Jaqaman et al, 2016; 

2011). In OMEGA, local MTM quantify motion associated with a single step (i.e., trajectory link) and include 

Distance Traveled, Instantaneous Angle and Directional Change. Among global measures computed in 

OMEGA are: Total Curvilinear Distance Traveled (i.e., the total path length followed by a Brownian particle 

from start to end of motion; Saxton, 2009), the Total Net Straight-Line Distance Traveled (i.e., the distance 

between the beginning and the end of motion) and the Confinement Ratio (also known as the meandering index, 

straightness index or directionality ratio) as  a measure of the straightness of trajectories or the confinement of 

moving particles (Sergé et al, 2008; Beltman et al, 2009). 

Velocity Tracking Measures 
Measuring the rate of displacement of moving intracellular objects such as vesicles or viral particles can 

provide important information about the underlying mechanism of motion (Figures 4 and 6; Supplemental 

Figure 3; Supplemental Table I). For example, a fast moving viral particle that is also moving in a consisted 

direction might be moving along microtubules while a particle confined within a membrane raft might remain 

relatively still for large proportions of time (Gazzola et al, 2009; Suomalainen et al, 2001; Engelke et al, 2011). 

In OMEGA, VTM include local measures such as Instantaneous Speed. Global measures include Average 

Curvilinear Speed, Average Straight-line Speed, and Forward Progression Linearity, which gives a measure of 

how quickly an object is moving away from its origin during the total trajectory time (Meijering et al, 2012). 

Diffusivity Tracking Measures 
Because of their size, intracellular vesicles, virions and all diffraction-limited objects behave like Brownian 

particles, whose default state is normal diffusion (Saxton, 2009). Under these conditions, alteration in the 

diffusion state of particles result from molecular interactions that alter the general direction or the rate of 

motion. As a corollary, the distinction between normal vs. abnormal diffusion represents one of the most 
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important steps in an attempt to distinguish between phases in which particles are free to move about and phases 

in which they are engaged in interactions with the surrounding cellular milieu that restrict their mobility. This in 

turn provides important clues for the understanding of the underlying mechanisms influencing the behavior of 

intracellular virions, vesicles, and other structures. 

All motion processes can be described in terms of the probability that a given particle that at time 0 is found 

at position x(0), moves to position x(t) at time t. Thus, despite the fact that the diffusion coefficient (D; Saxton 

& Jacobson, 1997) is not constant in time for anomalous diffusion processes, this allows the extension of 

diffusivity analysis to all types of anomalous diffusion (Ferrari et al, 2001; Sbalzarini & Koumoutsakos, 2005). 

Based on these premises, OMEGA implements a single method to classify the dynamic behavior of individual 

particles regardless of their motion characteristics and employs the same method for particles whose dynamic 

behavior changes during the course of motion, as is commonly observed in living systems (Tables I and II).  

Specifically, the method implemented in OMEGA (Figures 4-8; Supplemental Figure 3; validated as 

described in Supplemental Information 1) reproduces well-known methods (Sbalzarini & Koumoutsakos, 2005; 

Schelhaas et al, 2008; Ewers et al, 2005), which combines two components: 1) quantitative assessment of the 

degree to which the motion characteristics of the particle under study deviate from free diffusion; and 2) 

estimation of the quantity of displacement. In order to assess the diffusivity characteristics of a given particle, 

the OMEGA DTM plugin (Figures 4-8; Supplemental Figure 3) uses a well-established method based on the 

observation that the Squared Displacement (SD) of a diffusing particle from the origin of motion grows linearly 

with time in expectation. After time averages of SD (Landau & Lifshitz, 1960) – Mean Squared Displacement 

(MSD) – are computed for individual trajectories as a function of calculation time lag (∆t), the scaling behavior 

(i.e., slope) in plots of log(MSD) vs. log(∆t) can be used to calculate D and is sometimes used as an indication 

of whether the trajectory under study is characterized by normal (slope = 1) or anomalous diffusion (slope ≠ 1; 

Supplemental Table II; Saxton, 1993).  

Because the slope of log(MSD) vs. log(∆t) plots is not sufficient to discriminate between normal and 

abnormal diffusion, OMEGA implements a method developed by Ferrari et al. and based on the estimation of 

the Hurst exponent (Hurst et al, 1965; Hurst, 1951; Ferrari et al, 2001) to increase the accuracy of motion type 

prediction. This method, primarily referred to as Moment Scaling Spectrum (MSS) analysis, extends the study 

of the logarithmic scaling behavior with respect to ∆t to moments of displacement (µν) other than the moment 

of displacement of order ν = 2, which corresponds to the MSD (i.e., MSD = µ2). Thus, a MSS graph is 

constructed plotting the values of µν vs. the corresponding values of the logarithmic scaling factor (i.e., ϒν) and 

the Slope of the MSS curve (SMSS) is used to discriminate between different motion modalities, where SMSS 

= 0.5 corresponds to normal diffusion, while values of SMSS ≠ 0.5 correspond to anomalous diffusive states 

(Supplemental Table II). In order to calculate the quantity of displacement, OMEGA calculates the generalized 

Observed Diffusion Constant of order ν = 2 (ODC2), which in case of a purely diffusive Brownian particle 
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coincides with D (Saxton & Jacobson, 1997).  

