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Abstract 
Information on species’ distributions and abundances, and how these change over time 
are central to the study of the ecology and conservation of animal populations. This 
information is challenging to obtain at relevant scales across range-wide extents for two 
main reasons. First, local and regional processes that affect populations vary throughout 
the year and across species’ ranges, requiring fine-scale, year-round information across 
broad — sometimes hemispheric — spatial extents. Second, while citizen science 
projects can collect data at these scales, using these data requires appropriate analysis to 
address known sources of bias. Here we present an analytical framework to address these 
challenges and generate year-round, range-wide distributional information using citizen 
science data. To illustrate this approach, we apply the framework to Wood Thrush 
(Hylocichla mustelina), a long-distance Neotropical migrant and species of conservation 
concern, using data from the citizen science project eBird. We estimate occurrence and 
relative abundance with enough spatiotemporal resolution to support inference across a 
range of spatial scales throughout the annual cycle. Additionally, we generate intra-
annual estimates of the range, intra-annual estimates of the associations between species 
and the local environment, and inter-annual trends in relative abundance. This is the first 
example of an analysis to capture intra- and inter-annual distributional dynamics across 
the entire range of a broadly distributed, highly mobile species.  
 

Keywords: biodiversity monitoring, abundance, full annual cycle, bird 
distributions, population trends, area of occurrence, Wood Thrush, bird 
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(a) Introduction 

Information on the factors that determine species’ distribution and abundance constitutes 
the foundation of much of our ecological knowledge on animal populations. To date, 
much of this information has been largely restricted to static patterns across large-spatial 
extents (e.g. distributions during the breeding season), or dynamic patterns for small-
spatial scales (e.g. local extinction and colonization dynamics). However, environmental 
factors that drive population dynamics are known to vary regionally and seasonally, and 
failing to account for this variation might yield biased information needed to inform 
future biodiversity scenarios under changing environmental and climatic conditions. To 
rise to this challenge, we need to develop analytical frameworks to generate accurate 
information on species distribution and abundance at relevant spatiotemporal scales, i.e. 
scales at which environmental processes operate, and across the broad spatiotemporal 
extents over which these processes vary (Heffernan et al. 2014), i.e. across the entire 
distributional range of species.  
 
Our ability to model abundance and distribution at relevant spatiotemporal resolutions 
and extents is largely limited by data availability for many taxonomical groups (Chandler 
et al. 2017, Hortal et al. 2015). This is largely driven by the lack of sufficient quantities 
of high-resolution observational data across broad spatiotemporal extents. Moreover, 
current information on species distributions often suffer from strong regional biases in 
data collection (Boakes et al. 2010). As a result, information on species distributions is 
not well suited to capture population dynamics between seasons or between years. Even 
for birds, one of the best-surveyed taxonomical groups, the majority of our knowledge is 
restricted to those time periods of data availability (e.g. the breeding season; Marra et al. 
2015) and we often struggle to track rapidly changing distributions (Massimino et al. 
2015). There are a few notable exceptions of large-scale monitoring programs that are 
able to generate continental-scale trends in abundance and distributions (North America: 
Sauer & Link 2011; Europe: European Bird Census Council 2016). However, these are 
still restricted to only one stage of the annual life cycle, and these sampling schemes does 
not go far beyond existing political boundaries to cover the entire distributional range of 
most species of interest.  
 
Citizen science projects that use crowdsourcing techniques to engage the public are an 
increasingly reliable source of much needed information for modeling the dynamics of 
species abundance and distribution, for they have been very successful at collecting 
observational data across large areas and throughout all seasons (Dickinson et al. 2010). 
However, using these data to generate robust distributional information (at any 
spatiotemporal scale) is fraught with analytical challenges (Hochachka et al. 2012; Bird 
et al. 2014). These challenges have led to the development and application of a number 
of analytical approaches. For example, to deal with heterogeneous and imperfect 
observation processes, authors include relevant fixed and random effects (Sauer & Link, 
2011; Johnston et al. 2018) or rely on explicit models of the detection process (Kéry & 
Royle, 2015). When project participants choose where and when to conduct their surveys, 
site selection biases lead to repeated surveys in popular locations and few surveys in 
areas that are hard to access, contain low species numbers, or few species of interest (e.g, 
urban centers, grazing or agricultural lands). However, recent data-sampling methods 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/251868doi: bioRxiv preprint 

https://doi.org/10.1101/251868
http://creativecommons.org/licenses/by-nc/4.0/


  3 

have proven useful to mitigate the effects of these site-selection biases (Robinson et al. 
2017; Johnston et al. 2019). Using citizen science data to estimate abundance also 
presents the statistical challenge of “zero inflation” where many zero counts can degrade 
model performance. A wide variety of new abundance models have been proposed to 
deal with zero-inflation (Denes et. al. 2015).  
 
The majority of the methodological developments discussed so far have been used to 
study regional-scale patterns of species’ distribution and abundance during a single 
season of the year. Generating distributional information across larger spatiotemporal 
extents with citizen science data presents three additional challenges: 1) the need to 
consider large sets of potential environmental factors across a species’ distributional 
range and annual life cycle; 2) strong variation in data density across large regions; and 
3) the spatial and temporal variation in a species’ response to the same environmental 
conditions. Machine and statistical learning models have proven to be efficient tools for 
addressing the first challenge, and have proven to be successful at learning complex 
species-environment relationships from large sets of environmental covariates (Elith & 
Leathwich 2009). Adaptive knot designs (Gelfand et al. 2012) and partitioning methods 
(Fink et al. 2013) have been proposed to deal with the second challenge of variation in 
data density, which can degrade model performance, by adding multi-scale structure to 
broad extent analyses. Lastly, non-stationary regression techniques function to add multi-
scale structure to analyses and have proven to be a useful solution to the third challenge 
of variation in response, which can also degrade model performance (Fink et al. 2010; 
Finley 2011).  
 
While previous studies have dealt with one or two of the analytical challenges outlined 
above (e.g. Johnston et al. 2015), none have dealt with all of these challenges 
simultaneously at the relevant scales necessary to make accurate inferences on species 
abundance and distributions for broadly distributed species across the full annual cycle. 
Here, we describe an analytical framework capable of estimating species’ occurrence and 
relative abundance, year-round and range-wide with enough spatial and temporal 
resolution to support inference across a range of scales. This includes seasonal 
predictions of distributions (quantified as the area of occurrence), seasonal estimates of 
the associations between species and features of their local environment, and year-to-year 
trends in relative abundance.  
 
As a case study, we analyzed data from the global citizen science project eBird (Sullivan 
et al. 2014) for the long-distance migratory songbird, Wood Thrush (Hylocichla 
mustelina) that breeds in eastern North America and winters largely in Mesoamerica. The 
Wood Thrush is a species of conservation concern, having suffered steep population 
declines over the past several decades (Sauer et al. 2017). Despite numerous regional 
studies (e.g. Rushing et al. 2017), comprehensive information on patterns of relative 
abundance, distribution and trends are lacking and much needed to provide a unifying 
framework for other sources of information (e.g. movement and connectivity). Although 
we present a case study focused on a bird species, the exponential growth of available 
citizen science data on other taxonomical groups will render our proposed framework 
highly useful in future studies of other species and taxonomical groups. 
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 (b) Materials and methods 
 
Observational Data  
The bird observation data were obtained from the global bird monitoring project, eBird 
(Sullivan et al. 2014) using the eBird Reference Dataset (ERD2016, Fink et al. 2017).  
We used a subset of data in which the time, date, and location of the survey period were 
reported and observers recorded the number of individuals of all bird species detected 
and identified during the survey period, resulting in a ‘complete checklist’ of species on 
the survey (Sullivan et al. 2009). The checklists used here were restricted to those 
collected with the ‘stationary’, ‘traveling’, or ‘area search’ protocols from January 1, 
2004 to December 31, 2016 within the spatial extent between 180° to 30° W longitude 
and north of 0° latitude. Area surveys were restricted to those covering less than 56 km2. 
and traveling surveys were restricted to those ≤ 15km. This resulted in a dataset 
consisting of 11.7 million checklists, of which a random 10% were withheld for model 
validation (Appendix S1Figure S1).  
 
Predictor Data 
We incorporated three classes of predictors in the models: (1) Five observation-effort 
predictors to account for variation in detection rates, (2) Three predictors to account for 
trends at different temporal scales, and (3) 79 environmental predictors from remote 
sensing data to capture associations of birds with elevation and a variety of habitats 
across the continent. The effort predictors were: (a) the duration spent searching for birds, 
(b) whether the observer was stationary or traveling, (c) the distance traveled during the 
search, (d) the number of people in the search party, and (e) the checklist calibration 
index, a standardized measure indexing differences in behavior among observers (Kelling 
et al. 2015; Johnston et al. 2018). The observation time of the day was used to model 
variation in availability for detection, e.g. variation in behavior such as participation in 
the dawn chorus (Diefenbach et al. 2007). The day of the year (1-366) on which the 
search was conducted was used to capture intra-annual variation and the year of the 
observation was included to account for inter-annual variation.  
 
