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Abstract 35 

We have developed a novel methylome analysis procedure, Methyl-IT, based on information 36 

thermodynamics and signal detection. Methylation analysis involves a signal detection problem, and the 37 

method was designed to discriminate methylation regulatory signal from background noise induced by 38 

thermal fluctuations. Comparison with three commonly used programs and various available datasets to 39 

furnish a comparative measure of resolution by each method is included. To confirm results, methylation 40 

analysis was integrated with RNAseq and network enrichment analyses. Methyl-IT enhances resolution of 41 

genome methylation behavior to reveal network-associated responses, offering resolution of gene 42 

pathway influences not attainable with previous methods. 43 

 44 
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 47 

Background 48 

Most chromatin changes that are associated with epigenetic behavior are reprogrammed each generation, 49 

with the apparent exception of cytosine methylation, where parental patterns can be inherited through 50 

meiosis [1]. Genome-wide methylome analysis, therefore, provides one avenue for investigation of 51 

transgenerational and developmental epigenetic behavior. Complicating such investigations in plants is 52 

the dynamic nature of DNA methylation [2, 3] and a presently incomplete understanding of its association 53 

with gene expression. In plants, cytosine methylation is generally found in three contexts, CG, CHG and 54 

CHH (H=C, A or T), with CG most prominent within gene body regions [4]. Association of CG gene 55 

body methylation with changes in gene expression remains in question. There exist ample data 56 

associating chromatin behavior with plant response to environmental changes [5], yet, affiliation of 57 

genome-wide DNA methylation with these effects, or their inheritance, remains inconclusive [6, 7]. 58 

 59 

The epigenetic landscape is modulated by thermodynamic fluctuations that influence DNA stability.  60 

Most genome-wide methylome studies have relied predominantly on statistical approaches that ignore the 61 

subjacent biophysics of cytosine DNA methylation, offering limited resolution of those genomic regions 62 

with highest probability of having undergone epigenetic change. Jenkinson and colleagues [8] described 63 

the implementation of statistical physics and information theory to the analysis of whole genome 64 

methylome data to define sample-specific energy landscapes. Our group [9, 10] has proposed an 65 

information thermodynamics approach to investigate genome-wide methylation patterning based on the 66 

statistical mechanical effect of methylation on DNA molecules. The information thermodynamics-based 67 
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approach is postulated to provide greater sensitivity for resolving true signal from thermodynamic 68 

background within the methylome [9]. Because the biological signal created within the dynamic 69 

methylome environment characteristic of plants is not free from background noise, the approach, 70 

designated Methyl-IT, includes application of signal detection theory [11-14]. 71 

 72 

A basic requirement for the application of signal detection is a probability distribution of the background 73 

noise. Probability distribution, as a Weibull distribution model, can be deduced on a statistical 74 

mechanical/thermodynamics basis for DNA methylation induced by thermal fluctuations [9]. Assuming 75 

that this background methylation variation is consistent with a Poisson process, it can be distinguished 76 

from variation associated with methylation regulatory machinery, which is non-independent for all 77 

genomic regions [9]. An information-theoretic divergence to express the variation in methylation induced 78 

by background thermal fluctuations will follow a Weibull distribution model, provided that it is 79 

proportional to minimum energy dissipated per bit of information from methylation change.  80 

 81 

The information thermodynamics model was previously verified with more than 150 Arabidopsis and 82 

more than 90 human methylome datasets [9]. To test application of the Methyl-IT method to methylome 83 

analysis, and to compare resolution of the Methyl-IT approach to publicly available programs DSS [15], 84 

BiSeq [16] and Methylpy [17], we used three Arabidopsis methylome datasets. Genome-wide 85 

methylation data from a Col-0 single-seed decent population [3], maintained over 30 generations under 86 

controlled growth conditions, provides a measure of thermodynamic properties within an unperturbed 87 

system. To assess resolution of methylation signal during plant development, we included previously 88 

reported datasets from various stages of seed development and germination in Arabidopsis ecotypes Col-0 89 

and Ws [18].  Both of these systems have been described for methylome behavior with Methylpy, and 90 

direct comparison of the two datasets allowed estimation of developmental epigenetic signal above 91 

background. For more detailed study of methylation and gene expression, and to provide empirical testing 92 

of Methyl-IT predictions, we focused on the trans-generational ‘memory’ line derived by suppression of 93 

the MSH1 (MUTS HOMOLOG 1) gene [19, 20], which has not been previously described for methylome 94 

features. 95 

 96 

MSH1 is a plant-specific gene that encodes an organelle-localized protein [21, 22]. Plastid-depletion of 97 

MSH1 conditions ‘developmental reprogramming’ in the plant [23]. The msh1 mutant is altered in 98 

expression of a broad array of environmental and stress response pathways [24], and the mutant 99 

phenotype is also produced by MSH1 RNAi knockdown [20]. Differentially expressed gene (DEG) 100 

analysis of the msh1 TDNA mutant identifies major components from numerous abiotic and biotic stress, 101 
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phytohormone, carbohydrate metabolism, protein translation and turnover, oxidative stress and 102 

photosynthetic pathways [24]. Subsequent null segregation of the RNAi transgene restores MSH1 103 

expression but leaves a heritably altered phenotype, with delayed flowering, reduced growth rate, delayed 104 

maturity transition and pale leaves [20]. This condition is termed msh1 ‘memory’, and provides for direct 105 

investigation of transgenerational methylation variation and its association with altered gene expression. 106 

 107 

Here, we report on Methyl-IT sensitivity relative to three commonly used methylome analysis programs.  108 

We demonstrate resolution of methylome repatterning by Methyl-IT analysis, and empirical validation of 109 

gene networks undergoing changes in methylation and gene expression as identified by the Methyl-IT 110 

procedure. 111 

 112 

Results 113 

The Methyl-IT method 114 

For resolution of DNA methylation signal, we employed Hellinger divergence (H) as a means of 115 

quantifying dissimilarity between two probability distributions: that associated with a reference, defining 116 

background changes, and that associated with treatment. 117 

 118 

Signal detection is a critical step to increase sensitivity and resolution of methylation signal by reducing 119 

the signal-to-noise ratio and objectively controlling the false positive rate and prediction accuracy/risk 120 

(Fig. 1). Optimal detection of signals requires knowledge of the noise probability distribution that, from a 121 

statistical mechanical basis, can be modeled for each individual sample by a Weibull distribution [9]. The 122 

methylation regulatory signal does not hold Weibull distribution and, consequently, for a given level of 123 

significance α (Type I error probability, eg. α = 0.05), cytosine positions with 05.0=aH  can be selected as 124 

sites carrying potential signals (shown as the blue region under the curve in Fig.1). Laws of statistical 125 

physics can account for background methylation, a response to thermal fluctuations that presumably 126 

function in DNA stability [9]. True signal is detected based on the optimal cutpoint [25], which can be 127 

estimated from the area under the curve (AUC) of a receiver operating characteristic (ROC) built from a 128 

logistic regression performed with the potential signals from controls and treatments.  In this context, the 129 

AUC is the probability to distinguish biological regulatory signal naturally generated in the control from 130 

that induced by the treatment. In this context, the cytosine sites carrying a methylation signal are 131 

designated differentially informative methylated positions (DIMPs). The probability that a DIMP is not 132 

induced by the treatment is given by the probability of false alarm (PFA, false positive). That is, the 133 

biological signal is naturally present in the control as well as in the treatment.  134 
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 135 

Estimation of optimal cutoff from the AUC is an additional step to remove any remaining potential 136 

methylation background noise that still remains with probability α = 0.05 > 0. We define as methylation 137 

signal (DIMP) each cytosine site with Hellinger divergence values above the cutoff ( TDH33 ), as shown in 138 

Fig. 1. Each DIMP is a cytosine position carrying a significant methylation signal, which may or may not 139 

be represented within a differentially methylated position (DMP) according to Fisher’s exact test (or other 140 

current tests, Fig. 1).  The difference in resolution by current methods versus Methyl-IT is illustrated by 141 

positioning H value sensitivity of the Fisher’s exact test (FET) at greater than Hmin for cytosine sites that 142 

are DMP and DIMPs simultaneously. For example, the ROC curve that corresponds to logistic regression 143 

for potential signals from the closest wild type control to msh1 memory line (control 3 and treatment 1 in 144 

Fig. 1) has an AUC cutpoint of H =1.028052.  145 

 146 

The probability of false alarm (estimated for best fit found for the Weibull cumulative distribution of H in 147 

the mentioned control) for DIMP detection based on the mentioned cutpoint is PFA=1.466×10-6. Thus, in 148 

the msh1 memory line dataset under study, any cytosine position k with Hk ≥1.028052 is a DIMP. 149 

Although the probability PFA =1.466 x 10-6 is small, there is still an average of 44844 CG-DIMPs per wild 150 

type sample. The average of CG-DIMPs in the memory line samples is 225835. We found that the 151 

strength of biological regulatory signal (evaluated in terms of AUC) was different for each methylation 152 

context. The strongest signal by Hellinger divergence found in our analyses was in CG context. A 153 

parsimony decision to reduce the rate of false positives used the cutpoint estimated for the AUC from the 154 

strongest signal. A flow chart of Methyl-IT analysis, with integration of these major procedures described 155 

above, is shown in Fig. 2. 156 

 157 

Relative sensitivity of the Methyl-IT method versus other procedures 158 

Table 1 provides a critical but nonunique example for the 2x2 contingency table with read counts  159 

, ,  , and .  In this situation, and for any value , 160 

there exists strong methylation signal in the treatment, significantly stronger than in the control, but a 2x2 161 

contingency independence test cannot detect it. Even small genomes like Arabidopsis contain millions of 162 

methylated cytosine sites, and situations analogous to the one presented in Table 1 are not rare. If this 163 

hypothetical cytosine site were to occur in the memory line, with , then, according to its p-164 

value estimate from the corresponding Weibull distribution, it would be a potential signal included in the 165 

logistic regression and, since H = 1.12 in this example and AUC cutpoint Hcutpoint = 1.028, it would be a 166 

DIMP (Hcutpoint < H). 167 
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 168 

In the memory line, 100% of differentially methylated cytosines (TVD > 0.23) in all methylation contexts 169 

found by root-mean-square test (RMST, bootstrap test of goodness-of-fit [26] implemented in methylpy 170 