Specifically, OMEGA calculates the values of µν for ten different orders (ν= 1-10)  as well as all 

corresponding ϒν and ODCν values, and reports them in tabular form. In addition, OMEGA reports values of 

ODC2 (i.e., henceforth referred to as ODC) calculated from the intercept of the linear regression of log-log 

(ODC2log) plots of MSD vs. ∆t (Sbalzarini & Koumoutsakos, 2005), which is more robust in case of 

trajectories that differ significantly from free normal diffusion. Finally, the value of the slope of the log-log plot 

of MSD vs. ∆t (ϒ2), as well as the SMSS (also termed β) are reported as global estimates of the dynamic 

behavior of particles under study and made available in both graph and table format (Figures 4-8; Supplemental 

Figure 3; Supplemental Table I).  

2.6.2. Motion type classification 
Global motion analysis reduces whole trajectories to a series of individual measurements or features (Tables 

I and II). The combination of two or more of such features enables the representation of individual trajectories 

as points in n-dimensional phase space. In addition to representing a massive data reduction, this approach has 

the advantage of facilitating the classification of the mobility characteristics of multiple particles all at once 

without arbitrary selection. Thus, trajectories clustering in phase space are expected to have similar dynamic 

behavior and in turn correspond to similar functional states. An additional advantage of this method is that 

states described in this manner could be defined dynamically depending on individual scientific questions while 

at the same time could be the subject of standardization. At the time of writing, motion classification in 

OMEGA is based on the phase space of SMSS vs. ODC, which allows to quantify both the “speed” and the 

“freedom” of a group of moving objects independently, as previously described (Sbalzarini & Koumoutsakos, 

2005; Schelhaas et al, 2008). The addition of further features to augment phase-space clustering, such as the 

Directional Change between subsequent displacement steps or measures of anisotropy (Huet et al, 2006) is 

easily implementable due to the generic nature of the underlying architecture and is planned for future releases. 

Iterative motion type classification/segmentation workflow  
As mentioned, motion type classification in OMEGA is based on the visual inspection of log-log plots 

describing the variation of either MSD or of moments of displacement of different order over increasing time 

intervals (Supplemental Table II). In the presence of motion type transitions within an individual trajectory (e.g. 

periods of confinement followed by normal diffusion; or periods of deterministic drift interspersed with bursts 

of directed motion), global quantitative measures that are averaged over the entire duration of the trajectory, 

such as ODC and SMSS, represent unreliable estimates of particle dynamics (Ewers et al, 2005; Helmuth et al, 

2007). To obviate this hurdle, OMEGA implements an interactive pipeline for motion type classification 

(Figures 5 and 6; Supplemental Figure 3), which is based on the notion that the MSS plot carries information 

about the “self-similarity” of the motion under study (Ferrari et al, 2001). Specifically, if all moments in the 

spectrum scale linearly with order, then the MSS is a line and the motion is defined as “strongly self-similar”; 

conversely if the MSS curve is kinked or bent, the movement is classified as “weekly self-similar”, indicating 
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the existence of transitions between different states. 

All of these observations lead to a straightforward iterative workflow (Figure 5A): 1) after particle tracking, 

trajectories are subjected to MSS analysis. 2) If the resulting plot is observed to be bent, the trajectory can be 

iteratively subdivided into segments until all resulting segments produce a straight MSS line. 3) At this point, 

ODC and SMSS are estimated and each segment is plotted as a point in phase space. The position of each 

trajectory in phase space as described above reflects their dynamics and is used to assign trajectories to motion 

type classes whose frequency in the segment population can be estimated by drawing windows around clouds of 

points, and compared across experimental conditions by statistical analysis using third-party applications as a 

prerequisite for functional analysis. 

As an example, uniform artificial trajectories of known mobility were generated using the custom-made 

artificialTrajectories2 Matlab routine (Helmuth et al, 2007), imported into OMEGA using the Data Browser 

module and assigned the corresponding motion type label by using the OMEGA Trajectory Segmentation 

plugin (Supplemental Table II). After subjecting to diffusivity analysis using the corresponding OMEGA 

plugin, trajectories were classified on the basis of their measured ODC and SMSS, which resulted in excellent 

agreement with the ground-truth behavior (Figure 5B and Supplemental Figure 3). 

In order to mimic iterative segmentation vs. classification, uniform artificial trajectories were merged to 

produce trajectories comprising five different motion types. This resulted in “bent” MSS curves, indicating the 

non-uniform nature of the overall process. When the mixed trajectory was subdivided in segments and each was 

analyzed individually, this gave rise to five independently linear MSS curves allowing each segment to be 

correctly classified independent of its neighbors (Figure 6). 

2.6.3 Estimation of motion type classification error  
In order to interpret and draw valid conclusions from analysis results, the error associated with each 

measurement or calculation has to be determined and its effect on downstream analysis steps (i.e., error 

propagation) has to be clearly understood. Despite the apparent truism of this statement, attention to error 

propagation in particle tracking has been limited (Sbalzarini, 2016). To address this issue, OMEGA 

incorporates both theoretical and empirical methods to estimate uncertainties associated with motion analysis 

results. Details of our error estimation procedure are described in an associated manuscript (Rigano et al), here 

we provide a short description of the method.  

