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Abstract11

Fitness landscapes map the relationship between genotypes and fitness. However, most12

fitness landscape studies ignore the genetic architecture imposed by the codon table and13

thereby neglect the potential role of synonymous mutations. To quantify the fitness ef-14

fects of synonymous mutations, we used a new software based on Bayesian Monte Carlo15

Markov Chain methods and estimated selection coefficients from deep sequencing data ob-16

tained across 9 amino-acid positions from Hsp90 in Saccharomyces cerevisiae. This work17

demonstrates how topology and topography of the codon fitness landscape change when18

synonymous effects are considered. This impacts how populations traverse fitness space as19

well as their likelihood of reaching a global optimum, in particular in a stressful environment.20

Finally, we show that residue position, mRNA stability, and codon frequency are predictors21

of synonymous effect size. Together these results highlight the role of synonymous mutations22

in adaptation and demonstrate the potential mis-inference when they are neglected in fitness23

landscape studies.24
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1 Introduction25

By considering the relationship between genotype and fitness as a topographic map, Wright26

(1932) created the concept of a fitness landscape. During the last century this concept has27

been adopted across various subfields of the sciences, and it has been used extensively to study28

how populations may adapt to novel environments (Perfeito et al., 2011; De Visser and Krug,29

2014; Gorter et al., 2018). Only recently have technological and experimental advances enabled30

the assessment of large empirical fitness landscapes at high resolution (Weinreich et al., 2006;31

Hietpas et al., 2013; Bank et al., 2014; Wu et al., 2016; Bank et al., 2016). Wright (1932) noted32

early on that a complete fitness landscape with L loci, each of which has k alleles, results in a33

hypercube of kL genotypes. This enormous dimensionality enforces a careful and limited choice34

of the mutations that are assayed in any given experiment. Thus, most fitness landscape studies35

to date have only considered amino-acid changing mutations (e.g. Bank et al., 2016; Wu et al.,36

2016). This reduction of the genotype-fitness relationship to the amino-acid level poses the37

danger of misrepresenting the true underlying fitness landscape, and thus the potential routes38

along which adaptive walks may proceed.39

Figure 1: Codon based and amino-acid based fitness landscapes differ both in topol-
ogy and topography. The graphs illustrate potential fitness landscapes at a single amino-acid
position. Gray lines indicate single-step mutations and colors indicate potential fitness differ-
ences. A) Many studies implicitly assume that all amino-acids are connected by a single muta-
tional step. B) The codon table restricts the number of possible substitutions at the amino-acid
level and thus results in a sparser topology. C) Considering the codon level results in a fitness
landscape with 64 genotypes. We denote the fitness landscape that neglects the potential effects
of synonymous mutations as the averaged landscape. D) We denote the fitness landscape that
considers the individual effect of each codon as the single-effect landscape.

Specifically, amino-acid landscapes do not reflect all possible nucleotide mutations present in the40

genetic code, since they are restricted to 21 genotypes. In particular, even a single amino-acid41
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position in the genome contains a fitness landscape that consists of the (4nucleotides)3loci = 6442

codons at that position. Whereas from the amino-acid view of the landscape, each transition43

is possible in a single step, the codon based landscape requires up to three mutational steps to44

transition from one amino-acid to another. This results in a different topology of the fitness45

landscape with a reduced connectivity (i.e., fewer neighboring genotypes) and larger mutational46

step size between any two amino-acid genotypes (c.f. Fig. 1 A & B). Moreover, a single-nucleotide47

mutation in a codon based landscape can result in only 5 to 7 amino-acid changes rather than48

the 20 total possible amino-acid changes. Thus, at a single amino-acid position, a codon based49

fitness landscape (with 64 genotypes) can be multi-peaked, whereas the corresponding amino-50

acid landscape (with 21 genotypes) is by definition single-peaked.51

Furthermore, mutations in an amino-acid based fitness landscape are, by definition, non-synonymous.52

This neglects accumulating evidence from both comparative and experimental studies that syn-53

onymous mutations (i.e., mutations that change the codon but not the encoded amino-acid54

sequence) can display non-negligible fitness effects (Singh et al., 2007; Drummond and Wilke,55