[17]), Fisher exact test (FET), and HDT (bootstrap test of goodness-of-fit based on Hellinger divergence, 171 

see methods) are also detected by Methyl-IT (Fig. 3). RMST does not detect 17.7% of CG-DIMPs, 47.8% 172 

CHG-DIMPs, and 59.7% CHH-DIMPs. HDT does not detect 19.7% of CG-DIMPs, 51.5% CHG-DIMPs, 173 

and 66.1% CHH-DIMPs, while FET does not detect 46.2% of CG-DIMPs, 73.9% CHG-DIMPs, and 84% 174 

CHH-DIMPs. Together, RMST, HDT and FET do not detect 13.5% of CG-DIMPs, 43.2% CHG-DIMPs, 175 

and 52.5% CHH-DIMPs. The DIMPs not detected by these alternative approaches come from situations 176 

analogous to that presented in Table 1. RMST is a robust test of goodness-of fit for 2x2 contingency 177 

tables. The statistic used in RMST is an information divergence. Results obtained with RMST were very 178 

close to those estimated based on Hellinger divergence [26, 27](see Table 1). Therefore, the differences in 179 

outcome between Methyl-IT and Methylpy do not reside in RMST but, rather, in the signal detection 180 

limitation, which requires knowledge of the null distribution for methylation background variation. The 181 

null distribution of the control sample testing statistic must be taken into account.  182 

 183 

Relative sensitivity and resolution of the Methyl-IT method can also be assessed by parallel analyses of 184 

the three datasets, generational, seed development and msh1 memory. Fig. 4 shows a single-scale, direct 185 

comparison of differential methylation behavior in these datasets. Rather than total DIMP number, we 186 

present relative. The absolute DIMP counts and DIMP counts per genomic region are provided in the 187 

Additional File 2 Table.S1 for seed development and germination dataset. In Fig. 4, DIMP number is 188 

normalized to the corresponding local cytosine context number. The signal detection step of Methyl-IT 189 

discriminates signal unique to the sample from background patterning changes shared within the control 190 

without regard to DMP density. Consistent with expectations, the generational dataset displays lowest 191 

level variation across lineages, with greater inter-lineage variation than generational, and highest DIMP 192 

signal in CG context. Direct comparison between the generational and seed development studies 193 

estimated pattern and magnitude differences between the two datasets. Methylation signal in the seed 194 

development dataset taken from the original study by Kawakatsu et al. [18] was greater than that of the 195 

generational study, with DIMP signal in all three CG, CHG, CHH contexts. CHG and CHH changes were 196 

associated predominantly with non-genic and TE regions, and CG DIMPs showed higher density within 197 

gene regions (Fig. 4). Analysis of msh1 memory, when compared to the generational and seed 198 

development data, showed significantly greater magnitude change and prevalent methylation DIMP signal 199 

within genic CG context. Genome-wide analysis of methylation in the memory line, enhanced by signal 200 

detection, revealed considerable CG, CHG and CHH DIMPs across all chromosomes. Results are shown 201 
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for data before (Fig. 3) and after (Fig. 4 and Additional file 1: Figure S1) normalization to demonstrate 202 

that while the vast majority of methylation resides in CHH context, normalized for density, changes in 203 

CG context predominated on chromosome arms (Additional file 1: Figure S1).  204 

 205 

A hierarchical cluster based on AUC criteria, and built on the set of 7006 selected DIMPs associated 206 

genes, permitted the classification of seed developmental stages into two main groups: morphogenesis 207 

and maturation phases (Additional File 1 Figure. S2a). In this case, the methylation signal was expressed 208 

in terms of log2(DIMP-counts on gene). Within the 7006-dimensional metric space generated by 7006 209 

AUC-selected genes, the linear cotyledon (COT) and mature green (MG) stages (morphogenesis-210 

maturation phase) grouped into a cluster quite distant from the cluster of post mature green (PMG) and 211 

dry seed (DRY) stages (Dormancy phase). The latter cluster was closer to the leaf dataset derived from 4-212 

week-old plants. Similar analysis was performed for the seed germination experiment from the mentioned 213 

study, and a hierarchical cluster built on the set of 3864 selected genes based on AUC criteria permitted 214 

the classification of seed developmental stages into two main groups: 1) dormancy and 2) germination-215 

emerging phases (Additional File 1 Figure S2b). 216 

 217 

Differentially methylated genes (DMG) 218 

Here we propose the concept of differentially methylated genes (DMGs) based on the comparison of 219 

group DIMP counts by applying generalized linear regression model (GLM). In particular, the use of 220 

DMRs (clusters of DMPs within a specified region), can be tested in a group comparison by applying 221 

GLM. 222 

 223 

Genes displaying a statistically significant difference in the number of DIMPs relative to control were 224 

defined as DMGs. Additional File 3 Table.S2 shows the number of DMGs observed in the seed 225 

development data, based on Methyl-IT analysis. In this case, the analysis included DIMPs, regardless of 226 

hypo or hyper methylation direction, and from all cytosine methylation contexts. Genes were defined as 227 

the region covered by gene body plus 2kb upstream of the gene start site.  228 

 229 

The number of DMGs (1068 genes) is considerably lower than the number of genes associated with 230 

DMRs derived in the original study by Kawakatsu et al. (2017) [18]. Methylpy-derived DMR number 231 

reflects genomic intervals with a given density of cytosine methylation changes, defined relative to a 232 

control. Methyl-IT DMG number reflects gene regions with highest probability of differential methylation 233 

distinct from background activity in the control. For example, after combining the embryogenesis CG, 234 
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CHG, and CHH DMRs reported in Kawakatsu et al. [18] (Table S5 from [18]) into a single set of DMRs, 235 

only 468 from 6433 DMR-associated genes (after removing duplicated genes and updating annotation) 236 

were Methyl-IT DMGs that met our GLM criteria in the group comparison of maturation phase versus 237 

morphogenesis phase (Additional File 1 Figure S3a). DMR-associated gene analysis was also performed 238 

with the set of DMRs detected in the germination experiment from the same study [18]. Similarly, 53 239 

from 7638 DMR-associated genes were identified DMGs that met our GLM criteria in the group 240 

comparison of germination-emerging versus dormancy phases (Additional File 1 Figure S3b ). In this 241 

case, 7638 DMR-associated genes comprise the resulting set from pooling germin-CHG and germin-CHH 242 

DMRs (as reported in Table S5 from reference [18]). Analysis for the set of all genes yielded 136 DMGs 243 

(Additional File 1 Figure S3c). 244 

 245 

To more generally investigate the relative efficacy of commonly used methylation analysis programs, we 246 

applied DSS, BiSeq and Methylpy to the msh1 memory line and corresponding Col-0 control methylome 247 

datasets. The control line was acquired as a transgene-null within the same transformation experiment that 248 

produced MSH1-RNAi lines from which the memory line derives, and has been grown in parallel each 249 

subsequent generation. The overlaps of DMR-associated genes from DMRs found in the memory line by 250 

the methylome analysis pipelines DSS, BiSeq, and Methylpy is presented in Fig. 5a. What is striking is 251 

the degree of data non-conformity from the three methods. Because the subjacent algorithms of these 252 

programs are based not only on different statistical and computational approaches and do not define 253 

DMRs uniformly, the data output differs in sensitivity and methylation change criteria. The application of 254 

GLM to estimate the DMG set by Methyl-IT and its overlap with DMR-associated genes retrieved from 255 

DMRs identified by the mentioned programs is shown in Fig. 5b. For the group comparison counting only 256 

gene-body DIMPs, a total of 9271 loci (from the entire set of genes) were identified as DMGs in the msh1 257 

memory line (Additional file 4: Table S3), while 8798 DMGs were identified for the group comparison 258 

counting DIMPs within gene body plus 2kb upstream and downstream (with TVD > 0.15). The 259 

application of GLM in estimating DMGs is not implemented to identify DMRs, but to evaluate whether 260 

or not a statistically significant difference exists between methylation signals observed in two individual 261 

groups for an already defined DMR. 262 

 263 

Methyl-IT identifies gene networks in seed development and germination dataset  264 

If heightened sensitivity in methylome signal detection imparts added biological information, this should 265 

be evident in tests for association of methylome signal with gene expression changes. Observed CG and 266 

CHG signal implies that changes in methylation during seed development relate to gene expression and/or 267 
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developmental transitioning. To investigate this possibility further, we conducted a network enrichment 268 

analysis test (NEAT) of the Methyl-IT output from seed development and germination datasets. 269 

 270 

Analysis of data from stages of seed development, including cotyledonary, mature green and post-mature 271 

green, contrasted to globular as reference, suggested a methylome repatterning following the mature 272 

green stage (Additional File 1 Figure. S2). Data indicate that methylome patterns are more similar 273 

between cotyledonary and mature green stages, transitioning to a distinguishable state for post-mature 274 

green and dry seed. This methylome transition may relate to the dessication and dormancy shift that also 275 

occurs with this timing [28, 29]. Further analysis of differentially methylated loci with NEAT detected 276 

statistically significant network enrichment of links between genes from the set of DMGs (Ws-0 seed) 277 

and the set of GO-biological process terms associated with seed functions (Table 2). The list of genes 278 

found in networks includes genes known to participate in seed development such as, For example, 279 

transcription factors DPBF2 (AT3G44460) from an abscisic acid-activated signaling pathway expressed 280 

during seed maturation in the cotyledons, ABSCISIC ACID BINDING FACTOR (ABF1, AT1G49720), and 281 

WRKY22 (AT4G01250) a member of WRKY transcription factors involved mainly in seed development. 282 

Other genes were found to be involved in seed dormancy, like SLY1 (SLEEPY1), and seedling 283 

development, like EIN4 (AT3G04580), CML16 (AT3G25600) (full gene list in Additional file 5: Table 284 

S4). GeneMANIA (http://www.cytoscape.org/), identified interaction networks within the data, indicating 285 

that many DMGs in the seed development dataset function together (Additional file 1: Figure S4). 286 

 287 

Similar analysis of the seed germination and the Col-0 single-seed decent datasets did not detect DMGs 288 

within networks. Results in the single-seed decent generational study are consistent with expectations, 289 

since samples were grown under controlled conditions and sampled uniformly over generations. In the 290 

case of the seed germination dataset, this outcome may be consistent with the fact that only CHG and 291 