While linking errors are orthogonal to motion analysis and are addressed elsewhere (Tinevez et al, 2016), 

uncertainty associated with spot detection strongly affects the accuracy with which trajectories can be classified 

on the basis of their observed dynamic behavior (Ewers et al, 2005). In addition, even with infinitely precise 

and true positioning, trajectory measures are expected to display statistical uncertainty because of finite 

trajectory lengths. These finite-data uncertainties diminish as the number of points that are detected as part of 

each trajectory increases. In addition to these well-known sources of error (i.e., position and sampling), we also 
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determined that the quantity of displacement as well as the freedom of motion of moving particles (i.e., ODC 

and SMSS respectively) affect motion type estimation uncertainty. 

When image quality is low (i.e., low SNR), the verisimilitude of positioning estimates might be as low as to 

make it difficult to distinguish between actual movement and apparent positional shifts arising from both 

systematic and random localization errors. This is particularly problematic for random walks, which can be 

discriminated from sub-diffusing particles and even from stationary particles only when their ODC is large 

enough to cause particle motion larger than the localization uncertainly (Martin et al, 2002). Based on these 

premises, given the observed image quality it is possible to define a “limit of detection” below which ODC 

values can be considered meaningless. For this purpose we employ the global error model described by Martin 

et al. (Martin et al, 2002) to calculate Minimum Detectable ODC of order 2 (𝑂𝐷𝐶! !"#$%&) values as a function 

of image quality and detection (see Supplemental Information 1). Once calculated, 𝑂𝐷𝐶! !"#$%& is reported in 

both tabular and graphical form (Figures 7 and 8). This threshold can be used to exclude from subsequent 

analyses steps trajectories whose global ODC value is too low to be meaningfully distinguished from noise. 

Despite significant advances (Martin et al, 2002; Gloter & Hoffmann, 2007) the effect of positional 

uncertainty and sample size on motion type estimates remain difficult to theoretically predict. Thus, we 

reasoned that a better approach would be to empirically estimate the uncertainty associated with each ODC and 

SMSS measurement (i.e., local error analysis). For this purpose, we developed a numerical method, based on 

the Monte Carlo simulation of artificial trajectories, whose true position with respect to the imaging system, rate 

of displacement (i.e., ODC), freedom of movement (i.e., SMSS) and length and are fully known (Rigano et al). 

After simulating the effect of positional error on these “ground truth” trajectories under different image quality 

contexts (i.e., SNR), ODC and SMSS are back-computed from the resulting “noisy” trajectories and the 

comparison between input and output values is used to estimate the uncertainty associated with motion type 

estimation as a function of expected motion characteristics (i.e., ODC and SMSS), motion duration (i.e., 

trajectory length L) and image quality (i.e., SNR). Using this information, the empirically generated four 

dimensional matrices relating L, SNR, ODC and SMSS values with expected values of ODC and SMSS, are 

interrogated by linear interpolation to obtain the uncertainty value associated with each trajectory under study. 

In turn, these ODC and SMSS uncertainty values are reported both in tabular format and as confidence intervals 

on two-dimensional ODC vs. SMSS scatter plots, which forms the basis for motion type classification in 

OMEGA. 

2.7 Data browser, storage and export: trajectory data management and 
dissemination 

The Data Browser is the main data management gateway for OMEGA (Figure 2-12; Supplemental 

Information 1) and it provides an intuitive interface that allows users to navigate across the entire data and 

metadata chain from images to trajectories, segments, tracking measures, and motion analysis uncertainties. It 
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facilitates the execution of four main processes each associated with its specific data path: 1) interactively 

navigate and display analysis output already present in OMEGA; 2) import pre-computed orphaned trajectories; 

3) import previously stored analysis results associated with available images or trajectories; 4) save selected 

analysis results to database or export it for downstream analysis in third party applications.  

2.7.1 Data Browser 
At each step of the analysis workflow (Figures 1 and 4), the user can decide to compare results obtained 

using different parameter settings. Consequently, each set of results (i.e., detected particles, trajectories, edited 

trajectories, segments etc.) can be considered a branching point the dependence tree of possible result datasets. 

Consistent with this hierarchical structure, the Data Browser module facilitates the interactive display of 

dynamic lists that are populated with the analysis children of any selected data element (Figure 2-12; 

Supplemental Information 1). These resulting trees are presented to the user using the familiar Column View 

interface, where relevant metadata and result summaries are displayed at the bottom of each column to facilitate 

the identification of the desired data path. Additionally, to reduce work space clutter, results that at any point of 

time are not of immediate interest can be temporarily hidden from the view by unchecking their selection mark. 

Once identified and selected, results branching off a given element can be imported from the OMEGA database, 

displayed in parallel on all concurrently opened windows (e.g. Trajectory Browser, Side Bar and Tracking 

Measures), saved to the database, or exported for use on third-party applications. 