2008; Kudla et al., 2009; Zhou et al., 2009; Lind et al., 2010; Plotkin and Kudla, 2011; Sauna and56

Kimchi-Sarfaty, 2011; Agashe et al., 2013; Bailey et al., 2014; Firnberg et al., 2014; Hunt et al.,57

2014; Bali and Bebok, 2015; Presnyak et al., 2015; Agashe et al., 2016; Choi and Aquadro, 2016;58

Knöppel et al., 2016). For example, recent studies have shown that synonymous mutations can59

affect the speed and accuracy of translation (Drummond and Wilke, 2008; Saunders and Deane,60

2010; Plotkin and Kudla, 2011; Bali and Bebok, 2015), mRNA structure (Shabalina et al., 2013;61

O’Brien et al., 2014; Presnyak et al., 2015), expression in response to environmental changes62

(Shabalina et al., 2013), and that they are associated with several organismal malfunctions63

(Parmley and Hurst, 2007; Hunt et al., 2014). Although synonymous effects undoubtedly exist,64

effect sizes are often small, which has made a systematic characterization difficult. In particular,65

to our knowledge there exists no study to date that has characterized whether fitness effects of66

synonymous mutations vary across environments; a finding that could be in concordance with67

the costs of adaptation that are frequently reported for amino-acid changing mutations (e.g.68

Bataillon et al., 2011; Wenger et al., 2011; Hietpas et al., 2013; Rodriguez-Verdugo et al., 2014).69

Thus, when fitness landscapes are defined on the codon level instead of the amino-acid level70

both its topology (i.e., the number and connectivity of genotypes) and its topography (i.e., the71

fitness relationship between genotypes; Fig. 1) change. As highlighted by Zagorski et al. (2016),72

a change in the topology of a fitness landscapes can result in dramatically different conclusions73

about the accessibility of fitness peaks, and the topography further amplifies this effect.74

3

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2018. ; https://doi.org/10.1101/252395doi: bioRxiv preprint 

https://doi.org/10.1101/252395
http://creativecommons.org/licenses/by-nc/4.0/


Here we use published data (Bank et al., 2014) from deep mutational scanning (Fowler and75

Fields, 2014) to study the codon based fitness landscapes of the same 9 amino-acid positions76

across 6 environments. We first establish that synonymous mutations indeed affect fitness, and77

then quantify their associated distribution of fitness effects. To this end, we present empiricIST,78

a software that allows for accurate estimation of selection coefficients and credibility intervals79

from bulk competitions. We then study how considering individual effects of synonymous mu-80

tations changes conclusions about both accessibility and ruggedness of the landscapes, and thus81

the potential for adaptation. By comparing single-effect landscapes to their corresponding aver-82

aged landscapes, which neglect the effects of synonymous mutations (Fig. 1 C & D), we quantify83

how synonymous mutations affect the topography of the fitness landscapes while keeping the84

topology fixed. Finally, we use regression models to dissect the contribution of environmental85

versus molecular variables to the observed effects of synonymous mutations. Our work provides86

the first characterization of the distribution of fitness effects of synonymous mutations across87

environments, and calls for a more careful consideration of synonymous effects in future studies88

of fitness landscapes and adaptive walks.89

2 Material & Methods90

2.1 MCMC Method91

We provide a software package for 1) processing sequencing count data from deep mutational92

scanning (DMS) experiments, 2) estimating growth rates using a Bayesian MCMC approach93

described in detail in (Bank et al., 2014), and 3) post-processing of growth rate estimates to94

estimate the shape of the beneficial tail of the distribution of fitness effects (DFE). A detailed95

description of the software, its usage, and options can be found in the accompanying manual96