The environmental predictors included variables describing elevation, topography and 
land cover. To account for the effects of elevation and topography, each checklist 
location was associated with elevation, eastness, and northness. These latter two 
topographic variables combine slope and aspect to provide a continuous measure 
describing geographic orientation in combination with slope at 1km2 resolution (Amatulli 
et al. 2017). Each checklist was also linked to a series of covariates derived from the 
NASA MODIS land cover data (Friedl et al. 2010). We selected this data product for its 
moderately high spatial resolution, annual temporal resolution, and global coverage. We 
used the University of Maryland (UMD) land cover classifications (Hansen et al. 2000) 
and derived water cover classes from the MODIS Land Cover Type QA Science Dataset 
resulting in a class label for each 500m pixel into one of 19 classes (Table 1). 
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 Land Cover Water Cover 

1 Evergreen Needleleaf Forest Shallow Ocean 

2 Evergreen Broadleaf Forest Ocean coastlines and  

lake shores 

3 Deciduous Needleleaf Forest Shallow inland water 

4 Deciduous Broadleaf Forest Deep Inland Water 

5 Mixed Forest Moderate or continental ocean 

6 Closed Shrublands Deep Ocean 

7 Open Shrublands  

8 Woody Savannas  

9 Savannas  

10 Grasslands  

11 Croplands  

12 Urban and built-up  

13 Barren  

 
Table 1: Land and water cover classes used for distribution modeling. All cover 
classes were summarized within a 2.8km × 2.8km (784 hectares) landscape 
centered on each checklist location. Within each landscape, we computed the 
proportion of each class, and three descriptions of the spatial configuration of the 
class within the landscape. 

 
Checklists were linked to the MODIS data by-year from 2004-2013, capturing inter-
annual changes in land cover. The checklist data after 2013 were matched to the 2013 
data, as MODIS data after 2013 were unavailable at the time of analysis. All cover 
classes were summarized within a 2.8km × 2.8km (784 hectare) neighborhood centered 
on the checklist location. In each neighborhood, we computed the proportion of each 
class in the neighborhood (PLAND). To describe the spatial configuration of each class 
we computed three further statistics using FRAGSTATS (McGarigal et al. 2012; 
VanDerWal et al. 2014): LPI an index of the largest contiguous patch, PD an index of the 
patch density, and ED an index of the edge density. Together these four metrics for each 
of 19 land cover categories led to 76 covariates describing the environment within the 
local neighborhood.  
 
Analysis Overview 
To meet the analytical challenges of modeling with eBird data, we adopted an ensemble 
modeling strategy based on the Adaptive Spatio-Temporal Exploratory Model 
(AdaSTEM; Fink et al. 2013). AdaSTEM is a framework for analyzing large-scale 
patterns with an ensemble of regionally and seasonally local regression models. For each 
of 100 ensemble runs, the data are independently subsampled and the study extent is 
partitioned using a randomly located and oriented grid. Each grid cell is a spatiotemporal 
block (or stixel) and an independent regression model, called a base model, is fit within 
each stixel.  
 
Ensemble estimates are made by averaging across the corresponding base model 
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estimates. Combining estimates across the ensemble controls for variability between 
models (Efron 2014), providing a simple way to control for overfitting while naturally 
adapting to non-stationary relationships between species and their environments (Fink et 
al. 2010). To make ensemble predictions at a particular location and time, predictions are 
made from the 100 base models, each from a single ensemble partition, and each fit to an 
independent subsample of local data in space and time. Because data are subsampled for 
each base model, point-level uncertainty estimates can be produced by examining 
variation in the suite of base model predictions across the ensemble.  All analysis was 
conducted in R, version 3.4.2 (R Development Core Team 2017) and deployed using 
Apache Spark 2.1 (Zaharia, et. al. 2016).  
 
In the following sections, we describe the AdaSTEM ensemble design, and the 
spatiotemporal sampling procedure, the base models run within each stixel. Then we 
describe how we used the ensemble to estimate four population parameters: (1) 
landscape-scale estimates of occurrence and abundance, (2) landscape-scale estimates of 
the area of occurrence, (3) regional-scale habitat use and avoidance, and (4) landscape-
scale trends in abundance.  
 
AdaSTEM Ensemble Design 
Stixel size controls a bias-variance tradeoff (Fink et al. 2013) and must strike a balance 
between stixels that are large enough to achieve sufficient sample sizes to fit good base 
models (i.e. limiting variance of estimates), and small enough to assume stationarity 
(controlling bias). Under the AdaSTEM framework, we set all stixel’s temporal width to 
30.5 days. The spatial dimensions were adaptively sized to generate smaller stixels in 
regions with higher data density, using QuadTrees (Samet 1984), a recursive partitioning 
algorithm. The AdaSTEM ensemble consisted of 100 randomly located and oriented 
grids of overlapping spatiotemporal stixels generated in this way. See Appendix S1 in 
Supporting Information for additional information about the specification of the ensemble 
design.  
 
Spatiotemporal Sampling 
Within each stixel, a spatial case-control sampling strategy was used to address the 
challenges of highly imbalanced data and site selection bias. Imbalanced data arise when 
there are a very small number of species detections and a very large number of non-
detections. This is a modeling concern because binary regression methods, like the first 
component of our ZI-BRT base model, become overwhelmed by the non-detections and 
perform poorly (King & Zeng 2001, Robinson et al. 2017). Case-control sampling treats 
detection and non-detection cases separately, resampling each case to improve spatial and 
temporal balance in the data and model performance (e.g. Breslow 1996, Fithian & 
Hastie 2014). See Appendix S2 for additional information about the spatiotemporal 
sampling procedure.  
 
For the trend base models, we also balanced the per year sample size, after 
spatiotemporal case control sampling, to control for potential bias associated with the 
strong inter-annual increases in eBird data volume, 20-30% per year since 2005. Years 
with fewer data than the average were over-sampled (i.e. randomly sampled with 
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replacement) and years with more data than the average were under-sampled (i.e. 
randomly sampled without replacement). This sampling strategy, resulted in a training 
data set with the same per-year sample size.  
 
Base Models 
Within each stixel, relationships between the species response and the predictor variables 
were assumed to be stationary. To estimate occurrence and relative abundance from the 
large predictor set while accounting for high numbers of zero counts, we used a two-step 
Zero-Inflated Boosted Regression Tree (ZI-BRT) model (Johnston et. al. 2015; Ridgeway 
et al. 2017). In the first step a Bernoulli response BRT was trained to predict the 
probability of occurrence and in the second step a Poisson response BRT was trained to 
predict expected counts conditional on occurrence. To facilitate the estimation of the 
binary occurrence state from the predicted occurrence probabilities, we also recorded the 
threshold that maximized the Kappa statistic (Cohen 1960). All predictors were included 
in both BRTs. The inclusion of the effort and time covariates allowed the models to 
account for several important sources of variation in detectability. See Appendix S3 for 
additional information about base model boosted regression tree parameters. 
 
Base models were trained only when there were at least 50 checklists (prior to 
oversampling) from the spatially balanced case-control sampling procedure and at least 
10 species detections (prior to oversampling). To guard against the effects of replicate 
surveys at popular birding locations, only one detection per day is considered from each 
location. Stixels that did not meet these minimum sample size requirements were dropped 
without replacement from the ensemble leading to fewer overlapping base model 
estimates, and higher variance among ensemble average estimates in regions with low 
data density or low species detection rates.  
 
To estimate inter-annual trends in relative abundance we trained a second ZI-BRT base 
model, identical to the one above except for two important modifications. First, to 
increase species’ encounter rates and strengthen trend signals we aggregated the training 
data across a 25.2km x 25.2km grid, separately for each year. The aggregation summed 
the counts of species seen, the durations spent searching for birds, the distances traveled 
during the search, the numbers of people in the search party, and the checklist calibration 
values (weighted by search duration) across all checklists within each grid cell. All other 
covariates were averaged across all checklists within each grid cell. Second, to control for 
the inter-annual increases in eBird data volume, the aggregated training data was sampled 
to have the same number of surveys each year. See the Spatiotemporal Sampling section 
and Appendix S2 in Supporting Information for more information about the sampling 
procedure.  
 
Estimating Occurrence and Relative Abundance  
Within each stixel, the binomial BRT submodel was used to predict the expected 
occurrence rate. The expected relative abundance was estimated as the product of the 
predicted occurrence and the predicted abundance conditional on occurrence. To control 
for variation in detection rates, the search effort predictors (search duration, protocol, 
search length, number of observers, and checklist calibration index) were held constant 
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for the predictions. Additionally, to maximize the species’ availability for detection 
within each stixel, expected values were calculated for the time of day value which 
maximized the species’ probability of being reporting, based on the partial dependency 
estimate for time of day (see Regional Habitat Associations section for information on 
partial dependence estimates.)   
 
The resulting quantity used to estimate occurrence was defined as the probability that an 
expert eBird participant (top 1% of checklist calibration indices) would detect the species 
on a search at the optimal time of day for detection while traveling 1 km on the given day 
at the given location. Relative abundance was estimated as the expected count of 
individuals of the species on the same standardized checklist. Although this approach 
accounts for variation in detection rates, it does not directly estimate the absolute 
detection probability. For this reason, our estimates of occurrence can only be considered 
as a relative measure of species occupancy. Similarly, we refer to the expected count of 
individuals of the species on the same standardized checklist as a measure of relative 
abundance. Note that this measure of relative abundance is equivalent in many respects to 
the relative abundance estimates used to estimate trends with the North American 
Breeding Bird Survey (Sauer & Link 2011).  
 