2.7.2 Data storage and data provenance 
Information describing the “origin” and “lineage” of data is essential for scientists to be able to correctly 

interpret image analysis results. Such information is often referred to as describing “data provenance” and can 

be conceptualized as metadata capable of answering key questions describing manipulation events occurring 

during the data lifecycle (Ram & Liu, 2009). To facilitate tracking the provenance of data, comparing results 

across laboratories and reproducibility, OMEGA bridges between dedicated image servers to retrieve image 

data and metadata (Goldberg et al, 2005) and dedicated results databases to mine and store analytical output. 

OMEGA stores the entire particle tracking and analysis results data chain in a dedicated relational data-hub 

whose schema recapitulates our recently proposed Minimum Information About Particle Tracking Experiments 

(MIAPTE) guidelines (Rigano & Strambio-De-Castillia, 2017). The use of MIAPTE facilitates management of 

data quality, particle tracking, motion analysis and error estimation results and facilitates meaningful 

comparison and reproduction of results obtained at different moments in time and from different laboratories 

(Figure 1C; Rigano & Strambio-De-Castillia, 2017). This database stores trajectories, analysis parameters, 

motion analysis results, and associated uncertainties and links all of this information with the source image data 

and metadata. All access to the OMEGA database is mediated by the OMEGA client making its presence 

transparent to the user.  
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2.7.3 Result data export  
In addition to being able to store structured data in the OMEGA database, the user can alternatively 

chose to export any portion of the tracking and motion analysis results to file for third-party secondary analysis. 

In case of “orphaned trajectories”, export to file is the only available option for results storage. This function is 

available in the Data Browser where the user can choose to export specific results or entire particle tracking and 

trajectory analysis sessions including all analysis definition metadata to facilitate downstream statistical analysis 

using third party applications (i.e., R or Matlab), data exchange with other researchers, meta-analysis and 

reproduction of results. 

3 – Example use-cases and applications 
We present here two use cases to illustrate OMEGA functionality. The first test case takes advantage of 

simulated image datasets that were produced to directly compare different MPT algorithms (Chenouard et al, 

2014); scenario IV, infecting viral particles; SNR = 7; low particle density). As expected, when images were 

subjected to MPT within OMEGA, most trajectories displayed a stretched out appearance with occasional 

direction transitions, mimicking a condition where most particles display the tendency of “flying” over long 

distances in a particular direction (i.e., Lévy flights; Levy, 1937), such as what is observed in active motion 

(Figure 7). When trajectories were manually inspected, most appeared to be correct. However, trajectory nr. 424 

appeared to be composed of two erroneously linked trajectories (Figure 7B), consistent with the observed 

“kinked” shape of the MSS curve (Figure 7C, bottom left, arrowhead). The use of the Trajectory Editing tool 

(Figure 7 A and D) allowed to split this trajectory in two individual trajectories, 424.1 and 424.2 (Figure 7E and 

F). While trajectory 424.1 gave rise to a straight MSS curve for trajectory consistent with the identification of a 

uniformly mobile particle, a similar analysis of 424.2 produced a bent curve indicating that such trajectory is 

apparently produced by a particle whose mobility is non self-similar and would require segmentation (Figure 

7F). After trajectory editing, all resulting trajectories were subjected to diffusivity analysis (Figure 7G-K). The 

results of such analysis were consistent with the trajectories displaying directed motion, as indicated by the 

clustering of trajectories in the top quadrant of the phase space (Figure 7J, red circled area) as well as the 

prevalence of SMSS values close to 1 (Figure 7K). In particular trajectories nr. 27 and 32, as well as edited 

trajectory nr. 424.1, displayed a straight MSS curve suggesting uniform mobility and validating the ODC and 

SMSS values estimations calculated in OMEGA. It should be noted that the ODC and SMSS estimation errors 

we observed are consistent with a high SNR level and relatively short trajectories (i.e., relatively small ODC 

error and relatively high SMSS error). 

The second OMEGA test case is a real-life example provided by the Hunter’s lab (Clark et al, 2013; Pereira 

et al, 2012; Pereira et al, 2014). In this example, CMMT rhesus macaques (Macaca mulatta) mammary tumor 

cells chronically infected with Mason-Pfizer Monkey Virus (M-PMV), a D-type retrovirus, were co-transfected 

with a plasmid expressing a codon-optimized GFP-tagged variant of the M-PMV Gag precursor polyprotein 
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alongside one expressing mCherry-Tubulin (i.e., a microtubule subunit). Seven hours post-transfection cells 

were either mock-treated (Figure 8, Untreated) or treated with the microtubule polymerization inhibitor 

Nocodazole (Figure 8, Treated) for 1 hour prior to live imaging to observe the assembly of viral particles and 

their trafficking towards the plasma membrane. Example images were first imported into OMERO and then 

loaded into OMEGA for MPT (Figure 8A and B). Trajectories were examined using the OMEGA DTM plugin 

and a subset of trajectories displaying uniform mobility as indicated by a straight MSS graph, were assigned a 

specific motion type as indicated by the position of the line on the MSS plot. In Untreated cells, most 

trajectories were found to display a sub-diffusive behavior (Figure 8B and C, fuchsia) with a minority of viral 

particles displaying clearly diffusive and super-diffusive mobility (Figure 8B and C, blue and purple 

respectively). An example super-diffusive trajectory (i.e., purple) is displayed in the bottom insert in panel 7B. 