CHH DMRs were found in the original seed germination study by Kawakatsu et al. (2017) [18], while the 292 

seed developmental experiment showed 60% of CG DMRs overlapping with protein-coding genes.  These 293 

data suggest that methylome signal may be more prominent under particular developmental transitions, 294 

like seed preparation for dormancy and dessication, than during processes like germination. 295 

 296 

The memory line phenotype 297 

Transgene-null plants following segregation of the MSH1-RNAi transgene, termed msh1 ‘memory’ lines, 298 

display full penetrance and transgenerational inheritance of the altered phenotype, and the msh1 memory 299 

effect recapitulates in tomato [30]. Arabidopsis lines that have undergone silencing of MSH1 segregate 300 

for the MSH1-RNAi transgene by self-crossing to produce heritable phenotype changes in ca. 7-25% of 301 
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the resulting transgene-null progeny (Fig. 6a).  The msh1 memory phenotype is milder and more uniform 302 

than that observed in msh1 mutants derived by point mutation, T-DNA mutation or RNAi suppression [19, 303 

20, 23] (Fig. 6b). Memory lines show normal MSH1 transcript levels (Fig. 6c), but 100% penetrance and 304 

heritability of the altered phenotype in subsequent self-crossed generations. Over 3,000 RNAi-null 305 

memory line progeny under greenhouse conditions produced neither visible reversion to wild type nor 306 

more severe msh1 phenotypes (Additional file 1: Figure S5).  In Arabidopsis, memory lines were stably 307 

carried forward four generations and, in tomato, ten generations to date. 308 

 309 

Memory line methylome changes detected by Methyl-IT associate with gene expression 310 

The derived transgene-null msh1 memory lines display gene expression changes in ca. 955 genes 311 

(Additional file 6: Table S5), approximately 67% of which are shared with the msh1 mutant (Additional 312 

file 7: Tables S6, Additional file 6: Tables S5). 313 

 314 

The memory line DEG profile is distinctive. Unlike the mutant, which shows widespread gene ontology 315 

enrichment in nearly every stress response pathway (Additional file 7: Table S6), memory line gene 316 

ontology enrichment shows skewing toward integrated pathways for circadian clock, starch metabolism, 317 

and ethylene and abscisic acid response (Fig. 6d). These studies use the msh1 TDNA insertion mutant 318 

rather than transgenic MSH1-RNAi for comparisons to ensure that each plant is msh1-depleted.  319 

Transgenic RNAi knockdown lines are variable for MSH1 suppression across plants (Fig. 6c), potentially 320 

confounding interpretation, and MSH1-RNAi and msh1 TDNA mutant appear identical in phenotype (Fig. 321 

6b). 322 

 323 

Application of Network-Based Enrichment Analysis (NBEA) to the set of 955 DEGs in the memory line 324 

detected over-enrichment in five pathways: “circadian rhythm”, “response to red or far red light”, 325 

“regulation of circadian rhythm”, “long-day photoperiodism/flowering”, and “regulation of 326 

transcription”. The permutation test applied to these data indicates that the observed simultaneous over-327 

enrichment of these pathways by chance holds a probability of lower than 4x10-5, reflecting a non-random 328 

outcome (Additional file 8: Table S7).  329 

 330 

The msh1 “memory” is a candidate system for non-genetic methylome reprogramming  331 

Similar to investigation of methylation changes during seed development and germination, we followed 332 

Methyl-IT analysis of msh1 memory line data with NEAT and network-based enrichment analysis 333 

(NBEA) to assess biologically meaningful data based on DMGs alone. Additional file 9: Table S8 shows 334 
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results classifying methylation signal into networks for circadian clock, abscisic acid-activated signaling, 335 

and defense response. Approximately 32% of identified DEGs overlap with DMGs in the memory line 336 

(Fig 7a).  These differentially methylated and expressed loci are over-enriched for genes contributing to 337 

circadian rhythm, plant hormone signal transduction, and MAPK signaling pathway (Fig. 7b-7d). 338 

Network analysis of expression, shown in (Fig. 7b-7d). , suggests dysregulation of these pathways in 339 

msh1 memory. 340 

 341 

Integration of independently derived DEG, DMG and NBEA data from the memory lines converged on 342 

16 loci (Fig. 7a and Table 3), of which 10 directly participate in circadian rhythm regulation and the 343 

remainder, associated with light, ABA and ethylene response, are directly influenced by circadian clock 344 

regulators (Table 3). Principal component (PC) analyses based on the mean of CG- Hellinger divergence 345 

covering the gene regions delimited by DMGs (Fig. 8a), DMG/DEG intersection (Fig. 8b) and the 346 

mentioned 16 loci (Fig. 8c) suggest a distinctive role of gene-associated CG methylation in msh1-memory 347 

effect. For all analyses, more than 80% of variance among wild type, msh1 memory and msh1 TDNA 348 

mutant was explained on the plane PC1-PC2, where msh1 memory effect is clearly distinguishable from 349 

control. Quantitative discriminatory power of CG methylation in the 16 signature loci is reflected in 350 

hierarchical clustering based on their PC1-PC2 coordinates (Fig. 8d) and in their strong correlation with 351 

the first two components (Fig. 8e). In particular, eight circadian rhythm genes strongly correlate with PC1, 352 

which carries 65% of the whole sample variance. Thus, for these genes, CG methylation conveys enough 353 

discriminatory power to distinguish individual wild type phenotypes from the msh1 memory effect.  354 

 355 

These observations are the first inference of association between CG methylation and gene expression 356 

changes in the msh1 memory line. DIMP distribution along the 16 signature loci showed most CG and 357 

non-CG DIMPs located within exonic regions in memory lines with little individual CG-DIMP variation 358 

(sometimes balanced with non-CG), suggesting that a programmed distribution pattern might exist 359 

(Additional file 10: Table S9).  360 

 361 

Predicted changes in methylation pattern at core circadian clock genes were subsequently confirmed by 362 

sequence-specific bisulfite (BS) PCR analysis (Fig. 9a-9d). DIMPs were confirmed in the memory line at 363 

GI, TOC1, LHY and CCA1 genes. BS-PCR primer set BS-GI-P2, designed to bind to a predicted DIMP-364 

rich region, confirmed DIMPs within the region (Fig. 9e), while primer set BS-GI-P7, designed to bind to 365 

a DIMP-free region, detected no changes (Fig. 9f). The DNA bisulfite conversion rate in this experiment 366 

was confirmed by using DDM1 as control, with a calculated bisulfite conversion rate of 99.47% for WT 367 

and 100% for memory line sample (Additional file 1: Figure S6). 368 
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 369 

Germination of the memory line and isogenic Col-0 wild type on media containing 100 uM 5-azacytidine 370 

alleviated the phenotype differences between the two lines, resulting in similar growth rates (Additional 371 

file 1: Figure S7).  Transfer to potting media to assess later growth showed wild type and memory lines to 372 

be similar in phenotype following treatment (Additional file 1: Figure S7).  Likewise, RNAseq analysis of 373 

the treated and untreated memory and control lines showed 5-azacytidine treatment had genome-wide 374 

effects on the gene expression pattern of both msh1 memory line and wild type, and brought overall gene 375 

expression patterns of treated msh1 memory line and wild-type closer than before treatment (Additional 376 

file 1: Figure S8). These observations reflect association between DNA methylation behavior and the 377 

altered phenotype.  378 

 379 

Wild type and memory line plants treated with 5-azacytidine were also tested for changes in expression of 380 

the sixteen identified loci shown in Table 3. Quantitative RT-PCR assays confirmed previous RNAseq 381 

results, showing significant differences in steady state transcript levels for 14 of the 16 loci in wild type 382 

versus memory line plants growing under no treatment conditions (Additional file 1: Figure S9).  Plants 383 

germinated in 5-azacytidine prior to transfer to growth media, however, produced no significant 384 

differences in gene expression for these loci in memory lines versus wild type (Additional file 1: Figure 385 

S9). These data show a relationship between methylation state and gene expression changes in msh1-386 

induced memory, and provide evidence that altering methylation via chemical treatment can return gene 387 

expression to nearly wild type steady state levels for these loci within the time period assayed. 388 

 389 

The msh1 memory effect is related to circadian rhythm changes 390 

Both gene expression and methylome datasets, analyzed independently, indicated alteration in 391 

components of the circadian clock.  To test for modified circadian oscillation behavior in msh1 memory, 392 

gene expression levels for 4 core circadian clock genes in Arabidopsis and 2 genes in tomato were 393 

evaluated over a 48-h time course under constant light (LL) and light-dark cycles (LD). Results confirmed 394 

a degree of circadian rhythm dysregulation for all tested loci in both Arabidopsis memory lines, with 395 

varying levels of altered expression (Fig 10).  DEG analysis in Arabidopsis showed that the proportion of 396 

genes regulated by TOC1/CCA1 and altered in expression increased from 10.4% in the msh1 T-DNA 397 

mutant line to 33.1% in the msh1 memory line (Fig 11a).  Memory-associated processes identified in 398 

Figure 6d, starch metabolism and cold, ethylene and abscisic acid response, are circadian clock output 399 

pathways [31] (Fig 11b-e), again signifying that methylome repatterning influences genes that function 400 

coordinately. The altered expression of three genes from these pathways was confirmed in Arabidopsis by 401 
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qRT-PCR (Additional file 1: Figure S10).  Data to date suggest that circadian clock dysregulation 402 

contributes to the memory line phenotype; it is not yet known whether clock dysregulation acts causally 403 

in memory programming.  404 

 405 

Comparable memory effects are detected in tomato 406 

The msh1 effect is recapitulated across plant species [23, 30].  We exploited this observation by 407 

comparing msh1 memory lines in Arabidopsis and tomato (cv ‘Rutgers’).  Genome-wide methylome 408 

(BSseq) data were derived from Rutgers wild type and MSH1-RNAi transgene-null lines (fifth 409 

generation).  Similar to Arabidopsis, tomato memory lines are attenuated and more uniform in phenotype 410 

relative to RNAi suppression lines, described by Yang et al. (2015)[30], and display reduced growth rate 411 

and delayed flowering.   412 

 413 

To test Methyl-IT analysis value in a dataset derived from another plant species, and to learn whether 414 

signature pathways identified in Arabidopsis msh1 memory line are shared in tomato msh1 memory, we 415 

conducted parallel analysis with the derived tomato memory line methylome dataset. Available gene 416 

annotation in tomato is incomplete. Therefore, identified differentially methylated tomato loci were cross-417 

referenced to Arabidopsis orthologs. We identified 7802 tomato DMGs (Additional file 11: Table S10).  418 