The ensemble estimates of occurrence and relative abundance were calculated by 
averaging across all the base model estimates for a given location and date. We generated 
two sets of ensemble estimates for relative abundance, one designed for high resolution, 
year-round population mapping and one designed as the basis of the seasonal trend 
estimates. For the high resolution, year-round population mapping we estimated 
occurrence and relative abundance for a single day at the center of each week for all 52 
weeks of 2016 for each 2.8km × 2.8km grid cell in the Western Hemisphere. For the 
seasonal trend estimates, we generated weekly estimates of relative abundance for each 
week within the specified seasons, separately for each year 2007-2016, within each 
25.2km × 25.2km grid cell.  
 
Uncertainty was estimated as the lower 10th and upper 90th percentiles based on the 
variation in the base model estimates. Ensemble average estimates were not made in 
areas of low data density, where base model minimum sample size requirements were not 
met. See Appendix S4 for information about subsampling procedures used to estimate 
uncertainty of the occurrence and abundance estimates. 
 
Estimating Area of Occurrence  
To estimate the Area of Occurrence (AOO) we tested the binary occupied versus 
unoccupied state for each week and prediction location using both the 2.8km and 25.2km 
spatial grids, described above. The resulting set of AOO values provides detailed 
information about the distributional range of a species and can be used to generate fine-
scale range boundaries throughout the year.   
 
At the base model level, each location was considered to be occupied if the predicted 
occurrence probability was above the kappa-maximized threshold for that base model. 
Aggregating across the ensemble, a location was considered to be occupied if at least 1/7 
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of base models predicted it was occupied. This is equivalent to an expert observer 
detecting the species at least once during 7 adjacent days of standardized surveys, taking 
account of the variation across base models. See Appendix S5 in Supporting Information 
for further information about the methods used to estimate AOO.  
 
Estimating Local Trends  
To estimate the average annual rate of change in a species’ relative abundance with 
moderately high spatial resolution (25.2km × 25.2km) we use a two-step approach that 
exploits the ensemble structure of AdaSTEM. In the first step, a hypothesis-testing 
approach uses the variation across the ensemble to filter out regions where the estimated 
direction of the trend was inconsistent. We call this step the signal filter.  Then in the 
areas that passed the signal filter, we averaged across the ensemble to remove the intra-
ensemble variation while generating trend estimates. 
 
The signal filter began by generating the base model estimates of the slope of the log-
linear regression of relative abundance on year and then testing across the ensemble to 
determine if the slopes were increasing or decreasing. For those locations where the same 
direction was consistently observed across the ensemble, we then computed an ensemble 
averaged estimate of the trend as the percept per year change in population size. This 
trend was estimated as the slope from the log-linear regression of the ensemble average 
estimates of relative abundance, as described in the Local Occurrence and Relative 
Abundance section. See Appendix S6 in Supporting Information for further information 
about the methods used to estimate local trends. 
 
Estimating Regional Habitat Associations  
For each base model, we quantified the strength and direction of association for each 
cover class predictor. Predictor importance (PI) statistics measured the strength of the 
overall contribution of individual predictors as the change in predictive performance 
between the model that includes all predictors and the same model with permuted values 
of the given predictor (Breiman 2001). PI statistics capture both positive and negative 
effects arising from both additive and interacting model components. Partial Dependence 
(PD) statistics described the functional form of the additive association for each 
individual cover class predictor by averaging out the effects of all other predictors (Hastie 
et al. 2009). To measure the direction of association, we estimated the slope of each PD 
estimate using simple linear regression.  
 
To examine how species’ habitat use and avoidance varied among regions and seasons, 
we computed regional trajectories of the strength and direction of the cover class 
associations. Given the region and the set of predictors to compare, the PI statistics were 
standardized to sum to 1 across the predictor set for each base model within the specified 
region. Then, loess smoothers (Cleveland et al. 1992) were used to estimate the 
trajectories of relative predictor importance throughout the year for each predictor. 
Similarly, a loess smoother was used to estimate the proportion of increasing PD 
estimates throughout the year for each predictor. Predictors with proportions of base 
models greater than 70% were considered to have positive associations with species 
abundance and predictors with proportions less than 30% were considered to have 
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negative associations with species abundance. Predictors with inconsistent directions, 
those between 30 and 70%, were excluded from summaries. 
 
To quantify changes in habitat use and avoidance throughout the annual cycle, we made 
weekly estimates of the association between Wood Thrush occurrence and the amount of 
each habitat class in the local landscape (Fig 3). For each week, the associations were 
summarized across the population core area, the 5° longitude × 5° latitude area located at 
the population center for that week. For each cover class, values were combined for both 
PLAND and LPI predictors to describe the relative strength and direction of the 
association. Larger absolute values indicate stronger associations and the sign of the 
value indicates class use or avoidance. Classes with inconsistent direction of association, 
were removed, resulting in total weekly relative importance that sums to less than 1.  
 
Model Validation 
To assess the quality of the ensemble estimates of AOO, occurrence, and abundance, we 
validated the model predictions at 2.8km × 2.8km × 1wk resolution using independent 
validation data. The statistics were evaluated using a Monte Carlo design of 25 spatially 
balanced samples to help control for the uneven spatial distribution of the validation data 
with each week (Fink et al. 2010; Roberts et al. 2017). To quantify the predictive 
performance for the AOO we used the Area Under the Curve (AUC) and Kappa (Cohen 
1960) statistics to describe the models’ ability to classify occupied versus unoccupied 
sites (Freeman & Moisen 2008). Thus, these metrics are also useful for assessing the 
quality of the weekly range boundaries. AUC measures a model’s ability to discriminate 
between positive and negative observations (Fielding & Bell 1997) as the probability that 
the model will rank a randomly chosen positive observation higher than a randomly 
chosen negative one. Cohen’s Kappa statistic (Cohen 1960) was designed to measure 
classification performance accounting for the background prevalence. To quantify the 
quality of the occurrence estimate as a rate within areas estimated by the AOO to be 
occupied, we also evaluated AUC and Kappa. To quantify the quality of the abundance 
estimates we computed Spearman’s Rank Correlation (SRC) and the percent Poisson 
Deviance Explained (P-DE). SRC measures how well the abundance estimates rank the 
observed abundances and the P-DE measures the correspondence between the magnitude 
of the estimated counts and observed counts.  
 
To validate the methods used to estimate the trends we conducted a simulation analysis to 
assess performance across a wide range of spatially varying and constant trend scenarios 
coupled with a realistic data observation process. By comparing estimated trends to the 
simulated truth, we quantified false detection (type I error) and power (type II error) rates 
at the 25.2km × 25.2km resolution when identifying locations with increasing and 
decreasing trends. Additionally, the simulations were designed to assess the ability of the 
method to identify spatially varying trend patterns. The information generated from the 
simulation study provides insight about the robustness of the trend analysis. See 
Appendix S7 for further information about the trend simulation study design.    
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(c) Results 
Weekly AOO, Occurrence and Relative Abundance  
Using the Wood Thrush as exemplar analysis, we generated estimates of AOO, 
occurrence and relative abundance at a spatiotemporal resolution of 2.8km × 2.8km × 1 
week (Fig. 1). Across the study extent, the AOO shows seasonal changes in the 
distributional range size and shape while the abundance estimates capture regional and 
seasonal variation in population structure within the distributional range. The breeding 
season range fills in the eastern deciduous forests east of the Great Plains with highest 
population concentrations in the Appalachian Mountains (Fig. 1a). During autumn 
migration, the population concentrates in the southern part of the Appalachian Mountains 
(Fig. 1b) before crossing the Gulf of Mexico into Central America. The non-breeding 
distribution (Fig. 1c) is concentrated in the Yucatán Peninsula, with lower concentrations 
extending north into Veracruz and south to Costa Rica and Panama. During the spring 
migration (Fig. 1d), Wood Thrush crosses the Gulf of Mexico, concentrating on the Gulf 
Coast and again in the southern part of the Appalachian Mountains.  
 
To assess the accuracy of estimates, we calculated range-wide validation estimates based 
on spatially balanced samples of independent eBird observations for each week of the 
year. AOO weekly median AUC scores were between 0.73 and 0.91 with mean 0.82 (Fig. 
2a) and AOO weekly median Kappa scores were between 0.26 and 0.62 with mean 0.40 
(Fig. 2b). Occurrence weekly median AUC scores were between 0.57 and 0.91 with mean 
0.72 (Fig. 2c) and occurrence weekly median Kappa scores were between 0 and 0.61 with 
mean 0.28 (Fig. 2d). Relative abundance weekly median P-DE scores were between 0 
and 0.52 with mean 0.19 (Fig. 2e) and relative abundance weekly median SRC scores 
were between 0.16 and 0.70 with mean 0.41 (Fig. 2f). Weeks with insufficient validation 
data were shown as zero. These weeks occurred during spring and autumn migration, 
when detection rates and counts were at their lowest. Variation in predictive performance 
was highest during the non-breeding season for all metrics, reflecting lower data densities 
in Mesoamerica.  
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Figure 1: Wood Thrush estimates of Area Of Occurrence (AOO) and relative abundance 
at 2.8km × 2.8km resolution during (a) breeding (June 20), (b) autumn migration 
(October 3), (c) non-breeding (December 12), and (d) spring migration (March 28) 
seasons. Positive abundance is only shown in areas estimated to be occupied and the 
AOO is depicted as the boundary between pixels with and without color. Brighter colors 
indicate areas occupied with higher abundance. Relative abundance was measured as the 
expected count of the species on a standardized 1km survey conducted at the optimal 
time of day for detection. Note that detectability varies seasonally, complicating 
comparisons of population size between seasons. 
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Figure 2: Boxplots of range-wide weekly predictive performance for Area Of  
Occurrence, occurrence and relative abundance estimates across 25 Monte Carlo samples 
of spatially balanced validation data. (a) AUC and (b) Kappa scores for area of 
occurrence estimates. (c) AUC and (d) Kappa scores for occurrence estimates. (e) 
Spearman’s Rank Correlation and (f) Percent Deviance Explained scores for relative 
abundance estimates.  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/251868doi: bioRxiv preprint 