As expected, when cells were treated with Nocodazole, the global intracellular mobility of viral particles was 

dramatically reduced as testified both by the overall collapse of resulting trajectories (Figure C and D, compare 

top left panels) and by the clustering of viral trajectories in ODC vs. SMSS phase space (Figure 8C and D, right 

panels, compare the grey area vs. the red area). While the biggest effect was observed on ODC values, which 

drastically diminished, a significant effect was also observed on the MSS behavior as shown by comparing the 

resulting SMSS distributions in Untreated vs. Treated cells (Figure 8C and D, bottom left panels; Figure 8E). Of 

note, this analysis took a total of 5 minutes and required no manual tracking testifying the advantage of using 

OMEGA for increasing the throughput of systematic motion analysis experiments to higher levels than allowed 

by the use of individual and analysis tools.  

4 – Discussion 
Despite tremendous improvements in space and time resolution of modern microscopic techniques, the 

translation of such advances towards increased understanding of intracellular particle movement has proceeded 

at a significantly slower pace. This state of affairs cannot be circumvented without the development of a 

collaborative infrastructure that allows the direct interaction of experimental scientists that have a deep 

understanding of the biological system under study, with image analysis experts, mathematicians, statisticians, 

algorithm developers and software engineers that can help make sense of the data. Such collaborations are 

increasingly developed at the local scale (i.e., individual well-funded laboratories and inter-institutional ad-hoc 

collaborations). However, in order to facilitate the paradigm shift that is required for a truly systematic approach 

to intracellular trafficking, one that is capable of integrating genomics, transcriptomics, proteomics and 

functional data, it is necessary to develop a virtual “table” where all required expertise can convene across time, 

space, experimental systems and contexts to bring about substantial progress towards the fundamental 

understanding of the system as a whole. In order to provide a significant contribution towards this goal we have 

developed OMEGA. This tool has the following important characteristics: 
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1. OMEGA focuses uniquely on the analysis workflow required for multiple particle tracking and motion 

analysis. 

2. OMEGA can serve as a testing ground for the development of analytical and data management standards 

that can be then expanded to other fields. 

3. OMEGA provides a shared framework that can be used across expertise level by all the stakeholders that 

need to be involved in particle tracking.  

4. OMEGA provides explicit and open-access support for uncertainty estimation and for the evaluation of how 

such error propagates through the analysis routine. This is arguably the first essential step towards true data 

standardization and data sharing. 

Open-source, bioimage informatics initiatives largely focus on the production of general tools to address 

several individual analytical needs with much less emphasis on integration of data management and error 

propagation (Table I; Tinevez et al, 2016; de Chaumont et al, 2012; Cardona & Tomancak, 2012). We reasoned 

that a better approach would be to horizontally tackle a very limited set of biological questions and address 

them holistically from data acquisition to results interpretation. As a test case, we decided to study the dynamic 

behavior of retroviral viral particles during the initial phases of the viral life cycle. We reasoned that this 

approach would have several advantages. Firstly, retrovirus cell biology is well within our realm of expertise 

(Xu et al, 2013; Pertel et al, 2011a; 2011b; Sokolskaja et al, 2010; Neagu et al, 2009; Sebastian et al, 2009; 

Strambio-De-Castillia & Hunter, 1992) and it is a relatively technology-poor field, with well-documented and 

urgent scientific and quantitative analysis needs, and consequent opportunity for development. Second, MPT 

and motion analysis entail a well-defined series of analytical steps, which currently are not well integrated 

among one another and lack, metadata and procedure standardization as well as error estimation. Third, 

initiatives to foster community efforts for the improvement of MPT and motion analysis tasks are well 

underway (Chenouard et al, 2014) potentially facilitating further collaboration. Finally, this approach could 

serve as proof-of-principle for the maturation of inter-disciplinary collaborations between experimental and 

computational scientists that could be extended to other image analysis tasks. 

To enhance usability by scientists OMEGA relies on graphically supported user interactions. To improve 

interoperability and use by developer-users, the platform relies on a solid modular architecture, with defined 

and well-documented programming interfaces. To facilitate data sharing and reproducibility, OMEGA assigns a 

Universally Unique Identifier (UUID) to each data element, and complies with the existing OME-TIFF image 

metadata definition standard as well as our newly proposed MIAPTE guidelines. Finally, by directly addressing 

issues of error propagation and data provenance, and by relying on semantic data models to record tracking 

results and analysis-definition metadata (Goldberg et al, 2005; Rigano & Strambio-De-Castillia, 2017), 

OMEGA lays the ground for the development of analytical standards for particle tracking. Such standards are a 

prerequisite for data reproducibility, reusability and transferability between research groups.  
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5 – Conclusions 
OMEGA is a novel cross-platform data management system for particle tracking experiments. OMEGA is 

freely available, flexible and easily extensible. It links upstream image data and metadata with downstream 

motion analysis tools, it automates data handling, processing, quality monitoring and interpretation, ultimately 

facilitating the comparison of image analysis results, of data analysis routines and of uncertainty quantification 

both inside and across laboratories.  