About 4277 of them were shared with Arabidopsis, accounting for ca. 55% of tomato DMGs and 46% of 419 

Arabidopsis DMGs (Fig. 12a). With NBEA analysis, we identified 147 tomato genes predominantly 420 

associated with phytohormone response, including auxin, salicylic acid, ethylene and ABA pathways, 421 

together with circadian regulators, abiotic and biotic stress genes, and light response (Additional file 12: 422 

Table S11). Arabidopsis homologs for 43% (63) of these 147 genes were found in Arabidopsis DMGs by 423 

NBEA (Additional file 13: Table S12). Homologs for 6 of the 16 loci identified in Arabidopsis and listed 424 

in Table 3 were present in the list of 147 tomato genes. Similar circadian clock dysregulation was 425 

observed in tomato msh1 memory as in its Arabidopsis counterparts. Gene expression levels for 2 core 426 

circadian clock genes, Sl_TOC1 (Solyc06g069690) and Sl_LHY (Solyc10g005080) in tomato were 427 

evaluated over a 48-h time course under light-dark cycles (LD) to confirm dysregulation (Fig. 12b), along 428 

with downstream circadian clock-regulated genes (Fig. 12c). Together, these data reflect cross-species 429 

conservation underlying msh1 memory. 430 

Discussion 431 

Methyl-IT draws from the perspective that DNA methylation functions to stabilize DNA [32-34] and, as 432 

such, may exist in “activated” versus “maintenance” states with regard to bioenergetics. We have begun 433 
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to investigate DNA methylation patterning as a “language” of sorts, identifying pattern changes that 434 

comprise “signal” in response to treatment, without regard to density of methylation changes within a 435 

given interval. While the theoretical premise underlying our approach, and based on Landauer’s principle, 436 

is detailed elsewhere [9, 10], the present study compares resolution of this methodology to current 437 

methods for analysis of whole-genome methylation datasets.   438 

 439 

Methyl-IT permits methylation analysis as a signal detection problem. Our model predicts that most 440 

methylation changes detected, at least in Arabidopsis and tomato, represent methylation “background 441 

noise” with respect to methylation regulatory signal, and are explainable within a statistical probability 442 

distribution. Implicit in our approach is that DIMPs can be detected in the control sample as well. These 443 

DIMPs are located within the region of false alarm in Fig. 1, and correspond to natural methylation signal 444 

not induced by treatment. Thus, using the Methyl-IT procedure, methylation signal is not only 445 

distinguished from background noise, but can be used to discern natural signal from that induced by the 446 

treatment. 447 

 448 

Whereas Methylpy, DSS and BiSeq provide essential information about methylation density, context and 449 

positional changes on a genome-wide scale, Methyl-IT provides resolution of subtle methylation 450 

repatterning signals distinct from background fluctuation. Data derived from analysis with Methylpy, 451 

BiSeq or DSS alone could lead to an assumption that gene body methylation plays little or no role in gene 452 

expression, or that transposable elements are the primary target of methylation repatterning. Yet ample 453 

data suggest that this picture is incomplete [35].  Methyl-IT results show that these conclusions more 454 

likely reflect inadequate resolution of the methylome system. GLM analysis applied to the identification 455 

of DMR-associated genes by Methylpy, BiSeq and DSS indicates that DMRs (or DMR associated genes) 456 

do not provide sufficient resolution to link them with gene expression. 457 

 458 

Signal detected by Methyl-IT may reflect gene-associated methylation changes that occur in response to 459 

local changes in gene transcriptional activity.  Comparative analysis of the msh1 memory line data with 460 

msh1 T-DNA mutant, a more extreme phenotype, showed 42.3% of memory line DMGs (3921 out of 461 

5354) to overlap with msh1 T-DNA DEGs.  With the memory line DEGs estimated to number only 935, 462 

it is possible that methylation repatterning within the memory line serves to stabilize or re-establish gene 463 

expression following the extreme, stress-related changes that accompany MSH1 silencing [24]. Similarly, 464 

the pathway-associated methylome changes detected in seed development data may reflect participation 465 
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of methylation in gene expression stage transitions, particularly prominent between green mature and 466 

post-green mature stages. 467 

 468 

Methyl-IT analysis of various stages in seed development and germination showed evidence of 469 

methylation changes. Previous Methylpy output [18] defined predominant changes in non-CG 470 

methylation residing within TE-rich regions of the genome, whereas Methyl-IT data resolved statistically 471 

significant methylation signal within gene regions.  With the complementary resolution provided by 472 

Methyl-IT, it becomes possible to investigate the nature of chromatin response within identified genes in 473 

greater detail during the various stages of a seed’s development. Several of the identified DMGs in this 474 

study involved genes that interact within known development pathways. 475 

 476 

There is little detail available in plants of local intragenic methylation behavior during transitions in gene 477 

activation, but transcription factor-associated recruitment of methylation machinery has been postulated 478 

[35], and supported by data in other systems [36]. A large proportion of the intervals identified by this 479 

study are components of signal transduction, so expression effects may be below the detection limits of 480 

the assay.  Among the 1717 transcription factors reported in PlantTFDB, 340 are identified as DMGs in 481 

our list for memory line. Effects of alternative splicing in memory changes, also known to respond to 482 

local methylation [37], would similarly have escaped detection in our gene expression analysis. However, 483 

for a better comprehension of which genes would be controlled by the regulatory methylation machinery 484 

in processes like seed developmental or the induced msh1 memory effect, the network enrichment 485 

analysis of DMGs and DEGs can reduce the number of potential regulators to a minimal number of genes 486 

testable under lab conditions, as presented in our study. Analysis produced evidence of a relationship 487 

between msh1 memory line gene expression and differential methylation data for at least 16 regulatory 488 

loci, 10 of which comprise components of the circadian clock. 489 

 490 

Plants have the capacity to respond to a wide array of abiotic and biotic stresses and developmental cues 491 

through overlapping gene networks. It is increasingly evident that phytohormone, light response, abiotic 492 

and biotic stress response, photosynthesis and carbohydrate metabolism are integrated output pathways of 493 

the plant’s circadian clock [31]. A significant proportion of the plant’s gene expression profile is 494 

influenced by circadian regulation [38], introducing the concept of a master regulator of adaptation. 495 

Numerous reports underscore extensive pathway integration under circadian clock control, with starch 496 

metabolism, cold response and abscisic acid-mediated stress response, for example, as particularly 497 

prominent pathways altered by msh1 memory. The link between plant response to cold and epigenetic 498 

memory involves histone modifications of the FLC locus during vernalization [39]. Cold temperature also 499 
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influences alterative splicing patterns of clock genes to alter their function [40]. ABA, a stress hormone, 500 

shows rhythmic diel levels in plants [41], and associates with TOC1 and an ABA-related gene, ABAR, in 501 

a highly regulated feedback loop [42]. Epigenetic modification of circadian clock genes effect changes in 502 

starch metabolism [43], and can educe enhanced growth vigor in hybrids and allopolyploids [44]. Studies 503 

of classical heterosis in Arabidopsis also show association with changes in circadian clock behavior [45]. 504 

Data from this study indicate that MSH1 suppression includes circadian clock, ABA and ethylene 505 

dysregulation as components of the associated msh1 global stress condition.  Segregation of the MSH1-506 

RNAi transgene only partially reverts the phenotype, revealing loci that have apparently sustained 507 

cytosine methylation repatterning, and producing a phenotypic memory effect, presumably methylation-508 

based, that is reproducible and heritable.  If correct, the msh1 memory phenomenon comprises a robust 509 

medium for addressing epiallelic stability.   510 

 511 

Identification of gene networks in both seed development and msh1 memory was based on DNA 512 

methylation data analysis with the enhanced resolution of Methyl-IT. In the case of msh1 memory, gene 513 

expression, phenotype and cross-species comparison served to confirm the identified networks. While 514 

early in the process, these outcomes argue compellingly for the feasibility of genome-wide methylome 515 

decoding of the gene space. 516 

Conclusions 517 

Methyl-IT is an alternative and complementary approach to plant methylome analysis that discriminates 518 

DNA methylation signal from background and enhances resolution. Analysis of publicly available 519 

methylome datasets showed enhanced signal during seed development and germination within genes 520 

belonging to related pathways, providing new evidence that DNA methylation changes occur within gene 521 

networks. Similarly, msh1 transgenerational memory phenomena in Arabidopsis and tomato identified 522 

methylation-altered gene networks involving circadian clock components and linked stress response 523 

pathways altered in expression and connected to phenotype. Whereas, previous methylome analysis 524 

protocols identify changes in methylome density and landscape, predominantly non-CG, Methyl-IT 525 

reveals effects within gene space, mostly CG and CHG, for elucidation of methylome linkage to gene 526 

effects. 527 

Methods 528 

Methylome analysis 529 

The alignment of BS-Seq sequence data from Arabidopsis thaliana was carried out with Bismark 0.15.0 530 

[46]. BS-Seq sequence data from tomato experiment were aligned using ERNE 2.1.1 [47]. The basic 531 
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theoretical aspects of methylation analysis applied in the current work are based on previous published 532 

results [9]. Details on Methyl-IT steps are provided in the next sections. 533 

 534 

Methylation level estimation 535 

To estimate methylation levels at each cytosine position, we followed a Bayesian approach. In a Bayesian 536 

framework assuming uniform priors, the methylation level can be defined as: 537 

 (1), where and  represent the numbers of methylated and non-538 

methylated read counts observed at the genomic coordinate , respectively. We estimate the shape 539 

parameters and  from the beta distribution  (2) minimizing the 540 

difference between the empirical and theoretical cumulative distribution functions (ECDF and CDF, 541 

respectively), where  is the beta function with shape parameters  and . Since the beta 542 

distribution is a prior conjugate of binomial distribution, we consider the p parameter (methylation level543 