(https://github.com/Matu2083/empiricIST). In the following, we give a brief description of the97

assumed experimental setup and the model underlying the MCMC and estimation procedure,98

and by means of simulations compare the accuracy of the results to that obtained from conven-99

tional linear regression (Matuszewski et al., 2016).100

Assumptions of the model and input data101

We consider an experiment assessing the fitness of K mutants, labelled i ∈ {1, · · · ,K}. Each102

mutant i is assumed to be present at initial population size ci and to grow exponentially at103
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constant rate ri, such that its true abundance at time t, Ni(t), is given by Ni(t) = ci exprit. At104

each sampling time point t ∈ {1, · · · , T}, sequencing reads ni,t are drawn from a multinomial105

distribution with parameters nt =
K∑
i=1

ni,t (i.e., the total number of sequencing reads) and106

pt = (p1,t, · · · , pK,t), where pi,t = ciexp
rit

K∑
i=1

ciexp
rit

is the relative frequency of mutant i in the107

population at time t. Here, time is measured in hours to make results comparable across108

different environmental conditions (Chevin, 2011; Bank et al., 2014). The software allows for109

input of either generation or standard time. We furthermore assume that sampling points are110

independent such that the overall likelihood can be written as the product of the individual111

likelihoods of each sampling point.112

L(n) =
∏
t∈T

L(c, r|{n1,t, · · · , nK,t}).

All initial population sizes ci and growth rates ri are estimated relative to those of a chosen113

reference mutant with its initial population size and growth rate arbitrarily set to 10 000 and114

1, respectively. Here, the wild-type sequence in laboratory conditions of 30◦C was used as the115

reference.116

MCMC model117

We implemented a Metropolis-Hastings algorithm in C++ using flat priors allowing all attainable118

values ri ∈ R+ and ci ∈ N to be realized with equal probability. During the burn-in period the119

variance of both proposal distributions was adjusted such that the targeted acceptance ratio is120

around 25%, which optimizes the performance the MCMC chain (Gelman et al., 1996).121

The updated variance of the proposal distribution is calculated using122

σnew = σoldf(k; y, k)

with

f(x; y, k) =

[
1 +

(cosh(x− y)− 1))(k − 1)

cosh(y − |x− y|)− 1

]
sgn(x− y),

where x denotes the targeted acceptance ratio, y is the current acceptance ratio, and k is a (fixed)123

scale parameter that restricts the maximal change in the variance of the proposal distribution.124

After discarding the first 100 000 accepted samples (i.e., after the burn-in period), the MCMC125
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was run for an additional 10 000 000 accepted samples. Only every 1000th sample was retained126

for further analyses, such that the posterior distribution of each parameter was characterized by127

10 000 samples overall.128

Convergence and mixing were checked by visual inspection of the resulting trace files for all129

estimated parameters, and by calculating the effective sample sizes (i.e., the number of inde-130

pendent samples) and the Hellinger distance (Boone et al., 2014) between sets of 1000 batched131

recorded samples. Effective sample sizes were generally larger than 1000 for all parameters, and132

Hellinger distances below 0.1 indicated convergence and good mixing. To facilitate estimation,133

we took advantage of the fact that the multinomial distribution is preserved when a subset of134

the counting variables are observed. This enabled us to split the data set into sub-data sets with135

10 mutants each (implicitly treating the other mutants’ sequencing reads as observed). More136

options such as outlier detection, data imputation, DFE tail-shape estimation are detailed in137

the Supporting Information.138

Assessing accuracy of the MCMC139

To assess the accuracy of the Bayesian MCMC approach, we compared its parameter estimates140

to those obtained using ordinary least squares (OLS) linear regression of the log-ratios against141

the number of sequencing reads ni,t over the different sampling time points (Matuszewski et al.,142

2016). For that we simulated time-sampled deep sequencing data (implemented in C++; avail-143

able from https://github.com/Matu2083/empiricIST), assuming that individual mutant growth144

rates and initial population sizes for each of the K mutants are drawn independently from a145

normal distribution (i.e., ri ∼ N (1, 0.01)) and a log-normal distribution (i.e., ci ∼ 10N (4,0.25)),146

respectively. Without loss of generality, we denote the wild-type reference (or any other reference147

genotype) by i = 1 and set its growth rate to 1. Sequencing reads were then drawn independently148

for each of the T equally spaced time points from a multinomial distribution with parameters149

nt (i.e., the number of total sequencing reads per time point) and pt = (p1,t, · · · , pK,t). To check150

the robustness of these results when applied to the real experimental data, we furthermore drew151

growth rates from a mixture distribution152

ri ∼


|N(1, σ̂)| if z = 0,

exp(λ̂) + 1 if z = 1,

153

where Z ∼ B(x) is a Bernoulli-distributed random variable that indicates whether growth rates154