OMEGA’s intuitive interface facilitates data selection, data import, analysis and reporting of analysis results 

and uncertainties. Data can be exported for use in third party tools and across laboratories laying the foundation 

for the meta-analysis of data generated by multiple users and making it possible, for example, to compare the 

effect of specific treatments on particle motion across different experimental systems.  

In conclusion, OMEGA facilitates the cooperation of all players whose role is required to understand 

complex biological systems: biological scientists, image analysis experts, algorithm developers, statisticians and 

software engineers. OMEGA is developed following a modern open development paradigm, which allows the 

entire bioimage informatics community to participate in its development. Thus, OMEGA facilitates the process 

of incorporating both novel and already available tools to build integrated data processing and analysis pipelines 

for quantitative, real-time, sub-cellular particle tracking. We hope that OMEGA will significantly contribute to 

the development of universal tools that can be used across multiple scientific questions, model systems and 

experimental contexts.  
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Figure 1:  
OMEGA imports images stored in OMERO executes a complete viral particle tracking and motion 
analysis workflow and manages results in the OMEGA results repository on the basis of a MIAPTE 
compliant data model. Schematic diagram depicting the system context in which OMEGA operates and the 
workflow required for the estimation of the sub-cellular trajectories followed by diffraction-limited intra-
cellular viral particles and the computation of biologically meaningful measures from particles coordinates. A) 
Images are acquired using any available microscope and imported into an available OMERO database. 
OMEGA imports images using the Image Data Browser plugin and subjects them to MPT in two independent 
steps using the Particle Detection and the Particle Linking plugins. As needed individual trajectories (in the 
example trajectory nr. 50) can be subdivided in uniform segments using the interactive Trajectory Segmentation 
plugin. In the example, trajectory nr. 50 was subdivided in three segments two of which were assigned the 
Directed motion type (maroon) and the third one was left un-assigned (grey). In addition, all other trajectories 
which appeared to be uniform in nature were assigned the color corresponding to the predicted motion type 
depending on the observed slope of the MSS curve (grey, unassigned; yellow, confined; fuchsia, sub-diffusive; 
blue, diffusive; purple, super-diffusive; maroon, directed). Trajectories were then subjected to motion analysis 
using the VTM and the DTM plugins. Instantaneous Speed results for trajectory nr. 27 and 32 and D vs. SMSS 
Phase space results for all trajectories are displayed. The position of spots representing trajectory nr. 27, 32 and 
50 are indicated. B) The path taken by data across the workflow indicated in panel A is represented using the 
data flow diagram (DFD) formalism. Here circles represent processes that transform data, arrows represent data 
in motion, arrow labels represent specific packages of data being moved, double lined-rectangles represent data 
at rest (i.e. data stores) and squares represent entities (i.e. Experimenter(s) and external data repositories) that 
interact with the system from the outside. C) In order to ensure the preservation of data provenance links, 
OMEGA utilizes a relational database whose model in based on our recently proposed Minimum Information 
About Particle Tracking (MIAPTE) guidelines. Depicted here is an Entity Relationship diagram representing 
the corresponding OME-XML (blue) MIAPTE (red, particle data; grey, analysis data) elements utilized to 
capture data pertaining to each step of the data-flow. 
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Figure 2: 
OMEGA for users: the graphical user interface. Upon starting the OMEGA application the user can access 
available plugins using the top-bar (1). After opening the Image Browser launch-pad (2) the user can launch the 
OMERO Image Browser plugin to select and load (3) one or more images of interest for inspection in the 
sidebar viewer (4). After defining different paired Particle Detection and Particle Linking (5) runs the resulting 
spots and trajectories can be visualized as overlays via the sidebar image viewer (6). Trajectories of interest (in 
the example trajectory nr. 27, 32 and 50, as indicated here and in Figure 1) can be highlighted with individual 
colors (in the example trajectory 27, green and trajectory 32, turquoise) in order to facilitate their identification 
in all available views. As an example, after executing the Intensity (7.1) and Mobility (7.2) Tracking Measures 
plugins, results obtained with selected trajectory nr. 27, 32, 50 can be plotted using the same colors used on the 
sidebar to facilitate results comparison and interpretation. In case individual trajectories appear to be non-self 
similar as often observed with intracellular viral particles (viz. in this case trajectory nr. 50), they can be 
subdivided into two or more individual segments of uniform motion type using the interactive graphical user 
interface provided as part of the Trajectory Segmentation plugin (8). In the example, trajectory nr. 50 was 
subdivided in three segments: segments 1-11 and 24-29, which were assigned the directed motion type 
(maroon) and segment 11-14, which was left unassigned (grey). As a result of this assignment, when displaying 
trajectories that have undergone segmentation on the Trajectory Browser (9), they appear split in individual 
sections each possessing two colors: the color that was assigned by the user to the unsegmented trajectory is 
displayed as the main square color (grey, in the highlighted example referring to trajectory nr. 50); the color that 
corresponds to the user-assigned motion type instead appears as the secondary color shown only at the square 
vertexes (maroon, in the highlighted example referring to trajectory nr. 50). In addition, after segmentation each 
portion of the trajectory is displayed on the Trajectory Segmentation window, the side bar (10)  and each of the 
Tracking Measures plot windows (11) using the user-assigned motion type color. In addition in order to 
facilitate user interpretation of the results, portions of a segmented trajectory that were not assigned a specific 
motion type are now displayed on the sidebar as dashed lines making it clear to the user that the segmentation 
process has taken place. At each step of the particle tracking and motion analysis workflow the user can 
maintain a clear picture of all available results stemming from different image-analysis data-flows using the 
OMEGA Data Brower (12). An additional advantage of this plugin is that it can be used to compare results from 
different runs as well as load results obtained from previous OMEGA sessions for further investigation. 
 