https://doi.org/10.1101/251868
http://creativecommons.org/licenses/by-nc/4.0/


  14

 
Seasonal Habitat Use and Avoidance  
The accuracy of the habitat associations follows from the strong validation results (Fig. 2).  
The Wood Thrush breeding season is characterized by the strong positive association 
with deciduous broadleaf forest and the non-breeding season is characterized by the 
strong positive association with broadleaf evergreen forest (Fig. 3). During spring and 
autumn migrations, the population is associated with a wider variety of cover classes, and 
a more even distribution of associations, both positive and negative. This includes a 
notable positive association with the urban developed class. While these patterns of 
habitat use and avoidance were consistent with the empirical results documented by 
Zuckerberg et al. (2016) and the qualitative patterns described in Evans et al. (2011), 
they also provided much more detail about the underlying population structure 
throughout the rest of the year.   
 
 

 
Figure 3: The weekly relative importance for the amount of each land and water cover 
class for the core Wood Thrush population. Positive importance indicates class use and 
negative importance indicates class avoidance. The strength of the association with each 
class is proportional to the width of the class color. Classes with inconsistent direction of 
association were removed, resulting in total weekly relative importance that sums to less 
than 1.  
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Breeding Season Trends  
Fig. 4A shows the average percent change per year in relative abundance from 2007–16 
during the breeding season (May 30– July 3). The largest population changes have 
occurred across the core of the population, the large area of high-abundance including all 
but the peaks of the Appalachian Mountains (Fig. 4A). Moderate declines of 1 to 3.5% 
per year were estimated in most locations across this region. However, declines have not 
occurred range-wide. There were also low abundance portions of the population along the 
northwest and southern boundaries of the range that increased during the study period. 
Appendix S6: Fig. S1 shows trend maps of the location-wise upper 2.5% and lower 
97.5% confidence limits from the subsampling analysis. These maps show similar 
moderate-magnitude declines across the core of the breeding range with regional patterns 
similar to those in Fig. 4A. 
 
The breeding season range-wide, abundance-weighted trend estimate was -1.48% per 
year, with a 95% confidence interval between -1.89% and -1.01% per year. The range-
wide population trajectory (Fig. 4B) shows the steepest declines in population size 
between 2010 and 2013 followed by lower rates of decline in the population size from 
2013 to 2016. 
 
The simulation study for the breeding season Wood Thrush trends provide information 
about likely false detection (type I error) and power (type II error) rates when identifying 
locations with increasing and decreasing trends. The black contour lines in Fig. 4A 
delineate those regions across which the expected False Discovery Rate is at most 5%. 
These regions include most of core high-abundance breeding range. The breeding season 
power analysis (Appendix S7: Fig. S5A) suggests that regions within the black contours 
contain approximately 60% of all locations across the breeding range with non-zero 
trends,  >67% of trends � |1%/��|,  >75% of trends � |3.5%/��|, and 80% of trends 
� |6.7%/��|. These power results also help with interpretation of results outside the 
contour lines, providing information about the likely number of locations with trends and 
the likely strengths of those trends.  The breeding season simulation study also suggests 
that spatially varying trend patterns can be reliably estimated in regions with moderate to 
strong trends (Appendix S7: Fig. S1 & S2). Overall, these simulation results suggest that 
there is sufficient data density to estimate moderate to strong trends with low False 
Discovery Rates (FDR) (Type I errors) and fairly high power (i.e. low Type II errors) 
across much of the breeding range.  
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Figure 4: Wood Thrush breeding trend map and range-wide population trajectory. 
(A) The breeding season (May 30– July 3) average annual percentage change in relative 
abundance from 2007–16. Increases in population size are shown in blue and decreases 
are shown in red. Darker colors indicate stronger trends. Each dot on the map represents a 
25km x 25km area. To help visualize the relative change in population size at each 
location, the size of each dot has been scaled according to the average abundance at that 
location during the 10-year study period. Within the regions delineated by the black 
contour line, the expected False Discovery Rate (type I error) is up to 5% when 
identifying locations with increasing and decreasing trends. Outside the black contours, 
the direction of population change is less certain. The breeding season power analysis 
suggests that regions within the black contours contain 60% of all locations across the 
breeding range with non-zero trends and contain 80% of all trends with trend magnitudes 
of 6.7%/�� or more (approximately equivalent to halving or doubling of the population 
across 10 years). (B) The trajectory shows the range-wide change in population size 
starting from 2007. The dark black line is the conditional mean estimate, the red polygon 
are the 95% confidence limits, and the light grey trajectories show the 500 replicate 
estimates.   
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Nonbreeding Season Trends 
Fig. 5A shows the average percent change per year in relative abundance from 2007–16 
during the non-breeding season (Dec 1–Feb 28). This map shows moderate declines of 1-
3.5% per year across most of the nonbreeding range with the steepest declines in the 
north eastern part of the Yucatan peninsula and the southern portion of the range 
extending though eastern Nicaragua, both areas of low abundance. Trend maps of the 
location-wise upper and lower 95% confidence limits (Appendix S6: Fig. S2) generally 
show similar spatial patterns with consistent declines surrounding the high abundance 
population areas centered near the shared boundaries of Mexico, Guatemala, and Belize.  
 
The range-wide, abundance-weighted nonbreeding season trend estimate qualitatively 
mirrors the pattern for the breeding season. The estimated nonbreeding season trend is -
2.16% per year, with a 95% confidence interval between -2.98% and -1.28% per year. 
The range-wide population trajectory (Fig. 5B) shows the steepest declines in population 
size between 2010 and 2013 followed by lower rates of decline in the population size 
from 2013 to 2016, similar to the range-wide trajectory for the breeding season (Fig. 4B).  
 
The 5% FDR regions delineated by the black contour lines in Fig. 5A surround the high 
abundance region centered near the shared boundaries of Mexico, Guatemala, and Belize. 
The nonbreeding season power analysis (Appendix S7: Fig S5B) found that regions 
within the black contour contain approximately 40% of all locations across the 
nonbreeding range with non-zero trends, >41% of trends � |1%/��|, 50% of trends 
� |3.5%/��|, and 70% of trends � |6.7%/��|. These simulation results suggest that 
there is sufficient data density to estimate strong trends with low FDR and moderate 
power. The estimated and simulated nonbreeding trend maps presented in Appendix S7: 
Fig. S3 & S4 suggests that spatially varying trend patterns can be reliably estimated in 
regions with moderate to strong trends. 
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Figure 5: Wood Thrush nonbreeding trend map and range-wide population 
trajectory. (A) The nonbreeding season (Dec 1–Feb 28) average annual percentage 
change in relative abundance from 2007–16. Increases in population size are shown in 
blue and decreases are shown in red. Darker colors indicate stronger trends. Each dot on 
the map represents a 25km x 25km area. To help visualize the relative change in 
population size at each location, the size of each dot has been scaled according to the 
average abundance at that location during the 10-year study period. Within the regions 
delineated by the black contour line, the expected False Discovery Rate (type I error) is 
up to 5% when identifying locations with increasing and decreasing trends. Outside the 
black contours, the direction of population change is less certain. The breeding season 
power analysis suggests that regions within the black contours contain 40% of all 
locations across the breeding range with non-zero trends and contain 70% of all trends 
with trend magnitudes of 6.7%/�� or more (approximately equivalent to halving or 
doubling of the population across 10 years). (B) The trajectory shows the range-wide 
change in population size starting from 2007. The dark black line is the conditional mean 
estimate, the red polygon are the 95% confidence limits, and the light grey trajectories 
show the 500 replicate estimates.   
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 (d) Discussion 
 
In this paper, we show that a combination of semi-structured (Kelling et al. 2019) citizen 
science data and analyses chosen to deal with the biases in these data can be used to 
estimate complex patterns of species’ distribution and abundance, at fine spatial and 
temporal scales, across the full annual cycle. The resolution, extent, and completeness of 
the information that can be generated with this approach is unprecedented, and has the 
potential to increase our ecological knowledge and inform conservation plans for a range 
of species, regions and seasons (Runge et al. 2015).  
 
To the best of our knowledge, this is the first comprehensive population-level analysis of 
distribution, abundance, and habitat use, for Wood Thrush and the first analysis of this 
kind for Neotropical migrants. The comprehensiveness of the Wood Thrush analysis 
presented here fills important knowledge gaps, providing novel range-wide and 
population-level information during the less well-studied migration and the overwintering 
periods (Evans et al. 2011). Moreover, having a comprehensive quantitative description 
of the Wood Thrush population provides the data necessary to track changes in the future 
and it provides an empirical full-annual-cycle framework with which to integrate other 
types of data. 
 