are drawn from the deleterious part of the DFE (i.e., if z = 0) or from the exponential beneficial155
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tail (i.e., if z = 1). The parameters σ̂, λ̂, and x̂ are estimated from the underlying experimental156

data, and based on growth rate estimates obtained from OLS linear regression.157

Finally, the accuracy of the parameter estimates was assessed by computing the mean squared158

error (MSE)159

MSE = 1
K−1

K∑
i=2

(r̂i − ri)2,160

the length of the credibility interval (CI, calculated from the MCMC posterior distribution),161

and the frequency of the true growth rate lying in the 95% confidence interval calculated over162

100 simulated data sets.163

Outlier detection in empiricIST164

Apart from its main program – the Bayesian MCMC program – empiricIST provides Python165

and shell scripts for data pre- and post-processing. Details about their usage and options are166

given in the accompanying manual. Here we outline the two different options that are available167

for dealing with outliers in the sequencing data – i.e., outlier detection and data imputation –168

and explain the DFE tail-shape estimation (see Outlier Detection in empiricIST in SI).169

As an alternative to treating outliers as unobserved (i.e., missing data), we also implemented an170

approach in which data points identified as outliers were imputed (see SI). For that we again used171

the linear regression of the log ratios of the mutant’s read number to the total number of reads at172

each individual time point (i.e., the ‘total’ normalization, sensu Bank et al., 2014), and classified173

as outliers data points that exceed the DFBETA cutoff of 2 and that had an absolute studentized174

residual bigger than 3 . In comparison to other reasonable and established outlier criteria, this175

approach proved to be more cautious as exemplified by the higher specificity and lower sensitivity176

(Fig. 2, Fig. S1). By combining two independent outlier criteria (i.e., the DFBETA statistic177

and the studentized residuals), this approach ensures that data points identified as outliers have178

leverage effects (i.e., change the slope considerably) and are in conflict (meaning that are very179

different in comparison) with the remaining data points. Thus, to minimize changes in the180

original experimental data we took an extremely conservative approach, such that only those181

data points that stand out as extreme outliers will be imputed.182

When comparing the mean squared error (MSE) over 100 simulated data sets across different183

outlier detection methods, we find that the MSE increases with the proportion of outliers in the184

data set, independent of the method used. Imputing data points generally improves the accuracy185
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of the parameter estimates compared to treating outliers as missing data (Bank et al., 2014, ;Fig.186

S2, S3). Expectedly, when there are no outliers in the data, the wild-type normalization displays187

the lowest error. However, with only 1% outliers in the data, the error of the wt-normalization is188

comparable to that of the total normalization and becomes increasingly worse as the proportion189

of outliers in the data increases (Fig. S2). Note that in the presence of outliers, using any outlier190

method improves growth rate estimates considerably.191

Estimating the shape for the beneficial tail with empiricIST192

Finally, empiricIST contains a Python script for estimating the shape of the beneficial tail of193

the DFE. Currently, it is believed that these effects typically follow an exponential distribution194

(Gillespie, 1983, 1984) characterized by many small, nearly neutral mutations and a few strongly195

beneficial mutations. Using extreme value theory, it is however possible to test whether experi-196

mental data complies with that assumption (and falls into the Gumbel domain), or whether the197

data is better represented by distributions from the Weibull domain (i.e., distributions that de-198

cay more rapidly as an exponential distribution, implying more small-effect mutations) or from199

the Fréchet domain (i.e., distributions decaying less rapidly than an exponential distribution200

implying an excess of large-effect mutations; see also Beisel et al., 2007). Additional information201

about the different types of distributions and likelihood estimation are available in the section202

on DFE estimation in the SI.203

We analyzed the power of the maximum-likelihood method to make this distinction by simulating204

1000 Generalized Pareto Distribution (GPD) data sets for different underlying shape parameter205

(κ) values (spanning across all three GDP domains) and varying sample sizes. We find that206

for small sample sizes (Fig. S4A, B) κ̂ displays a large variance and a slight negative bias, in207

particular, if the underlying shape parameter is from the Weibull domain (i.e., κ < 0). This bias208

is caused by a (numerical) discontinuity in the log-likelihood function around κ= -1 (eq. S3 in209