 
 
 
 
  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2018. ; https://doi.org/10.1101/251850doi: bioRxiv preprint 

https://doi.org/10.1101/251850
http://creativecommons.org/licenses/by-nc/4.0/


	

	 34 

	

Figure 3: 
OMEGA’s modular software architecture. The framework of the OMEGA application contains an 
Application Core, which drives all processes and interacts with the Image (blue elements) and the Analysis 
Results (red elements) data stores; and an Application Modules component, which is responsible of carrying out 
OMEGA particle tracking and motion analysis core functionality. The Application Core contains all main sub-
components including the event-driven logic driving all communication between the core and the analysis 
modules. The core also contains all GUI sub-components including the top menu bar, the side bar and the 
workspace, the analysis results repository preferences window, the module launcher dialog, which is opened 
every time users click on a module button on the top menu bar, and the plugin information dialog, which is 
opened when clicking on the additional information button of a specific plugin. The Application Modules 
component, contains all main functional logic in OMEGA and is organized around six modular element types: 
1) Image browser; 2) Particle tracking; 3) Trajectory manager: 4) Tracking measures; 5) SNR estimation; and 6) 
Data Browser. Each of these module types is responsible for the execution of one or more interchangeable 
plugins, which in turn are responsible for specific steps of the analysis pipeline. Currently, OMEGA ships with 
a set of eight Analysis (blue boxes), two Quality Control (green boxes) and two Data Management plugins 
(orange boxes). The Analysis plugins are: 1) MOSAIC Feature Point Detection; 2) MOSAIC Feature Point 
Tracker; 3) OMEGA Trajectory Editing; 4) OMEGA Trajectory Segmentation; and 5-8) OMEGA ITM, MTM, 
VTM and DTM. The Quality Control plugins are: 1) MOSAIC SNR Estimation; and 2) OMEGA Diffusivity 
Measure Error Estimation. The Data Management plugins are: 1) OMERO Image browser; and 2) OMEGA 
Data browser. 
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Figure 4: 
Motion analysis workflow in OMEGA. Schematic representation of the motion analysis workflow 
implemented in OMEGA using a flow-chart diagram formalism. After particle detection and linking, when 
appropriate the resulting dataset of trajectories is subjected to link-editing and trajectory segmentation to 
produce uniform trajectory segments. Segments are then analyzed using one or more of the available OMEGA 
Tracking Measures plugins. Finally, frequency distributions can be computed or data exported for more 
extensive statistical analysis using third party applications. 
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Figure 5 
Motion type segmentation and classification in OMEGA. A) Flow-chart diagram depicting the iterative and 
interactive OMEGA motion type classification workflow. The workflow starts with the production of 
trajectories by particle detection and linking (Step 1). Then for each trajectory of interest in the dataset the 
workflow continues as follows: Step 2) Perform  MSS analysis (Ferrari et al, 2001) and inspect the shape of 
each MSS plot. Step 3) If the plot appears bent, subject the trajectory of interest to Step 4, Else, continue to Step 
5. Step 4) Perform Trajectory Segmentation and start again from Step 2. Step 5) Estimate ODC. Step 6) 
Estimate SMSS. Step 7) Plot each trajectory on ODC vs. SMSS phase space. Step 8) Use the position of each 
trajectory on phase space to classify motion. B) Classification example using uniform artificial trajectories of 
known mobility characteristics. Ten self-similar artificial trajectories of known mobility were generated using 
our artificialTrajectories2 MatLab algorithm (Supplemental Information 1). After importing into OMEGA (top 
left) using the Data Browser data importer, they were first arbitrarily colored (i.e. shades of grey and green) and 
then assigned the motion type label corresponding to each expected motion type by using the Trajectory 
Segmentation plugin (top middle and right). Finally they were subjected to motion analysis using the DTM 
plugin (bottom row). Observed ODC (bottom left and right) and SMSS (bottom middle and right) numerical 
quantities and plot shapes were in excelled agreement with the corresponding indicated expected values. The 
position of each trajectory on the Phase Space plot was consistent with the expected motion behavior (bottom 
right). Input ODC values as indicated: 0.01 and 0.8 Input SMSS values as indicated: 0.1, 0.3, 0.5, 0.7 and 1.0. 
Motion types color codes: yellow, confined; fuchsia, sub-diffusive; blue, diffusive; purple, super-diffusive; 
maroon, directed (Supplemental Table II). 
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Figure 6 
Segmentation and classification example using non-uniform artificial trajectories. Top: In order to mimic 
iterative segmentation followed by motion type classification, five of the uniform artificial trajectories of known 
ODC and SMSS described in B were merged to produce a single trajectory of mixed mobility (Mixed-motion 
type trajectory). When subjected to the Ewers motion type classification method (Ewers et al. 2005) 