) in the binomial distribution as randomly drawn from a beta distribution. The hyper-parameters and 544 

are interpreted as pseudo counts. Then, the mean  of methylation levels , given the 545 

data D, is expressed by  (3). The methylation levels at the cytosine with genomic 546 

coordinate are estimated according to this equation.  547 

 548 

Hellinger and Total Variation divergences of the methylation levels 549 

The difference between methylation levels from reference and treatment experiments is expressed in 550 

terms of information divergences of their corresponding methylation levels, and t
ip̂ , respectively. The 551 

reference sample(s) can be additional experiment(s) fixed at specific conditions, or a virtual sample 552 

created by pooling methylation data from a set of control experiments, e.g. wild type individual or group. 553 

Hellinger divergence between the methylation levels from reference and treatment experiments is 554 

defined as: 555 
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Where 2
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=
+

, 1t tmC Ct
i i im n n= + +  and . The total variation of the 557 

methylation levels ( )ˆ ˆ ˆ ˆ,r t r t
i i i iTV p p p p= -  (5) indicates the direction of the methylation change in the 558 

treatment, hypo-methylated  or hyper-methylated . TV is linked to a basic information 559 

divergence, the total variation distance, defined as: ( ) ( )ˆ ˆ ˆ ˆ, ,r t r t
i i i iTVD p p TV p p=   (6). Distance 560 

( )ˆ ˆ,r t
i iTVD p p  and Hellinger divergence hold the inequality: ( ) ( )2ˆ ˆ ˆ ˆ, ,

2
r t r t
i i i i

i

TVD p p H p p
w

£  (7) 561 

[48]. Under the null hypothesis of non-difference between distributions and t
ip̂ , Eq. 4 asymptotically 562 

has a chi-square distribution with one degree of freedom. The term  introduces a useful correction for 563 

the Hellinger divergence, since the estimation of t
ip̂ and are based on counts (see Table 1). 564 

 565 

Non-linear fit of Weibull distribution 566 

The cumulative distribution functions (CDF) for ( )ˆ ˆ,r t
k k kH p p  can be approached by a Weibull 567 

distribution (8) [9]. Parameter  and were estimated by non-568 

linear regression analysis of the ECDF  versus ( )ˆ ˆ,r t
k k kH p p  [9]. The ECDF of the variable 569 

 is defined as:  570 

 (9) 571 

, where is the indicator function. Function  is easily computed 572 

(for example, by using function “ecdf” of the statistical computing program “R”[49]).  573 

 574 

A statistical mechanics-based definition for a potential/putative methylation signal (PMS) 575 

Most methylation changes occurring within cells are likely induced by thermal fluctuations to ensure 576 

thermal stability of the DNA molecule, conforming to laws of statistical mechanics [9]. These changes do 577 
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not constitute biological signals, but methylation background noise induced by thermal fluctuations, and 578 

must be discriminated from changes induced by the treatment. Let  be the probability that 579 

energy , dissipated to create an observed divergence between the methylation levels from two 580 

different samples at a given genomic position , can be lesser than or equal to the amount of energy . 581 

Then, a single genomic position shall be called a PMS at a level of significance  if, and only if, the 582 

probability  to observe a methylation change with energy dissipation 583 

higher than  is lesser than . The probability  can be given by a member of the 584 

generalized gamma distribution family and, in most cases, experimental data can be fixed by the Weibull 585 

distribution [9]. Based on this dynamic nature of methylation, one cannot expect a genome-wide 586 

relationship between methylation and gene expression. A practical definition of PMS based on Hellinger 587 

divergence derives provided that is proportional to and using the estimated Weibull CDF for 588 

given by Eq. 8. That is, a single genomic position shall be called a PMS at a level of significance 589 

 if, and only if, the probability  to observe a 590 

methylation change with Hellinger divergence higher than  is lesser than .  591 

The PMSs reflect cytosine methylation positions that undergo changes without discerning whether they 592 

represent biological signal created by the methylation regulatory machinery. The application of signal 593 

detection theory is required for robust discrimination of biological signal from physical noise-induced 594 

thermal fluctuations, permitting a high signal-to-noise ratio. 595 

 596 

Robust detection of differentially informative methylated positions (DIMPs)  597 

Application of signal detection theory is required to reach a high signal-to-noise ratio [50, 51]. To 598 

enhance DIMP detection, the set of PMSs is reduced to the subset of cytosines with 599 

( ) 0ˆ ˆ,r t
i iTVD p p TVD£ , where is a minimal total variation distance defined by the user, preferably 600 

. If we are interested not only in DIMPs but also in the full spectrum of biological signals, 601 

this constraint is not required. Once potential DIMPs are estimated in the treatment and in the control 602 

samples, a logistic regression analysis is performed with the prior binary classification of DIMPs, i.e., in 603 

terms of PMSs (from treatment versus control), and a receiver operating curve (ROC) is built to estimate 604 

the cutpoint of the Hellinger divergence at which an observed methylation level represents a true DIMP. 605 
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There are several criteria to estimate the optimal cutpoint, many of which are implemented in the R 606 

package OptimalCutpoints [25]. The optimal cutpoint used in Methyl-IT corresponds to the H value that 607 

maximizes Sensitivity and Specificity simultaneously [52, 53]. These analyses were performed with the R 608 

package Epi [54].  609 

Once all pairwise comparisons are done, a final decision of whether a DFMP is a DIMP is taken based on 610 

the highest cutpoint detected in the ROC analyses (Fig. 1). That is, the decision is taken based on the 611 

cutpoint estimated in the ROC analysis for the control sample with the closest distribution to treatment 612 

samples. The position of the cutpoint will determine a final posterior classification for which we would 613 

estimate the number of true positive, true negatives, false positives and false negatives. For each cutpoint 614 

we would estimate, the accuracy and the risk of our predictions. We may wish to use different cutpoints 615 

for different situations. For example, if our goal is the early detection of a terminal disease and high 616 

values of the target variable indicates that a patient carries the disease, then to save lives we would prefer 617 

the lowest meaningful cutpoint reducing the rate of false negative. 618 

 619 

Estimation of differentially methylated genes (DMGs) using Methyl-IT 620 

Our degree of confidence in whether DIMP counts in both control and treatment represent true biological 621 

signal was set out in the signal detection step. To estimate DMGs, we followed similar steps to those 622 

proposed in Bioconductor R package DESeq2 [55], but the test looks for statistical difference between the 623 

groups based on gene body DIMP counts rather than read counts. The regression analysis of the 624 

generalized linear model (GLMs) with logarithmic link was applied to test the difference between group 625 

counts. The fitting algorithmic approaches provided by glm and glm.nb functions from the R packages 626 

stat and MASS were used for Poisson (PR), Quasi-Poisson (QPR) and Negative Binomial (NBR) linear 627 

regression analyses, respectively. 628 

Likewise for DESeq2 we used the linear regression model , with design matrix 629 

elements , coefficients , and mean , where normalization constants are considered 630 

constant within a group. Only two groups were compared at a time. The design matrix elements indicate 631 

whether a sample j is treated or not, and the GLM fit returns coefficients indicating the overall 632 

methylation strength at the gene and the logarithm base 2 of the fold change (log2FC) between treatment 633 

and control [55]. In particular, in the case of NBR, the inverse of the variance was used as prior weight 634 

( ) å= k ikjkij xq b2log

jkx ikb kjjkj qs=µ js
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( , where disp is data dispersion computed by the estimateDispersions function from 635 

DESeq2 R package). 636 

To test difference between group counts we applied the fitting algorithmic approaches: PR and PQR if 637 

( ), NBR and NBR with ‘prior weights’. Next, best model based on Akaike 638 

information criteria (AIC). The Wald test for significance of the independent variable coefficient indicates 639 

whether or not the treatment effect is significant, while the coefficient sign (log2FC) will indicate the 640 

direction of such an effect.  641 

 642 

Bootstrap goodness-of-fit test for 2x2 contingency tables 643 

The goodness-of-fit RMST 2x2 contingency tables as implemented in methylpy [17] for the estimation of 644 

DMSs (based on the root-mean-square (RMS) statistics) is explained in Perkins et al. in reference [26](a 645 

complemental description is found at arXiv:1108.4126v2). The bootstrap heuristic to perform the test is 646 

given in reference [56]. An analogous bootstrap goodness-of-fit test based on Hellinger divergence was 647 

also applied to estimate DMPs (HDT). In this case, Hellinger divergence estimated according to the first 648 

statistic given in Theorem 1 from reference [27].  649 

 650 

Identification of differentially methylated regions by using BiSeq, DSS and MethyPy  651 

For BiSeq, raw sequence reads were trimmed to remove both poor-quality calls and adapters using Trim 652 

galore! (version 0.4.1) with options --paired --trim1 --gzip --phred33 --fastqc and Cutadapt (version 1.9.1) 653 

with cutoff 20. Remaining sequences were mapped to the Arabidopsis TAIR10 genome using Bismark 654 

(version v0.15.0) [46] and Bowtie2 (Version 2.2.9) [57].Duplicates were removed using the Bismark 655 

deduplicate function, and methylation calls were extracted with Bismark methylation extractor, reading 656 

methylation calls of overlapping parts of the paired reads from the first read (–no_overlap parameter). 657 

Differentially methylated regions were detected with BiSeq (version 1.18.0) [16, 58] with clusters at least 658 

15 methylated sites with 100 bp between clusters. 659 

 660 

For DSS, raw sequence reads were trimmed to remove both poor-quality calls and adapters using Trim 661 

galore! (version 0.4.1) with options --paired --trim1 --gzip --phred33 --fastqc and cutadapt (version 1.9.1) 662 

with cutoff 20. Remaining sequences were mapped to the Arabidopsis TAIR10 genome using Bismark 663 
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(version v0.15.0) [46] and Bowtie2 (Version 2.2.9)[57]. Duplicates were removed using the Bismark 664 

deduplicate function and methylation calls were extracted with Bismark methylation extractor, reading 665 

methylation calls of overlapping parts of the paired reads from the first read (–no_overlap parameter). 666 

Differentially methylated regions were detected with DSS (Dispersion shrinkage for sequencing data, 667 

version 2.26.0) using the default parameters. 668 

 669 

For MethylPy, differentially methylated regions (DMR) were identified using the MethylPy pipeline 670 