SI), causing κ to consistently deviate (Rokyta et al., 2008). As sample size increases, however,210

the variance of the maximum-likelihood estimate decreases and its bias vanishes (Fig. S4C, D).211

Furthermore, while κ typically falls into the correct domain (even for low sample sizes), the212

statistical power for detecting deviations from the null hypothesis (i.e., whether H0: κ=0) is low213

(unless sample sizes are large).214
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2.2 Experimental data215

The data used in this study were originally obtained in Bank et al. (2014) using the EMPIRIC216

approach (Hietpas et al., 2011, 2012). In this study, all 576 possible single-codon mutations217

in a 9 amino-acid region of the C terminal part of Hsp90 in Saccharomyces cerevisiae were218

generated and bulk competitions were performed under six different environmental conditions219

(25oC, 30oC, 36oC, 25oC + S, 30oC + S, and 36oC + S, where S represents the addition of 0.5M220

sodium chloride). For simplicity, we will refer to these conditions as normal medium or high221

salt medium, and abbreviate these by 25N and 25S, for example, when additionally referring to222

the 25oC environment. The experiment was replicated 3 times for the 30N environment and 2223

times for the 30S environment. Populations were originally adapted to the 30N environment,224

thus changes to other environments correspond to shifts from the optimum (Bank et al., 2014).225

Growth rates for all mutants were estimated using empiricIST. Furthermore, to obtain growth226

rate estimates per amino-acid (residue) position, we pooled nucleotide sequences and jointly227

estimated growth rates for those nucleotide sequences that resulted in the same amino-acid228

sequence (see above and SI). Our downstream analyses are based on 1000 subsamples of the229

posterior distribution obtained from empiricIST, if not otherwise indicated.Selection coefficients230

were obtained by normalizing to the median growth rate of all mutations synonymous to the231

reference sequence as detailed in Bank et al. (2014).232

Distribution of synonymous mutations233

We obtained the distribution of synonymous fitness effects (DSE) across all amino-acid mutations234

as the difference between each individual codon selection coefficient and its corresponding pooled235

amino-acid estimate. These data were used to perform the analyses in the section on potential236

mechanisms underlying the effect of synonymous mutations on fitness.237

2.3 Detecting the effect of synonymous mutations238

Analyses and results to assess experimental error and reproducibility of measurements239

To assess the reproducibility of measurements, we compared the correlation between selection240

coefficient estimates across the three 30N and two 30S replicates, and computed the overlap241

in their growth rate posteriors. For each replicate pair, we calculated the correlation between242

mutation-specific fitness effects from both the median estimates and 1000 randomly selected243
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posterior samples. The median correlation of fitness effects across pairs of replicates was 0.84244

(lower and upper credibility intervals from 1000 posterior samples: [0.78, 0.88]) for high salt245

medium and was 0.98 (lower and upper credibility intervals from 1000 posterior samples: [0.97,246

0.99]) in standard medium (Fig. S5) confirming that the experimental protocol has an excellent247

resolution for measuring selection coefficients. An ANOVA test indicated that experimental248

error was negligible in comparison to the effect of changing medium (Table S1, Fig. S6) and249

confirmed the previously observed strong costs of adaptation (Hietpas et al., 2013).250

To quantify whether the empiricIST credibility intervals cover the experimental error appropri-251

ately, we estimated the overlap between the 95% credibility intervals of the posterior distribution252

for all pairs of replicates. We observed a large overlap between pairs of replicates (Fig. S7, nor-253

mal environment – a) Rep1-2: 98%; b) Rep1-3: 91%; c) Rep2-3: 90%; high salt environment –254

d) Rep1-2: 90%), indicating that the variance between replicates is indeed mostly covered by255

variance in the posterior distribution, and that we can use empiricIST credibility intervals as256

confidence levels in our analysis.257

We used linear models to extract the contribution of various factors to the estimated effects258

of synonymous mutations. Model variable names are highlighted throughout the paper using259