implemented in the OMEGA DTM plugin (1 - 4), the mixed trajectory gave rise to a clearly “bent” MSS curve 
indicating the non-uniform nature of the process (3). In this context, both the calculated ODC (2 and 4) and 
SMSS values (3 and 4) represent averages values over the length of the trajectory and are therefore non-reliable. 
In order to obviate this obstacle and correctly classify each motion type component, the mixed trajectory was 
subdivided in segments using the OMEGA Trajectory Segmentation plugin and each segment was analyzed 
individually (Uniform trajectory segments). As can be clearly observed (9-12), this gave rise to five 
independent linear MSS curves (11) indicating that the trajectory had been correctly subdivided in uniform 
segments and allowing each segment to be correctly analyzed and classified independently from its neighbors 
(12). Bottom: The mixed-type artificial trajectory was subjected to motion analysis using the MTM and VTM 
plugins, before (Mixed-motion type trajectory) and after (Uniform trajectory segments) segmentation using the 
OMEGA Trajectory Segmentation plugin. When Straight-line Distance Travelled, Straight-line Speed, 
Confinement Ratio and Directional Change were plotted along each trajectory as a function of time, the 
resulting graphs reflected the presence of different motion components along the length of the full trajectory, 
which were clearly highlighted after subdivision into individual segments. 
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Figure 7 
OMEGA example use-case using standardized MPT benchmarking datasets mimicking viral particle 
movement in infected cells. Time series image from the Chenouard et al. MPT benchmarking dataset 
(Chenouard et al, 2014) corresponding to scenario IV,  SNR = 7 and low particle density, was subjected to MPT 
within OMEGA. As expected most resulting trajectories displayed a behavior mimicking Levy flights (Levy, 
1937), such as what observed in active motion. While most trajectories appeared to be valid, trajectory nr. 424 
appeared to be the result of two erroneously linked particles, which was also confirmed by the appearance of a 
clear bend in the MSS curve (panel C, bottom left, arrowhead). When trajectory nr. 424 was edited using the 
Trajectory Editing plugin (panels A and D), the resulting  allowed to split this trajectory in two individual 
trajectories 424.1 and 424.2 (panels E and F), one of which (nr. 424.1) gave rise to a straight MSS curve, 
consistent with the behavior of a uniformly mobile particle (panel F). After editing, trajectories were subjected 
to diffusivity analysis (panels G-K), yielding trajectories clustering in the top quadrant of the phase space graph 
(panel J, red circled area) as well as the prevalence of SMSS values close to 1 (panel K).  
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Figure 8 
OMEGA example use-case using real-life imaging data: treatment with Nocodazole drastically reduces 
Gag-containing viral particles during M-PMV viral assembly. M-PMV producing, rhesus macaques CMMT 
cells were co-transfected with pSARM-GagGFP-M100A and p-mCherry-Tubulin to visualize the cytoplasmic 
assembly and trafficking of immature viral particles (Clark et al, 2013; Pereira et al, 2012; Pereira et al, 2014). 
7 hr post-transfection cells were either mock-treated (Untreated) or treated with Nocodazole for 1 hour 
(Treated), before microscopic observation under 60X magnification using a Delta vision deconvolution 
fluorescence microscope (Applied Precision Inc., Issaquah, WA), equipped with a Cool Snap CCD camera. All 
acquisitions were performed at 37°C in a micro chamber with CO2 infusion. 3D images (with 10 z-focal 
sections spaced 200 nm apart) were in captured every 5 seconds for a total of 2 minutes. Images presented here 
are maximum  projections of all z-sections in one plane. (A) After acquisition images were loaded onto 
OMERO and imported into OMEGA using the OMEGA image browser. (B) Images were subjected to single 
particle tracking using the OMEGA implementations of the MOSAIC particle detector and linker (Sbalzarini & 
Koumoutsakos, 2005). The resulting particles and trajectories were overlaid over the corresponding image using 
the OMEGA side bar image viewer. All trajectories were subjected to diffusivity analysis using the OMEGA 
DTM plugin. Trajectories that displayed a straight MSS plot curve were assigned the corresponding motion type 
using the OMEGA Trajectory Segmentation (TS) plugin. Insets display the motion-type assignment graphical 
user interface for a representative sub-diffusive (fuchsia) viral particle and the motion type classification 4-plots 
set (xy, MSD vs. t log-log, MSS and D vs. SMSS phase space plots) for a representative super-diffusive 
(purple) trajectory. (C) Global view of all identified trajectories for a representative image obtained from 
Untreated cell using the motion type classification 4-plots set. (D) Global view of all identified trajectories for a 
representative image obtained from Nocodazole treated cells, using the motion type classification 4-Plots set. 
(E) Comparison of the SMSS values frequency (i.e. relative frequencies expressed as percentages) distribution 
obtained with Untreated vs. Treated cells.  
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