(version v0.1.0) [17] and Bowtie2 (Version 2.3.3)[57]. This pipeline used Cutadapt (version >=1.9) to 671 

trim the raw sequence reads to remove both poor-quality calls and adapters. Picard (>=2.10.8) was used 672 

for PCR duplicate removal. Chloroplast DNA sequence was used as the unmethylated control; the 673 

conversion rate observed was between 0.3% - 0.4%. Cytosine sites with less than four reads were 674 

discarded. Adjacent differential methylated sites closer to 100bp were collapsed into DMRs. CNN DMRs, 675 

CGN DMRs, CHG DMRs, and CHH DMRs with fewer than four, eight, four, and four DMSs, 676 

respectively, were discarded in following analyses, and CNN DMRs, CGN DMRs, CHG DMRs, and 677 

CHH DMR candidate regions with less than 0.1, 0.4, 0.2, and 0.1 differences between maximum and 678 

minimum methylation levels were also discarded. 679 

 680 

For Methyl-IT, raw sequence reads were trimmed to remove both poor-quality calls and adapters using 681 

Trim galore! (version 0.4.1) with options --paired --trim1 --gzip --phred33 --fastqc and Cutadapt (version 682 

1.9.1) with cutoff 20. Remaining sequences were mapped to the Arabidopsis TAIR10 genome using 683 

Bismark (version v0.15.0) [46]; and Bowtie2 (Version 2.2.9) [57]. Duplicates were removed using the 684 

Bismark deduplicate function and methylation calls were extracted with Bismark methylation extractor, 685 

reading methylation calls of overlapping parts of the paired reads from the first read (–no_overlap 686 

parameter). Differentially methylated regions were detected with Methyl-IT, using cytosine sites with at 687 

least 4 reads, and with default parameters. 688 

 689 

Since methods DSS, BiSeq and Methylpy do not provide an equivalent concept to DMGs, we adopted the 690 

concept of DMR associated genes (DAGs) introduced in reference [18]. Basically, a gene and a DMR are 691 

associated if the DMR is located within 2 kb of gene upstream regions, gene bodies and 2 kb of gene 692 

downstream regions [18]. 693 

 694 
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Available methylome datasets used in this work 695 

Methylome datasets from Arabidopsis (Ws-0) major seed developmental phases, globular stage (GLOB), 696 

linear cotyledon stage (COT), mature green stage (MG), post mature green stage (PMG) and dry seed, 697 

and Arabidopsis (Col-0) germination datasets of dry seed and 0-4 days after imbibition were analyzed. 698 

Ws-0 seed development and germination datasets were obtained from the Gene Expression Omnibus 699 

(GEO) under accession numbers GSE68132 and GSE94710. Both dataset were original studied by 700 

Kawakatsu et al. (2017) [18]. 701 

 702 

Network enrichment analysis  703 

Network based enrichment analysis (NBEA) was applied using the EnrichmentBrowser R package [59, 704 

60] and the Network Enrichment Analysis Test (NEAT) was performed by using the R package "neat" 705 

version 1.1.1[60]. 706 

These network enrichment approaches permitted identification of main network regulators involved in the 707 

msh1 memory transgenerational effect and in seed developmental and germination datasets. 708 

 709 

Individual sample gene CG methylation principal component analysis (PCA) and 710 

classification 711 

Individual samples were represented as vectors of variables carrying the mean of CG Hellinger 712 

divergence covering gene regions delimited by Arabidopsis msh1-memory DMGs. Principal component 713 

analysis (PCA) was performed on the individual vector-spaces determined by the gene regions: 1) DMGs , 714 

2) intersection DEGs (msh1-memory)/DMGs, and 3) intersection NBEA-DMG/NBEA-DEG between the 715 

subsets derived from independent NBEA on the subsets DMGs and DEGs, respectively. PCA and 716 

hierarchical cluster analysis were applied by using prcomp and hclust functions, respectively, from the R 717 

package stats. 718 

 719 

Specific locus bisulfite sequencing PCR 720 

To confirm our analysis for DIMP calling based on methylome sequencing, PCR-based bisulfite 721 

sequencing was performed. Genomic DNA from leaf tissue of 4-week-old plants was isolated by the 722 

DNeasy Plant Kit (Qiagen, Germany). 400 ng of genomic DNA was bisulfite-treated using EpiMark 723 

Bisulfite Conversion Kit (New England Biolabs, USA). Bisulfite-treated DNA was used as template for 724 

PCR in a 25 ul reaction system by using EpiMark Hot Start Taq DNA Polymerase (New England Biolabs, 725 
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USA), in the PCR program: Initial denaturation 30 sec at 95 °C, 40 cycles of 95°C for 15 sec ,45°C for 30 726 

sec, 68°C for 1 min, and final extension 5 min at 68 °C. PCR product was gel-purified using kit (Qiagen, 727 

Germany) and ligated to TOPO TA cloning kit (Life, USA) for sequencing. At least 25 independent 728 

clones were sequenced. Bisulfite DNA sequence methylation status was analyzed by the online program 729 

“Kismeth”. Methylation at locus AT5G66750 was used as a control for bisulfite conversion. Primers used 730 

in this experiment are listed in the Additional file 14 Table S13. 731 

 732 

Plant materials and growth conditions  733 

For Arabidopsis plants used in this study, clean seeds were sown on peat mix in square pots, with 734 

stratification at 4 °C for 2 days before moving to growth chamber (22 °C, 120-150 μmol·m-2·s-1 light). 735 

Tomato seeds were germinated on MetroMix 200 medium (SunGro, USA) in square pots and grown in a 736 

reach-in chamber (26 °C, 300 μmol·m-2·s-1 light). 737 

 738 

5-azacytidine treatment 739 

The 5-azacytidine treatment protocol was adopted from Griffin et al [57] and Yang et al [30]. Col-0 wild 740 

type and msh1 memory line seeds were surface-sterilized in 10% (v/v) sodium hypochlorite, rinsed 741 

thoroughly with sterile water, and sown in 8-oz clear cups (Fabri-Kal, USA) containing 30 mL 0.5 M 742 

Murashige and Skoog medium (Sigma, USA) supplemented with 1% (w/v) agar and 0 (control) or 100 743 

µM 5-azacytidine (Sigma, USA). The 100 µM concentration was derived from a concentration gradient 744 

experiment of 4 concentrations (0 µM, 30 µM ,50 µM ,100 µM) where 100 µM showed visible impact on 745 

plant growth for both wild type Col-0 and msh1 memory line plants. Seeds were germinated and grown at 746 

24°C, 18-h day length, and 120-150 μmol·m-2·s-1 light intensity for 14 days. 10 days old seedling on the 747 

MS medium were collected for RNAseq experiment. For longer observation, the treated plants were 748 

transferred to square pots with soil and grow under standard conditions in the growth chamber. The 749 

experiment was repeated three times, with at least 18 replicates per treatment each experiment. 750 

 751 

Sample collection for circadian clock gene expression assays 752 

To assess the expression pattern of core circadian clock genes under clock-driven free running conditions, 753 

we adopted the protocol of [38]. Plants were entrained at LD condition (12 hr light/ 12 hr dark) for 4 754 

weeks, then moved to LL (24 hr constant light) for 48 hours before sample collection was initiated. 755 
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For expression of core circadian clock genes under life-like conditions, plants were entrained at LD (12 hr 756 

light/12 hr dark) for 4 weeks before samples were collected. The entire above-ground plant was collected 757 

and placed into liquid nitrogen. Samples were taken every 4 hr (ZT6, ZT10, ZT14, ZT18, ZT22, 758 

ZT26.ZT30, ZT34, ZT38, ZT42, ZT46, ZT50) in both LD and LL conditions. For each genotype at each 759 

time point, at least 3 plants were collected and used in qPCR experiments as biological replicates. 760 

An identical sample collection strategy, and LD, LL entrainment conditions, were used for tomato 761 

circadian clock gene expression experiments. 762 

 763 

Gene Expression Analysis by qPCR 764 

The MIQE [61] was used as standard protocol for the qPCR experiments.  Briefly, total RNA from each 765 

sample was extracted by NucleoSpin RNA Plant kit (Macherey-Nagel, Germany) following 766 

manufacturer’s protocol, including genomic DNA removal. First-strand cDNA was synthesized from 767 

400ng total RNA with oligo primers using iScript Reverse Transcription Supermix for RT-PCR (Bio-Rad, 768 

USA). The qPCR was performed on the CFX real-time system (Bio-Rad, USA) with 95 °C for 3 min, 40 769 

cycles of 95 °C for 30 sec and 60 °C for 1 min. Three biological replicates were performed. RNA 770 

abundance of target genes was calculated from the average of four technical replicates using ΔΔCq 771 

method, where Cq is the cycle number at which amplification signal reaches saturation in each PCR run. 772 

The Cq values of AT4G05320 and AT5G15710 were used as normalization controls in the calculation.  773 

 774 

Real-time PCR primers used in this study and their reference are listed in Supplemental Primers Table.  775 

The PCR amplification efficiency was calculated based on a calibration standard curve specific for each 776 

primer set, and only primers having amplification efficiency greater than 0.97 were used in the study. 777 

 778 

Sample preparation and bisulfite DNA methylome sequencing  779 

For Arabidopsis genome-wide bisulfite methylome sequencing experiments, three individual plants of 780 

wild type Arabidopsis thaliana ecotype Col-0 and three isogenic msh1 memory line plants were used. All 781 

wild type control plants selected from negative events of RNAi transformation and were maintained in 782 

parallel with their msh1 memory counterparts. Whole plants at early bolting were flash frozen in liquid 783 

nitrogen.  Tissues were ground by motor and pestle in liquid nitrogen, and divided to two, with one half 784 

processed by DNeasy Plant Kit (Qiagen, Germany) for genomic DNA (RNA removed) and subsequent 785 

bisulfite sequencing. The other half was used for RNA extraction by NucleoSpin RNA Plant Kit 786 

(Macherey-Nagel, Germany) following manufacturer’s protocol, including genomic DNA removal, for 787 

RNA-seq analysis. 788 
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 789 

For tomato bisulfite sequencing, wild type tomato (Solanum lycopersicum cv Rutgers) and the 790 

corresponding MSH1-RNAi transgene-null segregant (msh1 memory line) were used.  Phenotype and line 791 

generation details can be found in [30]. The top three leaves from each four-week-old tomato plant were 792 

collected and frozen in liquid nitrogen, followed by genomic DNA extraction using DNeasy Plant Kit 793 