Italics. The following analyses were performed on the distribution of synonymous effects data,260

i.e., the data in which the median amino-acid effect was removed.261

We estimated the relative contributions of the experimental error and the effect of synonymous262

mutations in the data by means of three approaches. First, we compared the impact of replicate,263

codon and medium (i.e., whether salt was added or not) using the following ANOVA model with264

data between replicates 2 and 3 of both the standard and the high salinity environment for 30C:265

Y = codon + replicate + medium + replicate*codon + codon*medium

+ replicate*medium + codon*medium*replicate

where Y corresponds to the normalized selection coefficient, codon to a fixed factor corresponding266

to the 64 codons present in the data, replicate to a fixed factor pertaining to the arbitrary267

replicate number 2 or 3 for each environment, medium is a fixed factor corresponding to the268

presence or absence of high salt concentration in the medium and ε corresponds to the residual269

error. We estimated effect size by calculating η2 (i.e., the ratio of the variance explained by a270

predictor to the total variance explained by the entire model - (Levine and Hullett, 2002)) for271

each of the model terms, using the etasq function of the R package sjstats (Lüdecke, 2017). To272
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assess the variability of our estimates, we performed the analysis for 1000 posterior samples.273

Finally, using the distribution of synonymous mutations referred above, we tested the overlap274

of beneficial mutations across replicates for normal and high salinity environments. For that,275

we extracted the 30 most beneficial synonymous mutations (approximately corresponding to the276

5% beneficial tail) for each replicate, and estimated the overlap across the three 30N replicates,277

and two 30S replicates.278

Quantifying the effect size of synonymous mutations279

To quantify the effect size of codon changes, we performed a linear regression for each amino-280

acid (including all amino-acids with 3 or more codons) and calculated η2 (as proxy for effect size281

(Levine and Hullett, 2002)) for the codon term. The regression per amino-acid was performed282

within each environment and took into account residual depth (i.e., whether the position was283

buried or exposed). Pooling of positions was done to allow for the testing of codon effect within284

amino-acid. To minimize potential differences arising from pooling positions, we separated the285

data into buried and exposed positions according to residue depth. Additionally, using an286

ANOVA model we tested how the estimated effect size per amino-acid (using η2 as dependent287

variable) varied across environment and amino-acid.288

Finally, we calculated 10 000 pairwise differences between synonymous mutations, between ran-289

dom amino-acid pairs and between random pairs of samples of the posterior to assess the effect290

of synonymous mutations in comparison with amino-acid changes and in comparison to the291

variation between posterior samples.292

Investigating the effect of synonymous mutations on the topography and the dynamics of adaptive293

walks in codon fitness landscapes294

To quantify the impact of effects of synonymous mutations coding for the same amino-acid295

on the topography of the fitness landscape, we compared the single-effect landscape with the296

averaged landscape. For the single-effect landscapes (Fig. 1D) the effect of each codon was297

directly obtained from the experimental data. For the averaged landscape (Fig. 1C) we assigned298

to every codon that coded for the same amino-acid the same pooled amino-acid estimate obtained299

from empiricIST.300

Each amino-acid position in our data set corresponds to a complete multi-allelic fitness landscape301

with 34 = 64 genotypes. We characterized the resulting 9 ·6 = 54 fitness landscapes using several302

fitness landscape statistics. We estimated 1) the roughness-to-slope ratio (Aita et al., 2001;303
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Szendro et al., 2013; Bank et al., 2016) to quantify the relative deviations from an additive model;304

2) the multi-allelic gamma statistics (Bank et al., 2016; Ferretti et al., 2016) to characterizethe305

prevalence and type of epistasis in the landscape; 3) the number of local peaks (Szendro et al.,306

2013); and 4) the length and variance in the length of potential adaptive walks in the landscapes307

(Neidhart and Krug, 2011; Szendro et al., 2013).308

Credibility of the estimates was assessed by computing the fitness landscape statistics for 100309

posterior samples.310

Potential mechanisms underlying the effect of synonymous mutations on fitness311

There are several mechanisms through which synonymous mutations can affect protein trans-312

lation (reviewed in Plotkin and Kudla, 2011). In this study we focused on whether codon313

usage frequency or predicted mRNA stability (using as proxy Gibbs free energy and melting314

temperature) can predict effects of synonymous mutations(Presnyak et al., 2015).315