We also demonstrate the ability to use citizen science data to estimate trends in relative 
abundance — a task usually left to monitoring programs which employ more stringent 
sampling protocols and are hard to deploy across broad extents. The ability to quantify 
regional differences in trends, especially outside of the breeding season provides 
important, novel information that can be used to advance our knowledge across multiple 
fields, from questions about the potential drivers of the evolution of migratory behavior, 
to providing a framework for the use of information on movement and migratory 
connectivity to delineate and model contemporary sub-populations.  
 
The year-to-year population trajectories for breeding (Fig. 4B) and nonbreeding (Fig. 5B) 
seasons follow a very similar pattern, showing the steepest declines in population size 
between 2010 and 2013 followed by weaker decreases in the population size from 2013 
to 2016. The strong correspondence between these independently estimated trajectories 
provides strong evidence that our results for each life stage are representative of the entire 
population.  
 
The ability to estimate trends at different times of the year provides essential contextual 
information to tease apart where in the annual cycle population changes are and are not 
occurring.  Though the average annual rate of population-wide decline is slightly stronger 
for the nonbreeding (-2.2%) compared to the breeding season (-1.5%), the 95% 
confidence intervals (-3.0, -1.3%) and (-1.9, -1.0%), respectively, overlap. Given the 
greater uncertainty and lower power of nonbreeding season analysis results, we do not 
view this difference as strong evidence of a difference in the rates of decline. This 
similarity in breeding and non-breeding trends rules out strong inter-annual changes in 
mortality during the autumn migration.   
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The nonbreeding trend maps show spatial variation in the pattern of declines, with the 
steepest declines within the 5% FDR regions (Fig. 5A and Appendix S6: Fig. S2). These 
results could help tease apart the contrasting results from the demographic models of 
Taylor & Stutchbury (2016) and the analysis of Rushing et al. (2017) on the drivers of 
population declines of Wood Thrush. Information about regional variation in trends can 
be used in combination with spatial information on regional threats (e.g. deforestation or 
other forms of habitat modification) and integrated with information on migratory 
connectivity to better understand how factors the breeding and non-breeding season 
influence population declines (e.g. Kramer et al. 2018). 
 
More broadly, the analysis presented here demonstrates how citizen science data can be 
used to generate accurate species-level information for broad-scale biodiversity 
monitoring like those outlined by the Group on Earth Observations Biodiversity 
Observation Network (Kissling et al. 2017). It is worth noting that without a single, 
comprehensive source of information, making population-wide assessments requires the 
additional steps to acquire, analyze, and calibrate disparate sources of information. The 
broad geographic, year-round coverage of eBird combined with a seamless analytical 
framework makes it possible to perform assessments across space and time. Similarly, 
without critical ancillary information describing participant search effort and information 
to infer the absence of species (e.g., complete checklists), we would have been unable to 
account for the bias of imperfect detection. For this reason, we advocate for other citizen 
science projects to collect ancillary information sufficient to untangle the complexities of 
heterogeneous observation and ecological processes. 
 
With current data volumes, the methods presented here are best suited for broadly 
distributed and migratory species. These methods can be easily modified for species with 
smaller ranges, by modifying the AdaSTEM ensemble to have a single spatial region, or 
for resident species, by modifying the AdaSTEM ensemble to have a single full-year 
temporal season. And by modifying the spatiotemporal case-control sampling and 
increasing the number of base models in the ensemble, the analysis can be extended to 
less common species. While the focus of the analysis presented here has been on pattern 
discovery and description, the same ensemble framework can also be modified to support 
confirmatory analysis by using base models that support hypothetico-deductive analysis. 
 
The potential to use eBird data to generate robust information on species’ distributions 
and abundance will grow with the increasing volume and density of the data. This will 
make it possible to extend both the taxonomic and geographic scope of analysis. It will 
also improve the precision and spatiotemporal resolution of trend estimates across a 
wider geographic area than is currently possible. However, these improvements will be 
limited by the data densities in the years in which the trends begin and controlling for 
biases associated with the strong inter-annual increases in data volume remains a 
technical challenge. The increasing availability of population trends during the non-
breeding season will help to refine our understanding of where and when populations are 
limited or regulated, complimenting migratory connectivity information derived from 
individual-level tracking data. 
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The comprehensive nature of the distribution and abundance information generated here 
can be used for other novel and important applications. With complete full annual cycle 
information, it is straightforward to make population-wide comparisons and to coordinate 
conservation activities across regions and seasons. Moreover, once regions of interest 
have been identified, the spatial resolution these estimates can be leveraged to seamlessly 
compare and prioritize landscapes within regions (e.g. Reynolds et al. 2017).  In addition, 
the impact of regional and seasonal scale processes can be integrated across space 
throughout the year, making it possible to carry out accurate multi-scale population-wide 
impact assessments. This is important for studying a variety of broad-scale environmental 
and anthropogenic effects, many of which are themselves multi-scale processes, from 
land-use change to ecosystem services (e.g., La Sorte et al. 2017).   The potential of our 
approach to integrate effects also addresses an important multi-scale challenge in climate 
change studies (Ådahl et al. 2006; Small-Lorenz et al. 2013) where nearly all facets of 
climate (e.g. temperature and precipitation) exhibit strong regional-scale intra-annual 
variation. 
 
Given sufficient data density, the approach presented here can be used to leverage the 
broad coverage of eBird data to generate distribution and abundance information for 
many other bird species in different regions of the world. We have used the methods 
described here to analyze over 100 North American species, representing a taxonomically 
diverse group of species (https://ebird.org/science/status-and-trends). These results 
demonstrate the ability to generate robust inferences about species’ ranges, occurrence 
and abundance, habitat associations, and seasonal trends.   
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Supporting Information  
 
Supporting information is presented on the following topics:  

1. Ensemble design,  
2. Spatiotemporal Sampling procedures, 
3. Base model boosted regression tree parameters, 
4. Subsampling procedures to estimate uncertainty of the occurrence and abundance 

estimates,  
5. Estimating Area of Occurrence,  
6. Local Trend Estimates, and 
7. Trend Simulation Model and Study Design. 

Each of these sections is self-contained, with its own Literature Cited and Figures.   
 
Section S1: Ensemble Design 
The ensemble of stixels was designed as a Monte Carlo sample of 100 randomly located 
spatiotemporal partitions of the spatiotemporal study extent. This resulted in a sample of 
stixels distributed throughout the study area that are adapted in size based on data 
density. Each of the 100 grids were spatially randomized by jittering the latitude and 
longitude grid origins and randomly rotating the resulting grid. Each of the grids were 
temporally randomized by jittering the starting date of the temporal grid division. Each 
location in space and time therefore is a member of 100 different stixels, jittered in space 
and time. Averaging across this sample helps control for biases associated with the 
arbitrary partitioning of data into stixels.  
 
The number of stixels used to compute a local estimate across the ensemble is called the 
ensemble support. Ensemble support is important because it determines effectiveness of 
ensemble averaging to control inter-model variability. In this application, the maximum 
ensemble support is 100, the number of randomized partitions. We selected this value 
based on both statistical considerations and out computational budget. When training 
sample sizes are too small to fit base models, those stixels are dropped from the ensemble 
and the number of base model estimates available for ensemble averaging also decreases, 
increasing the variance of the ensemble estimator. We required an ensemble support of at 
least 75 stixels, or base models, to generate the weekly estimates of occurrence and 
abundance. In general, ensemble support follows patterns of data density, filtered through 
a combination of the base model minimum sample size requirements and stixel geometry.   
 
Stixel size controls an important bias-variance tradeoff (Fink et al 2010; Fink et al. 
2013). Stixel size needs to be chosen small enough to capture local predictor-response 
(i.e. species-environment) relationships, controlling the bias of base model estimates. 
Stixel size also needs to be chosen large enough to meet the minimum sample size 
requirements necessary for fitting the base models: this controls the variance when 
averaging across the ensemble. We began by specifying the temporal dimension of the 
partitions to be 366 days divided by 12 temporal partitions, equaling 30.5 contiguous 
days, the start days of which are then randomly jittered. An approximately 30 day 
window is small enough to capture a wide variety of migration patterns across a diverse 
set of terrestrial species using eBird data (Johnston et al. 2015; La Sorte et al. 2017). The 
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spatial dimensions were adaptively sized to generate smaller stixels in regions with 
higher data density using QuadTrees (Samet 1984), a recursive partitioning algorithm. In 
QuadTrees, the splitting rule controls the recursion. The splitting rule was set to 
recursively split stixels with more than 15,000 checklists.  Given high variation in data 
density, this splitting rule generated overly large stixels in data poor regions and 
extremely small stixels in areas of high data density. To prevent this, we constrained the 
partitioning to 1) not split stixels smaller than 5° longitude x 5° latitude regardless of the 
number of checklists within the stixel, and 2) forced stixels larger than 25° longitude x 
25° latitude to split regardless of data density within the stixel. Fig. S1 shows the 
locations of eBird checklists across the study extent and Fig. S2 shows realizations of two 
randomly located adaptive spatial partitions used to define AdaSTEM stixels for the 
analysis. 
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Figure S1: eBird checklist locations between January 1, 2004 to December 31, 2016. 
The spatial density of the 11.7 million checklists used in the analysis vary significantly 
across the North American continent.    
 