(Qiagen, Germany). Genomic DNA from three individual plants for both WT and msh1 memory line 794 

were used for BSseq. 795 

 796 

All BSseq experiments were conducted on the Hiseq 4000 analyzer (Illumina, USA) at BGI-Tech 797 

(Shenzhen, China) according to manufacturer’s instructions. Briefly, Genomic DNA was sonicated to 798 

100-300 bp fragments and purified with MiniElute PCR Purification Kit (Qiagen, Germany), and 799 

incubated at 20oC after adding End Repair Mix. DNA was purified, a single ‘A’ nucleotide added to the 3’ 800 

ends of blunt fragments, purified again and Methylated Adapter was added to 5’ and 3’ ends of each 801 

fragment. Fragments of 300-400 bp size range were purified with QIAquick Gel Extraction Kit (Qiagen, 802 

Germany) and subjected to bisulfite treatment by Methylation-Gold Kit (ZYMO). These steps were 803 

followed by PCR and gel purification (350-400 bp fragments were selected). Qualified libraries were 804 

paired-end sequenced on the HiSeq X-ten system. 805 

 806 

RNA sequencing and analysis 807 

RNA libraries were constructed as described in the TruSeq RNA Sample Preparation v2 Guide. These 808 

libraries were sequenced with the 150-bp reads option, in Hi-Seq 4000 analyzer (Illumina, USA) at BGI-809 

Tech (Shenzhen, China). Alignments were performed using RUM 2.0.4 (default parameters) [62] keeping 810 

only uniquely mapped reads. The read count data were generated from the SAM files by using QoRTs 811 

software package[63]. DESeq2 [55] was used for gene count normalization and to identify differentially 812 

expressed genes (FDR < 0.05, |log2FC| > 0.5. 813 

 814 

Abbreviations 815 

AUC: Area under the receiver operating characteristic curve 816 

MSH1: MUTS HOMOLOG 1  817 

CDM: Cytosine DNA methylation 818 

DAGs: DMR associated genes 819 

DEG: Differentially expressed gene 820 
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DIMPs: Differentially informative methylated positions 821 

DMGs: Differentially methylated genes 822 

DMPs: Differentially methylated positions 823 

DMRs: differentially methylated regions 824 

DSS: Dispersion Shrinkage for Sequencing 825 

FET: Fisher’s exact test 826 

GLM: generalized linear regression model 827 

HD: Hellinger divergence 828 

HDT: goodness-of-fit test based on Hellinger divergence  829 

NEAT: Network Enrichment Analysis Test 830 

NBEA: Network based enrichment analysis 831 

RMST: Root-mean-square test 832 

ROC: Receiver operating characteristic curve 833 

SD: Signal detection 834 

TVD: total variation distance 835 

PMS: Potential/putative methylation signal 836 
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 871 

Figures 872 

 873 
Fig. 1 Diagrammatic representation of the theoretical principle behind Methyl-IT. Methyl-IT is designed 874 

to identify a statistically significant cutoff between thermal system noise (conforming to laws of statistical 875 

physics) and treatment signal (biological methylation signal), based on Hellinger divergence (H), to 876 

identify “true” differentially informative methylation positions (DIMPs). Empirical comparisons allow 877 

the placement of Fisher’s exact test for discrimination of DMPs.  878 

 879 

 880 

 881 
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 882 
Fig. 2 Methyl-IT processing flowchart. Ovals represent input and output data, squares represent 883 

processing steps, with signal detection processing steps highlighted in blue and DIMPs and DMGRs, as 884 

main outputs of Methyl-IT, highlighted in yellow. The generalized linear model is incorporated for group 885 

comparison of genomic regions (GRs) based on the number of DIMPs in the treatment group relative to 886 

control group. DIMPs and DMGRs can be subjected to further statistical analyses to perform network 887 

enrichment analysis and to identify potential signature genes, multivariate statistical analysis (and 888 

machine learning applications) for individual and group classifications. 889 

 890 

 891 

 892 

 893 
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Fig. 3 Venn diagrams of overlapping DMSs (RMST implemented in Methylpy software), DMPs.adj 894 

(obtained with Fisher Exact Test), DMPs (DMPs.HDT, obtained with HDT, see methods) and DIMPs 895 

(obtained with Methyl-IT) in the memory line. Only methylated cytosine positions with total variation 896 

distance (TVD) greater than 0.23 (23% of methylation level difference) are shown for the three 897 

methylation contexts. Only DIMPs carry methylation signal (region within the dashed oval). Notice that 898 

any DMPs and DMSs outside the dashed oval (if any would be found in a different dataset or for TVD < 899 

0.23) follow a Weibull distribution on a statistical mechanical basis as described in Fig.1. In such a case, 900 

with high probability, these DMPs and DMSs correspond to “background” methylation patterning and do 901 

not correspond to signal. This background effects can be discriminated by application of a signal 902 

detection step against a specific control (in this case, wild type Col-0 under the same experimental 903 

conditions).  904 

 905 

 906 

 907 
Fig. 4 Results of signal detection with Methyl-IT for genome-wide methylome data from the msh1-908 

memory line (ML), a Col-0 wildtype pool (WT), seed development data from Kawakatsu et al [18] at five 909 

seed stages (GLOB, COT, MG, PMG, DRY) and leaf (globular (GLOB) stage used as control), and 910 

various Col-0 generational lineage samples (L1-L119) taken from Becker et al [3]. The experimental 911 

results provide a direct, scaled comparison of methylation signal between datasets. The relative frequency 912 

of DIMPs was estimated as the number of DIMPs divided by the number of cytosine positions. 913 

 914 

 915 
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 916 
 917 

Fig. 5 Comparison of DMR associated genes identified by DSS, BiSeq, MethylPy and DMGs predicted 918 

by Methyl-IT for msh1 memory dataset. (a) Venn Diagram showing a comparison of DMR associated 919 

genes (DAGs) identified with the three methylome analysis programs DSS, BiSeq and MethylPy. (b) 920 

Venn Diagram showing a comparison of differentially methylated genes (DMGs) identified with Methyl-921 

IT and the DAGs with the methylome analysis programs DSS, BiSeq, MethylPy. DMGs for gene regions 922 

plus 2kb upstream and downstream are shown, and only DIMPs with TVD > 0.15 were counted for DMG 923 

estimations.  924 

 925 

 926 
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 927 
Fig. 6 MSH1 disruption produces transgenerational memory. (a) Pedigree of msh1 memory line. (b) 928 

Phenotypic range in different types of MSH1-derived development reprogramming, with msh1 memory 929 

plants uniformly reduced in growth rate, delayed flowering and pale leaves. Seedling stage photo at 4 930 

weeks and floral stage at 6 weeks. (c) MSH1 expression levels in msh1 memory and MSH1- RNAi line. 931 

Each column represents one individual plant, error bars represent ± SD of 9 technical replicates. (d) 932 

Functional enrichment analysis of differentially expressed genes in msh1 memory line and msh1 T-DNA 933 

mutant. GO enrichment categories (above cutoff FDR<0.01) are shown.  934 

 935 
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 936 
 937 

Fig. 7 Application of network-based enrichment analysis (NBEA) on Methyl-IT-based differentially 938 

methylated genes (DMGs) identifies signature pathways associated with msh1 memory phenotype. (a) 939 

Venn diagram showing intersection between independent assays of msh1 memory-associated gene 940 

expression and methylation changes. The main intersection from DMGs and DEGs datasets, and their 941 

corresponding result with the application of NBEA, identified 16 putative regulatory loci. (b-d) Examples 942 

of identified regulatory genes and the network in which they participate. The expression change (up, 943 

green or down, red) is indicated, as well as the inconsistent change trends, marked as blue lines. 944 

 945 

 946 
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 947 
Fig. 8 Principal component analysis (PCA) and classification of individual samples based on genic CG 948 

methylation identifies primary contributors to the memory effect. (a) A three-dimensional representation 949 

of PCA outcomes with the set of all differentially methylated genes (DMGs). Samples are color-coded; 950 

“wild type segregant” (WTS) represents a wild type plant derived from crossing of the msh1 T-DNA 951 

mutant with wild type Col-0, while “wild type” (WT) represents Col-0. The centroid from each group is 952 

represented by a large sphere connected by straight lines to smaller ones representing individual groups. 953 

Red arrows represent the magnitude and direction of the contributions to each PC by the first two genes 954 

with the greatest loadings. The square of the loadings reveals the proportion of variance of one variable 955 

explained by one principal component, while its sign gives the direction of gene contribution to a given 956 

component. (b) PCA performed at the intersection of DEGs and DMGs. (c) PCA performed at the 957 

intersection of the DMG and DEG subsets derived from independent network-based enrichment analyses 958 

(NBEA-DMG/NBEA-DEG) (see Fig. 7). These are genes involved in regulatory pathways. Since the two 959 

first PCs carry most of the total explained variance, panels A, B, and C, suggest that the weight of the 960 

sample classification rests on the planes defined by PC1 and PC2 (PC1-PC2), as observed in the 961 

projections of the spheres (shadows) on these planes. A straight-line can be drawn on the planes PC1-PC2 962 

(black dashed-line) to clearly classify the samples into two groups, wild type versus msh1 effect (WTS, 963 

DW, and MM). Thus, there is a discriminant function or a support vector to accomplish the classification. 964 

(d) Hierarchical clustering with individual PC coordinates from the PCA on the intersection subset 965 
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NBEA-DMG/NBEA-DEG. (e) Correlation of genes from the subset NBEA-DMG/NBEA-DEG with the 966 

first three principal components. All the genes reported in (e) carry a negative contribution to PC1 (which 967 

carries a total explained variance of about 65%). The effect of these genes significantly separates the 968 

msh1 effect (DW, WTS, and ML) from the wildtype control (WT). Asterisks indicate genes included in 969 

the list of 16 signatures for msh1 memory. 970 

 971 

 972 

 973 

 974 
Fig. 9 Altered methylation was assayed at circadian clock loci. DIMP calling by Methyl-IT (only CG 975 

shown) in the msh1 memory line at GI (a), TOC-1(b), LHY(c) and CCA1(d) regions is represented by 976 

black vertical bars. The gene structure and coordinates were adopted from TAIR10, with thickest bar for 977 

exons, medium bar for UTRs, and dotted line for introns.  DIMP calling was further confirmed by specific 978 

bisulfite-PCR sequencing. The green bar represents the amplification interval designed to detect DIMPs 979 

within the GI gene, and the blue bar represent the interval used as negative control (no DIMPs predicted). 980 