Firstly, to enable the inclusion of codon frequency patterns in yeast into our regression models,316

we obtained the relative abundance of each codon in the yeast genome from the Codon Usage317

Database (http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=4932).318

Secondly, synonymous mutations may affect translation through different stability of the mRNA319

generated by different codons. To obtain predictions of how mRNA stability is affected by320

synonymous mutations, we ran the prediction software mfold (Zuker et al., 1999; Markham321

and Zuker, 2008), for 25oC, 30oC and 36oC and with high salt concentrations (0.5M Na+),322

with physiological concentrations of salt (0. 015M Na+), and 0.001 M Mg2+, respectively. As323

input, we used sequences spanning 135 nucleotides of the Hsp90 protein in yeast. To obtain324

these sequences, we added 54 nucleotides flanking both 5’ and 3’ sides of the region of interest325

(complete sequences were obtained from https://www.addgene.org/41188/sequences/). From326

each of these data sets, we selected the conformation with the lowest Gibbs free energy (dG) or327

with the highest melting temperature (Tm), as highest-stability reference points.328

Since Hsp90 is a chaperone protein involved in the response to thermal stress as well as in the329

regulation of osmotic stress (Yang et al., 2006; Boucher et al., 2014), we tested the impact of each330

factor in each environment and amino-acid position and quantified how variation in temperature,331

osmotic stress and residue position affected the correlation between mRNA melting temperature,332

codon frequency and Gibbs free energy and the effect of synonymous mutations. We used the333

following models:334
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Y = melting temperature + ε

Y = codon frequency + ε

Y = Gibbs free energy + ε

Y = temperature + salt + residue position + codon frequency + Gibbs free energy

+melting temperature + (· · · ) + temperature*salt*residue depth*codon frequency

*Gibbs free energy*melting temperature + ε

where Y corresponds to the fitness effect of synonymous mutations (see above), temperature is335

a covariate coding for 25oC, 30oC and 36oC, salt is a fixed factor that codes for the presence or336

absence of added salt in the medium, residue position relates to the residue position in the amino-337

acid sequence (582 to 590), codon frequency is the frequency of each codon in the genome (see338

above), Gibbs free energy is the variation in Gibbs free energy obtained from mfold and melting339

temperature the melting temperature for the RNA estimated through mfold. We included all340

interactions between the studied factors in the model. The effect size of each term in the model341

was estimated through the η2 (Levine and Hullett, 2002) for 1000 posterior samples.342

All analyses were performed with R (R version 3.3.3) (R Core Team, 2017) or Mathematica343

11 (version 11.2) (Wolfram Research, Inc., 2017). The complete documentation of all analyses,344

which allows for the reiteration of all steps, is available as Online Supplementary Material.345

3 Results & Discussion346

We implemented a software to infer selection coefficients from deep mutational scanning exper-347

iments. The empiricIST software is based on a previously developed Bayesian Markov chain348

Monte Carlo (MCMC) approach (Bank et al., 2014), and is a user-friendly and accurate soft-349

ware for improved growth rate estimation from time-sampled deep-sequencing data. We took350

advantage of the high accuracy provided by this method to estimate selection coefficients for351

synonymous mutations.352
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3.1 Bayesian MCMC outperforms linear regression353

Validating the method with various types of pseudo-data shows that our MCMC generally354

outperforms the ordinary least square regression (OLS). Figures 2 and S1 show the results for355

the standard and the data-based simulations (see Material & Methods). Although the mean356

square error (MSE) of the MCMC is comparable to that of the OLS when analyzing few time357

points (i.e., 3 to 5 time points), the MSE of the MCMC decreases faster as the number of time358

points increases (Fig. 2A).359

Figure 2: Comparison between performance of empiricIST and ordinary least square
regression with varying number of time points sampled. A) mean square error (MSE),
B) size of the credibility interval (CI), and C) the proportion the true growth rate contained in
the CI. As shown, empiricIST shows equal or lower MSE than OLS regression, particularly as
the number of sampled time points increases. Furthermore, empiricIST outperforms the OLS
regression in terms of the size of the CI and in capturing the true growth rate, even when
sampling a small number of time points.