 

Figure S2: Two realizations of randomly located adaptive spatial partitions used to 
define AdaSTEM stixels. These image shows how stixel size adapts to data density and 
how stixel location is randomized through jittering and rotation. One hundred randomized 
adaptive partitions were used for the analysis. For each spatial partition, the temporal 
partition is fixed to 30.5 days, but has a randomized starting date.   
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Section S2: Spatiotemporal Sampling 
Within each stixel, a spatial case-control sampling strategy was used to address the 
challenges of highly imbalanced data and site selection bias. Imbalanced data arise when 
there are a very small number of species detections and a very large number of non-
detections. This is a modeling concern because binary regression methods, like the first 
component of the ZI-BRT model, become overwhelmed by the non-detections and 
perform poorly (King & Zeng 2001, Robinson et al. 2017). The low detection rates of 
many species, especially along range boundaries, can result in highly imbalanced training 
data. This makes data imbalance a defining challenge for broad-scale, year-round 
modeling. By sampling detection and non-detection cases separately, case-control 
sampling (e.g. Breslow 1996, Fithian & Hastie 2014) improves data balance and model 
performance. Additionally, to alleviate spatial biases caused by the eBird site selection 
process, spatiotemporally balanced samples were drawn as part of the case-control 
sampling.   
 
To generate spatially and temporally balanced samples for the case-control sampling, 
data were drawn from a randomly located regular grid, with one checklist randomly 
selected per 10km × 10km x 1week grid cell, applied separately for each year and 
separately for detection and non-detection cases. The 10km spatial grid dimension was 
selected to reduce the impact of repeated checklists from popular sites. 
 
Additionally, detection data were over-sampled, using the same spatiotemporally 
balanced procedure, when they represented less than 25% of the balanced data. 
Oversampling generates ties, or repeated observations, among the training data. Because 
boosting, used in the ZI-BRT base models, is driven more by the set of distinct data data 
points than the number of tied data points generated, Mease et al. (2007) suggested 
breaking ties to force the boosting algorithm to respond to oversampled data. To do this 
we mimic the effects of imprecisely recorded checklist locations, and jitter all the spatial 
covariate values for each of the replicated oversampled checklists. Finally, because over-
sampling detections changes the training data prevalence we correct for this change when 
predicting occurrence (King & Zeng 2001). 
 
For the trend base models, we also balanced the per year sample size, after 
spatiotemporal case control sampling, to control for the strong inter-annual increases in 
eBird data volume, 20-30% per year since 2005. First, we computed the average sample 
size per year from 2007-16, the ten-year period over which trends were estimated. Years 
with less than the average sample sizes, were over-sampled (i.e. randomly sampled with 
replacement) and years with more than the average sample size were under-sampled (i.e. 
randomly sampled without replacement). This sampling strategy, what we call a reverse-
mullet, resulted in a training data set with the same per-year sample size. 
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Section S3: Base Model Boosted Regression Tree Parameters 
Within each spatiotemporal block, we fit a two-step boosted regression tree model 
designed to deal with zero-inflation to predict the observed counts (abundance) of each 
species. The boosted regression trees for both steps of the zero-inflation model were fit 
with the gbm package.  
 
The strategy used to select the base-model parameters was based on statistical 
considerations under the constraint of a fixed computational budget. By relying on the 
variance-reducing properties from averaging across the ensemble, we did not need to 
worry about overfitting individual base models and could avoid costly base model cross 
validation to select gbm parameters. This facilitated a strategy geared towards learning as 
much of the signal as possible with a limited number of gbm trees (ntrees = 1000) for 
each base model. Based on experimentation fitting base models across a set of regions, 
seasons, and species we set bag fraction = 0.80 and learning rate or shrinkage = 0.05. The 
tree.depth parameter was set to 5 for the occurrence model and 10 for the abundance 
model, giving both models the ability to adapt to nonlinear and interacting predictor 
effects. 
 
Section S4: Subsampling procedures to estimate uncertainty of the 
occurrence and abundance estimates  
We used the upper 5% trimmed mean to estimate the expected occurrence and abundance 
across the ensemble because it is a robust estimator that guards against positive bias. A 
straightforward, brute force approach to estimate the uncertainty for the ensemble mean 
can be computed by bootstrapping the ensemble trimmed means. However, because 
fitting the ensemble already entails fitting 100 base models, this approach is 
computationally prohibitive.  Instead, we employed a subsampling approach (Politis et al. 
2009), creating ensemble replicatese by subsampling the base models.    
 
We faced two challenges implementing this approach. First, the sample size, here, the 
ensemble support, was realtively small, 75–100. Second, the computational efficiency of 
the approach was very important because we needed to compute uncertainty estimates for 
up to 676M quantities per species (6.5M locations * 52 weeks * 2 estimates per location 
[1 for both occurrence & abundance] + 14M training & testing checklists * 2 estimates 
per checklist [1 for both occurrence & abundance]).  To deal with these challenges we 
followed the computational strategy of Geyer (2013) and selected a set of parameter 
settings that balanced the quality of the interval estimates with the computational costs of 
generating them. We computed estimates of the upper 90th lower 10th confidence limits 
by subsampling with two different sizes and then computing a rate parameter correction 
to adjust for the original ensemble support. Following Geyer (2013), we subsampled with 
the square root of the ensemble support and the -1.5 power of the ensemble support. 
 
To check these parameter settings, a small simulation test was run.  We found that for 
sample sizes of 25 or less, the rate parameter estimates tended to be too small, resulting in 
intervals that were too small and had poor coverage. To mitigate this, we adjusted the rate 
parameter estimate upwards by 0.5 of the rate parameter’s standard error, producing more 
conservative uncertainty estimates. In the cases where the rate parameter estimate was 
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negative, subsampling was not performed and quantiles of the entire sample were used 
producing conservative uncertainty estimates. Note that ensemble support requirements 
for the occurrence and abundance estimates, between 75 and 100, excludes most of these 
small sample size complications.  
 
Literature Cited 
Geyer, C. J. (2013) 5601 Notes: The Subsampling Bootstrap, Available at: 

http://www.stat.umn.edu/geyer/5601/notes/sub.pdf . Last accessed 06 December 
2017. 

Politis, D. N., Romano, J.P., and Wolf, M. (1999). Subsampling, Springer Series in 
Statistics, Springer-Verlag New York, Inc. 

 
Section S5: Estimating Area of Occurrence  
To estimate the Area of Occurrence (AOO) we tested the binary occupied versus 
unoccupied state for each week and prediction location using both the 2.8km and 25.2km 
spatial grids, described above. The resulting set of AOO values provides detailed 
information about the distributional range of a species and can be used to generate fine-
scale range boundaries throughout the year.   
 
At the base model level, a location was considered to be occupied if the predicted 
occurrence probability was above the kappa-maximized threshold for that base model. 
Aggregating across the ensemble, a location was considered to be occupied if at least 1/7 
of base models predicted it was occupied. This is equivalent to an expert observer 
detecting the species at least once during 7 adjacent days of standardized surveys 
(estimated probability of detecting species per survey > 1/7), taking account of the 
variation across base models. The un/occupied status was estimated for all weeks using 
both the 2.8km and 25.2km spatial grids, described above.  
 
Formally, let �,� be the estimated occurrence rate at spatiotemporal location � from base 
model �, � � 1, … ��, and ������  be the kappa-maximized occurrence threshold for 
base model �, where �� is the ensemble support, the number of overlapping base model 
estimates of location �. The indicator  

��,�  �  �� �,�  �  ������  �  
is used to estimate occurrence for location � for base model �. The sum measures how 
frequently the site was estimated to be occupied, �� �  ∑ ��,�

�
�

� . Using the fact that 
overlapping base models are trained using independent subsamples, we model 
��~  !"#!�$���, %� where % is the probability of detecting at least one individual of the 
species on a standardized survey. To infer if the location was occupied we conducted a 
binomial test &0: % )  1/7 . This testing value was motivated by the practical 
consideration that a site should be considered to be occupied by a species if an expert 
observer can detect the species at least once during 7 adjacent days of standardized 
surveys. 
 
To estimate the AOO across each species’ range for a given week often requires 
conducting these tests across a large number of locations. In order to identify as many 
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occupied locations as possible while still maintaining a low false positive rate, we used 
False Discovery Rate (Benjamini & Hochberg 1995) thresholding to control for multiple 
comparisons. The q-value was set 0.01, limiting the expected proportion of falsely 
occupied locations to 1%. One benefit of this ensemble estimator of AOO is that it 
naturally adapts to regional and seasonal variation in species prevalence and detectability. 
 
Literature Cited 
Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical 

and powerful approach to multiple testing. Journal of the Royal Statistical Society 
Series B, 57, 289–300. http://www.jstor.org/stable/2346101. 

 
Section S6: Estimating Local Trends 
To estimate the average annual rate of change in a species’ relative abundance with 
moderately high spatial resolution (25.2km x 25.2km) we used a two-step approach that 
exploits the ensemble structure of AdaSTEM. In the first step, hypothesis tests utilize the 
variation across the ensemble to filter out regions where base model estimates of the 
trend direction were inconsistent. We call this step the signal filter.  Then in the areas that 
passed the signal filter, we averaged across the ensemble to estimate the average per year 
change in population size while removing the intra-ensemble variation. 
 