The PCR result is presented in (e) for primer set BS-GI-P2 and (f) for primer set BS-GI-P7. Dot-plot 981 

analysis was applied to bisulfite sequencing result. Red, blue, and green circles represent CG, CHG and 982 

CHH respectively (methylation solid, no methylation blank). Each line represents one clone sequenced, 983 

and at least 15 clones were sequenced for each PCR reaction. 984 

 985 
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 986 
Fig. 10 Test of altered circadian behavior in the Arabidopsis msh1 memory line.  Relative transcript levels 987 

of indicated genes in wild type (dashed line) and msh1 memory (solid line) grown under LL (24 hours 988 

light) following entrainment for 4 weeks under LD (12 hours light,12 hours dark) (a, b, c, d) or retained 989 

under LD (e, f, g, h).  Zeitgeber time (ZT) indicates the sampling time (with ZT0 when light starts). 990 

Transcript levels were measured by qPCR, and expression levels were normalized to the highest peak of 991 

WT control. Error bars represent mean ± SD of three independent biological replicates. 992 
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  993 

 994 
Fig. 11 RNA-seq analysis of expression in circadian clock-regulated genes in the Arabidopsis msh1 995 

memory line. (a) Genes under TOC1 and CCA1 regulation are represented at 10.4% in msh1 TDNA 996 

DEGs, increasing to 33.1% in msh1 memory line DEGs. The analysis used published CCA1 and TOC1 997 

binding site CHIP-seq data [38, 64] and RNA-seq data from msh1 TDNA and msh1 memory line.  998 

Selected, significantly altered, circadian clock-regulated pathways in msh1 memory line are shown as (b) 999 

response to ethylene, (c) response to abscisic acid, (d) response to cold, and (e) starch metabolic process. 1000 

Important genes in each pathway are listed with expression level, compared to wild type, indicated by 1001 

color boxes. The full list of DEGs can be found in Additional File 6: Table S5 for msh1 memory, and 1002 

Additional File 7: Table S8 for msh1 TDNA. 1003 
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 1004 

 1005 
Fig. 12 Testing altered methylation pattern, circadian rhythm core genes and downstream gene expression 1006 

behavior in the tomato msh1 memory line. (a) Venn Diagram for DMGs in tomato msh1 memory (SL. 1007 

DMGs) versus Arabidopsis msh1 memory (AT. DMGs) and their corresponding NBEA subsets. For SL. 1008 

DMGs, only the best two mappings of each tomato gene to an Arabidopsis locus, obtained with BLAST 1009 

aligner, were taken into account. (b) Expression patterns of tomato TOC1 and LHY in wild type (circle, 1010 

dashed line) and msh1 memory (circle, solid line) grown under LD (12 hours light,12 hours dark) were 1011 

assayed by quantitative real-time PCR. (c) The expression patterns of three circadian clock-regulated 1012 

genes, SlABF (Solyc11g044560), SlERFC.5(Solyc02g077370), and SlWRKY31(Solyc06g066370) were 1013 

assayed by quantitative real-time PCR under LD (12 hours light, 12 hours day) conditions.  For both (b) 1014 

and (c), relative expression was calculated by normalizing to the highest value of corresponding wild type 1015 

in each biological replicate. Error bars represent mean ± SD of three independent biological replicates. 1016 

  1017 
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Tables 1018 

Table 1. Relative sensitivity differences between several statistical tests applied to identify differentially 1019 

methylated cytosines. P-values for the 2x2 contingency table with read counts , , 1020 

, and . 1021 

Approach p-value 

FET 0.108615 

FET one tail 0.108615 

FET p.value MC 3k(1) 0.1086 

RMST Boot 3k(2) 0.051 

HT Boot 3k (3) 0.050667 

Weibull ML1 CG(4) 0.000118 

Weibull ML2 CG(4) 1.67E-05 

Weibull ML3 CG(4) 2.21E-05 
1p.value simulated with Monte Carlo (MC) simulation with 3000 resamplings (3k). 2Bootstrap goodness-of-fit 1022 
RMST as implemented in Methylpy [17]. 3Bootstrap goodness-of-fit test based on Hellinger divergence estimated 1023 
according to the first statistic given Theorem 1 from reference [27]. 3p-value based on the Weibull distribution for 1024 
memory lines (ML 1 to 3). ni

mCc refers to methylated cytosine counts in control, ni
Cc refers to non-methylated 1025 

cytosine counts in control,  ni
mCt refers to methylated cytosine counts in treatment and ni

Ct refers to non-methylated 1026 
cytosine counts in treatment.The R script to compute RMST and H MC estimation is provided in GitLab: 1027 

https://git.psu.edu/genomath/MethylIT 1028 

  1029 

 1030 

 1031 

8=cmC
in 2=cC

in

350=tmC
in 20=tCin
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Table 2. Network enrichment analysis test (NEAT) on the set of GO-biological process (BP-GO) for the 1032 

differentially methylated genes in Ws-0 seed development dataset. 1033 

 1034 

BP-GO NAB Expected 

NAB 

Adj. p-

value 

GO:0000902 cell morphogenesis 3 0.2492 0.00280 

GO:0006623 protein targeting to vacuole 4 0.299 < 0.001 

GO:0006891 intra-Golgi vesicle-mediated transport 4 0.3323 < 0.001 

GO:0009723 response to ethylene 8 2.9072 0.00873 

GO:0009740 gibberellic acid mediated signaling pathway 5 0.9802 0.00375 

GO:0009845 seed germination 6 1.3456 0.00301 

GO:0009938 negative regulation of gibberellic acid mediated signaling pathway 4 0.2658 < 0.001 

GO:0010162 seed dormancy process 5 1.03 0.00434 

GO:0010187 negative regulation of seed germination 3 0.4319 0.00916 

GO:0010325 raffinose family oligosaccharide biosynthetic process 5 0.3323 0.00102 

GO:0016049 cell growth 3 0.3655 0.00640 

GO:0016192 vesicle-mediated transport 5 0.3987 < 0.001 

GO:0016197 endosomal transport 2 0.0665 0.00280 

GO:0048444 floral organ morphogenesis 5 0.3323 < 0.001 

GO:2000033 regulation of seed dormancy process 3 0.1994 0.0017 

GO:2000377 regulation of reactive oxygen species metabolic process 4 0.4153 0.00154 

 1035 
Only over-enriched pathways are included 1036 
NAB: observed number of (network) links from DMG list to GO term gene list 1037 
Expected NAB: expected number of links from DMG list to GO term gene list (in absence of enrichment) 1038 
Enrichment Fold: the ratio of NAB (observed number of network links) / expected nab (expected number of links) 1039 
 1040 
 1041 
 1042 
 1043 
 1044 
 1045 
 1046 
 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
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Table 3. Putative signature genes for msh1 memory line 1054 

  Gene ID Alias Short functional involving 

1* AT1G01060 LHY Myb-related transcription factor involved in circadian rhythm  

2* AT1G22770 GI GIGANTEA, circadian clock-controlled flowering pathway 

3* AT5G60100 PRR3 Affects the period of the circadian clock and seedlings 

4* AT1G04400 CRY2 Blue light signaling pathway (circadian rhythm). Positive flowering-time regulator 

5* AT5G61380 TOC1 involved in the generation of circadian rhythms 

6* AT2G46830 CCA1 Circadian clock associated 1, a transcriptional repressor. 

7* AT1G09570 PHYA Phytochrome A.  involved in the regulation of photomorphogenesis 

8* AT2G25930 ELF3 Required component of the core circadian clock regardless of light conditions 

9* AT5G62430 CDF1 Circadian regulator of flowering time 

10* AT1G68050 ADO3 FKF1 protein clock-controlled. Regulates transition to flowering (circadian rhythm) 

11 AT3G50500 SRK2D ABA signaling, activated by salt and non-ionic osmotic stress 

12 AT5G25350 EBF2 EIN3-binding F-box protein involved in ethylene-activated signaling pathway 

13 AT1G49720 ABF1 Positive regulator of transcription in abscisic acid-activated signaling pathway 

14 AT3G50500 SRK2D ABA signaling during seed germination 

15 AT5G03730 CTR1 Negative regulator in the ethylene signal transduction pathway 

16 AT2G27050 EIL1 Transcription factor activity involved in ethylene mediated signaling pathway 

Genes directly associated with plant circadian core component are indicated with “*” 1055 
 1056 

Additional files 1057 

Additional file 1: Figures S1 to S10 1058 

 1059 

AddItional file 2: Table S1 Absolute DIMPs counts and DIMPs counts per genomic region for seed 1060 

development and germination datasets 1061 

 1062 

Additional file 3: Table S2 DMGs Arabidopsis (ws-0) seed development dataset  1063 

 1064 

Additional file 4: Table S3 DMGs from Arabidopis memory line 1065 

 1066 

Additional file 5 Table S4 List of seed development DMGs found in networks based on NEAT 1067 

 1068 

Additional file 6: Table S5 Total 955 of DEGs of Arabidopsis msh1-memory-line 1069 

 1070 
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Additional file 7: Table S6 Total 9867 DMGs of Arabidopsis TDNA mutant 1071 

 1072 

Additional file 8: Table S7 NBEA analysis of DEGs in Arabidopsis msh1 memory line 1073 

 1074 

Additional file 9: Table S8 NEAT and NBEA analysis on DMGs from arabidopsis msh1 memory line 1075 

 1076 

Additional file 10: Table S9 DIMPs distribution in 16 regulatory genes in msh1 memory individual 1077 

plants 1078 

 1079 

Additional file 11: Table S10 DMGs in tomato msh1 memory line 1080 

 1081 

Additional file 12: Table S11 NBEA analysis of DMGs in tomato msh1 memory line 1082 

 1083 

Additional file 13: Table S12 Main intersection between Arabidopsis and tomato DMGs NBEA list 1084 

 1085 

Additional file 14: Table S13 Primers used in this paper 1086 
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