In the first step of the signal filter, the direction of the slope for the log-linear regression 
of relative abundance on year are estimated for all locations in all base models. Then, at 
each location, a hypothesis test is conducted to determine if the trend is increasing or 
decreasing. Formally, let *�,� be the slope estimated at spatiotemporal location �, a single 
location in the 25km spatial grid, for base model �, � � 1, … ��, where �� is the 
ensemble support, the number of overlapping base model estimates at location �. The 
slope parameter *�,� describes the average annual rate of change as the percent change 
per year in relative abundance. To test the direction of the slope, we use a very similar 
approach to that used to estimate AOO (See Appendix S5). Let +� � ∑ ,�,�   where 
,�,� � ��*�,� � 0� indicates the direction of the trend. We model +�~ !"#!�$���, -�� 
where -�  is the probability of an increasing trend at location s. When the trend is 
consistently estimated to be increasing across base models, -�will have values close to 1, 
and when the trend is consistently estimated to be decreasing it will have values close to 
0. To infer when trends are consistently increasing and decreasing we conduct both one-
sided binomial tests &0: -�  )  0.5 and &0: -�  �  0.5. Because species ranges often 
encompass many locations across the 25km grid, a large number of tests may be 
conducted. In order to identify as many locations with non-zero trends as possible while 
still maintaining a low false positive rate, we used FDR with . �  0.01.  
 
Finally, we computed the ensemble averaged estimate of the trend. Like the first step, the 
trend was estimated as the slope here /�,  at location �, from the log-linear regression of 
the relative abundances on years 2007-2016. Unlike the first step, the regression was fit 
using the ensemble average estimates of relative abundance, as described in the 
Estimating Occurrence and Relative Abundance Section.  
 
We performed a subsampling analysis to assess the uncertainty associated with sampling 
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variation across all the steps involved in estimating local trends. Because each of the base 
models was trained independently using independently subsampled data sets, sampling 
variation of the relative abundance estimates is captured among the base model estimates. 
Thus, to assess the uncertainty of the trend estimates, we computed 500 replicate 
ensemble trend estimates, each based on a random sample of 25 out of the 100 available 
base models. Unlike the subsampling procedure used to estimate uncertainty for the 
occurrence and abundance estimates (Appendix S4), we chose not apply any sample size 
corrections to produce conservative estimates of uncertainty.   
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Figure S1: Wood Thrush 97.5% upper and 2.5% lower bound breeding season 
trend maps. The maps show the location-wise (A) 97.5% upper and (B) 2.5% lower 
limits for the average percent change per year in relative abundance from 2007–16 during 
the breeding season (May 30– July 3). Each dot on the map represents a 25km x 25km 
area. To help visualize the relative change in population size at each location, the size of 
each dot has been scaled according to the average abundance at that location during the 
10-year study period. The black contour lines delineate those regions across which the 
expected False Discovery Rate is at most 5% when identifying locations with increasing 
and decreasing trends. 
 
 

 
Figure S2: Wood Thrush 97.5% upper and 2.5% lower bound nonbreeding season 
trend maps. The maps show the location-wise (A) 97.5% upper and (B) 2.5% lower 
limits for the average percent change per year in relative abundance from 2007–16 during 
the breeding season (Dec 1–Feb 28). Each dot on the map represents a 25km x 25km area. 
To help visualize the relative change in population size at each location, the size of each 
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dot has been scaled according to the average abundance at that location during the 10-
year study period. The black contour lines delineate those regions across which the 
expected False Discovery Rate is at most 5% when identifying locations with increasing 
and decreasing trends. 
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Appendix S7: Trend Simulation Model and Study Design 
A simulation study was used to assess the quality of the trend estimates over the ten-year 
study period, 2007-2016. The study used spatially explicit simulations to generate data 
with specified trends while also capturing important aspects of the species’ habitat use 
and the citizen science observation process, both learned from training data. The power, 
error rate, and bias of the signal filter were assessed along with errors between known 
and estimated trends. There are three steps in the study:  
 1) Simulate data derived from populations with known trends 
 2) Using simulated data, estimate trends 
 3) Compare known and estimated trends and record statistics to describe errors, 
power, and bias of estimates.  
 
The remainder of this section describes the simulation model, how the model was used to 
generate simulated data, the study design, and an evaluation of the breeding and 
nonbreeding trend estimates for Wood Thrush.  
 
S1.1 The Simulation Model  
The simulation model was based on a ZI-BRT as described above, modified to learn 
specified trends along with ecological and observational patterns in the training data. Let 
��, �, 0�, 0�, �1��� be the set of training data for a given region, season, and species 
where: 

• � is the " 2 1 vector of observed counts on the n surveys in the training data,  
• � is the " 2 1 vector that indicates the checklists with count greater than zero,  
• 0� is the " 2 � matrix of k predictors that describe the ecological process,  
• 0� is the " 2 3 matrix of j predictors that describe the observation process, and  
• �1�� is the " 2 1 vector of the year each survey was conducted. 

For the given species, the region and season selected for the trend analysis and simulation 
must be large enough to achieve sufficient sample sizes for good model performance, 
controlling variance, and small enough to assume stationarity, controlling bias. We 
conduct two seasonal analyses for Wood Thrush, one across the breeding range from 
May 30–July 3 and the second across the non-breeding range from Dec 1–Feb 28. 

 
First, we set notation and describe the standard unmodified ZI-BRT and then we explain 
the modifications used for the simulation. In the first step of the unmodified ZI-BRT a 
Bernoulli response BRT is trained to predict the probability of occurrence: 
 � ~  1�"#4$$!�5� 
 $#6!7�5�  �  8� 0�, 0�, �1�� � 
where π is the probability of occurrence and the function 8�� is fit using boosted decision 
trees. In the second step, the Poisson response BRT,  
 � ~ 9#!��#"�%� 
 $#6�%�  �  8� 0�, 0�, �1�� � 
is trained to predict the expected counts %, using the subset of the training data observed 
or predicted to be occupied.   
 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/251868doi: bioRxiv preprint 

https://doi.org/10.1101/251868
http://creativecommons.org/licenses/by-nc/4.0/


  39

There are some modifications to this standard ZI-BRT in order to produce the simulated 
data. The first modification permutes the �1�� predictor variable. This ensures that the 
ZI-BRT cannot learn year-to-year variation from the training data and effectively 
removes all trends in ecology or observation process over time. The only temporal trend 
maintained is the increase in volume of data in later years. The second modification trains 
the ZI-BRT using the year-permuted training data along with an offset constructed with 
the specified trend. In general terms, the trend offset is : �  6��1���� where 6�� is a 
function of the permuted year value, �1���. The modified fitting procedure begins with 
the Bernoulli response BRT, 

� ~  1�"#4$$!�5� 
 $#6!7�5�  �  8� 0�, 0�, �1��� �, 
and for the Poisson response BRT is: 
 � ~ 9#!��#"�%� 
 $#6�%� ;  : �  8� 0�, 0�, �1��� �. 
Being on the right side of this equation, the offset can be considered as an adjustment to 
the observed counts on the log-link scale. Thus, the boosting procedure that adaptively 
fits 8�� has information to estimate 6��1���� from the offset.  
 
S1.2 Simulating New Data  
After the modified ZI-BRT is trained, new data are simulated in three steps. First a new 
set of eBird observations is generated by sampling checklists with replacement, without 
regard to the search year, from the training data. Sampling this way replicates the 
variation observed among participant site selection, search effort, and observer effects. 
Year-to-year increases in the sample sizes were replicated by repeating this sampling 
process, independently for each year. In the second step the modified ZI-BRT is used to 
predict the expected occurrence and abundance, 5� and %�, for the set of new 
observations, �0�, 0�, �1����, where the * denotes the simulated data.  Finally, the 
binary occurrence is simulated ��~ 1�"#4$$!�5�� and the count, conditional on �� is 
simulated ��~9#!��#"�%��, generating the simulated data set, ��, �, 0�, 0�, �1����. 
 
S1.3 Simulation Study Design  
The simulation study was used to assess the power to detect changes in seasonal 
population sizes at moderately fine (25.2km x 25.2km) spatial resolution using citizen 
science data. Qualitatively, we want to understand how performance varies with the 
strength of the trend and if the method can detect spatial patterns in local trends.  
 
To test how power varied with trend strength, simulations were constructed with 
increasing and decreasing trends across a range of magnitudes. To test if the method 
could detect spatial patterns in local trends both spatially constant and spatially varying 
trends were constructed. Spatially varying trends were constructed so that trend direction 
and magnitude varied as a function of local population density, giving rise to different 
trend directions at the core and edges of population distributions. Flat population trends 
were also included in the design to assess false positive rates. All together the study 
consisted of 22 combinations of spatial pattern and magnitude.   
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The three types of spatial trend offsets constructed were: 1) spatially constant trends, 2) 
spatially varying trends and 3) no trend. We used the following linear model to construct 
the trend offsets, : � < �1�� ; <	�1��0	 , where α controls the strength and direction of 
the overall year-to-year changes in the expected log count and <	  controls the strength of 
the interaction between �1�� and 0	 , the interacting variable. Note that because an 
intercept is fit as part of 8��, we do not include an additional intercept term in the offset.  
 
Spatially uniform trends were generated by setting <	 � 0. Trends that affect a 
population uniformly over a region may indicate the indirect effects of broad-spatial scale 
processes like climate change. Spatially varying trends can be generated by setting < � 0 
and specifying a spatially patterned variable 0	  to interact with �1��. To assess if spatial 
patterns associated with density dependent population processes can be detected, we 
selected 0	  to be the PLAND cover class predictor with the largest Spearman rank 
correlation between itself and 5�, used here as an index of population density. Processes 
like habitat loss, disease, and dispersal can interact with population density to generate 
spatially varying trend patterns, e.g. Channell and Lomolino (2000) and Massimino, et al. 
(2015).  
 
Using two parameter sweeps, the spatially constant models were generated with the < 
ranging from -0.08 to 0.08 in 11 values spaced 0.016 apart and the spatially varying 
models were generated with <	  ranging from -0.40 to 0.40 in 11 values spaced 0.08 apart 
for a total of 22 simulation treatments. The strongest trends were parameterized to 
generate relatively large regions within the species’ range experiencing changes in 
population size of at least 6.7% per year over 10 years, one of the IUCN red-list criteria 
for endangered populations (IUCN 2019).  
 
S1.4 Simulation Evaluations 
Trend estimation proceeds in two steps as described above, where the signal filter first 
detects local trends and the trend magnitude is estimated in locations where the direction 
of trends is consistent. For each simulation we evaluated the power, error rate, and bias of 
the signal filter along with the correspondence between the magnitude of known and 
estimated trends. The false detection proportion (FDP) was calculated as the number of 
locations on the 25km grid where trends were erroneously detected, as a proportion of the 
total number of locations where trends were detected. The power was calculated as the 
proportion of locations where a trend was correctly identified out of all locations known 
to have non-zero trends. To understand how power varied as a function of the local trend 
strength, power was also evaluated across all locations with known trends with a 
minimum magnitude, ranging from 0 to 15% per year. Where the signal filter detected 
local trends, the coefficient of determination (=
) was computed to describe the 
proportion of variation in the known magnitudes explained by the estimates. 
 
For each of the breeding and non-breeding seasons, a separate simulation study was 
conducted for each of the 22 simulation treatments. For each treatment, the training data 
was spatiotemporally sampled and the year predictor variable was permuted to fit the 
simulation model. The AdaSTEM base models for each simulation treatment were trained 
using 100 independent realizations of simulated data.  
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We measured the performance of the trend estimates averaged across the full suite of 
simulation treatments to estimate the expected performance across a wide variety of trend 
scenarios.  An important part of this assessment was quantifying directional biases when 
detecting trends. When biases were found, we adjusted the signal filter to provide robust 
control against false detection of trends and conservative power estimates.  
 
If the FDP was found to exceed a specified error limit (e.g. 5, 10 or 20%) for more than 
10% of the of all the locations in all of the simulations, we considered the trend estimator 
to be biased for that error limit and season. To quantify and adjust for this bias we 
modified the directional hypotheses used for the signal filter, &0: -� ) �0.5 >  �� and 
&0: -� � �0.5 ;  �� where parameters  � and  � ? �0,0.5@ describe the directional 
biases. As the values of each bias parameter increases, the signal filter requires more 
consistency in the direction of the trend estimates across the ensemble, thereby reducing 
the FDP. Similarly, as the values of each bias parameter increases, the fewer locations on 
the trend map where trends can be identified while guaranteeing the FDR at the specified 
error limit.      
 
To estimate the directional biases, we performed a parameter sweep evaluating FDP and 
power across all combinations of values of  �,  � ? �0.0, 0.01, 0.02, … ,0.25�. Then we 
estimated the value of  �,  � that maximized power subject to the constraint that FDP 
was less than the specified limit (e.g. 5, 10, or 20%) across � 90% of the simulations.   
 
All of trend estimates reported here, for both breeding and nonbreeding seasons, were 
made using a FDR limit of 5%. For each of the breeding and nonbreeding simulations we 
estimated the direction bias parameters � �,  �� and used them to estimate trends. Thus, 
all of the trend maps, power statistics, and  =
 measurements reported in this paper were 
made using these bias corrections under a 5% FDR limit. 
 
S1.5 Wood Thrush Simulations 
Two simulation studies were conducted for the Wood Thrush over the 2007-2016 study 
period, one for the breeding season (May 30–July 3) across the species’ range in the 
northeastern North America and the second for the non-breeding season (Dec 1–Feb 28) 
across the species’ range in Central America.  
 
The simulations provide qualitative information describing the ability of the method to 
identify spatially varying trend patterns among locations. Fig. S1-4 show simulated and 
estimated trend maps for a sample of simulation treatments across a broad array of 
spatially constant and spatially varying trends with trend magnitudes that vary in 
direction and magnitude. The trend magnitudes varied along the rows of each figure with 
weak (includes regions with trends ~|1%/��|�, medium (includes regions with trends 
~|3.5%/��|�, and strong (includes regions with trends ~|6.7%/��|� trend magnitudes. 
This suite of spatial trend patterns is varied enough to begin to assess the method’s ability 
to estimate spatial patterns across locations. The quality of the trend estimates improves 
from weak to strong trend magnitudes, regardless of spatial pattern or direction. Regional 
patterns are identified, though with errors, when simulated trends are weak, and become 
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clearer as trends become stronger. The magnitude of the estimates generally varies with 
simulated trend strength, visible as the correspondence between the darkness of the colors 
shown for the estimate and simulation trend map pairs in Fig. S1-4. However, in regions 
with declining trends the trend magnitude appears to be underestimated in the 
nonbreeding season and among the spatially varying treatments in the breeding season.  
 
Fig. S5 shows power curves as a function of the minimum simulated trend magnitude, for 
5, 10, and 20% FDR constraints for both seasonal simulation analyses.  Both plots show 
the expected pattern of increasing power with increasing minimum trend magnitude. The 
plots also show the expected tradeoff between FDR and power, with increasing power as 
the FDR constraint becomes more lenient. We recognize that in some conservation 
applications the false detection of declining trends, carries a far lower risk for a species 
than failing to detect a declining trend, and in such circumstances, it may make sense to 
increase the error limit to 10 or 20% to improve the power to detect trends as can be seen 
in Fig. S5. 
 
Finally, the correspondence between estimated and simulated known trend magnitudes 
was stronger in the breeding season �=
=75.6%) than the nonbreeding season 
�=
=59.5%). Overall, these simulation results suggest that breeding season trend 
estimates will be more accurate, powerful, and less variable than those in the nonbreeding 
season. In general, this is expected because of the much higher density of data across the 
breeding range compared to the nonbreeding range.  
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Figure S1: Wood Thrush breeding season simulated and estimated trend maps for 
spatially constant treatments. The trend magnitude varies along the rows with weak 
(includes regions with trends ~|1%/��|�, medium (includes regions with trends ~|3.5%/

��|�, and strong (includes regions with trends ~|6.7%/��|� trend magnitudes. The first 
two columns show estimated and simulated trends for decreasing trends. The third and 
fourth columns show estimated and simulated trends for decreasing trends. The black 
contours delineate the regions across which the expected False Discovery Rate is at most 
5%.  
 

 
Figure S2: Wood Thrush breeding season simulated and estimated trend maps for 
spatially varying treatments. The trend magnitude varies along the rows with weak 
(includes regions with trends ~|1%/��|�, medium (includes regions with trends ~|3.5%/

��|�, and strong (includes regions with trends ~|6.7%/��|� trend magnitudes. The first 
two columns show estimated and simulated trends for decreasing trends. The third and 
fourth columns show estimated and simulated trends for decreasing trends. The black 
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contours delineate the regions across which the expected False Discovery Rate is at most 
5%.  
 
 

 
Figure S3: Wood Thrush nonbreeding season simulated and estimated trend maps 
for spatially constant treatments. The trend magnitude varies along the rows with weak 
(includes regions with trends ~|1%/��|�, medium (includes regions with trends ~|3.5%/

��|�, and strong (includes regions with trends ~|6.7%/��|� trend magnitudes. The first 
two columns show estimated and simulated trends for decreasing trends. The third and 
fourth columns show estimated and simulated trends for decreasing trends. The black 
contours delineate the regions across which the expected False Discovery Rate is at most 
5%.  
 
 

 
Figure S4: Wood Thrush nonbreeding season simulated and estimated trend maps 
for spatially varying treatments. The trend magnitude varies along the rows with weak 
(includes regions with trends ~|1%/��|�, medium (includes regions with trends ~|3.5%/
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��|�, and strong (includes regions with trends ~|6.7%/��|� trend magnitudes. The first 
two columns show estimated and simulated trends for decreasing trends. The third and 
fourth columns show estimated and simulated trends for decreasing trends. The black 
contours delineate the regions across which the expected False Discovery Rate is at most 
5%.  
 
 

 
Figure S5: Wood Thrush seasonal power curves as a function of the minimum 
simulated trend magnitude. Power varies as a function of the minimum trend 
magnitude for the (A) breeding and (B) nonbreeding season analyses. Power is reported 
as the percentage of all locations in range across the simulated known map that meet the 
minimum magnitude requirement that were identified with the correct trend direction 
when FDR was constrained at 5 (black), 10 (dark blue), and 20% (light blue). The 
maximum false detection proportion was 8% for the breeding season, so no light blue line 
is shown. The overall power corresponds to a minimum trend of zero, at the leftmost side 
of the graph. The black line corresponds to the black contour lines in Fig. 4 and 5.  
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