Furthermore, when analyzing few time points, the length of the credibility interval (CI) is360

significantly smaller for the MCMC than the corresponding confidence interval of the OLS361

regression (Fig 2B). While the difference between the length of the confidence intervals decreases362

as the number of time samples T increases, the size of the CI from the MCMC always remains363

smaller, which implies that it delivers more precise and accurate results than the conventional364

OLS regression. Most importantly, and unlike the OLS regression, the CI of the MCMC remains365

well calibrated along the entire range of parameters (Fig. 2 C), despite being generally narrower366

than its OLS counterpart.367

3.2 Synonymous mutations have detectable effects on fitness368

Previous studies have shown that synonymous mutations can directly affect fitness (e.g. Lind369

et al., 2010; Firnberg et al., 2014; Hunt et al., 2014) and impact the ability of populations to370

adapt to new environments (Bailey et al., 2014; Agashe et al., 2016). For example, Bailey et al.371

(2014) found that two synonymous mutations were driving adaptation to a new medium in two372

experimental replicates by increasing the expression of a gene involved in glucose metabolism.373

14

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2018. ; https://doi.org/10.1101/252395doi: bioRxiv preprint 

https://doi.org/10.1101/252395
http://creativecommons.org/licenses/by-nc/4.0/


In a more recent study, Agashe et al. (2016) found that the deleterious effect of synonymous374

mutations in a medium with methylamine as the sole carbon source could be rescued by differ-375

ent mutations, including four synonymous mutations that increased transcription and protein376

production levels. The impact of synonymous mutations at the genome wide level can also be377

found in patterns of codon usage bias (synonymous codons are used in different frequencies)378

across genomes. Evidence coming from studies within and between species support the role of379

direct selection on synonymous sites in various genes (DuMont et al., 2004; Singh et al., 2007;380

Hershberg and Petrov, 2009; Ran and Higgs, 2010; Shah and Gilchrist, 2011; Choi and Aquadro,381

2016; Sun et al., 2016). A first piece of evidence for synonymous effects in the studied region of382

Hsp90 came from Bank et al. (2014), who reported that one of the 15 mutations synonymous383

to the parental sequence had a significantly deleterious effect in 4 out of 6 environments (Fig. 9384

Bank et al., 2014). In order to evaluate the effects of synonymous mutations on a larger scale,385

we applied the empiricIST software to the data set from Bank et al. (2014), which consists of386

bulk competitions of all 576 possible single codon-changing mutations in a 9 amino-acid region387

of Hsp90 in Saccharomyces cerevisiae across 6 different experimental conditions. For the envi-388

ronments 30N and 30S (30oC with normal and high salinity) we confirmed our results across389

the available 3 and 2 replicates, respectively. To quantify the effect of synonymous mutations as390

compared with the effect of non-synonymous mutations and experimental error we estimated the391

absolute pairwise difference between random pairs of amino-acids, codons, posterior samples and392

replicates (Table S2, see Material & Methods). On average, the effects of synonyms are small,393

but larger than the experimental error. In fact, 11% of the synonymous mutations present in394

the 5% beneficial tail (normalized to the effect of each amino-acid, see Material & Methods) are395

common between the three 30N replicates and 11% between the two 30S replicates, as compared396

with 0.0125% vs. 0.025% overlap expected by chance. The median pairwise difference between397

two synonymous mutations was between 3% (in 25S) and 27% (in 36N) larger than the difference398

between two draws from the posterior of the same codon (Table S2). As expected, the average399

effect of synonymous mutations is much smaller than that of non-synonymous mutations (Table400

S2). The estimated average fitness difference between two synonymous mutations is between401

13% (in 36N) to 32% (in 25S) of the difference between two non-synonymous mutations. In402

concordance with these estimates, a one-way ANOVA shows that 20-30% of the fitness changes403

within amino-acids can be explained by codon variation alone (see Fig. S8). On average, the404

effects of synonymous mutations are higher in the 36N environment (Table S2, Fig. S8), where405

Hsp90 is expected to be more important for organism survival (Yang et al., 2006; Boucher et al.,406
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2014; Mishra et al., 2016).407

3.3 The beneficial tail of the distribution of synonymous fitness effects408

The distribution of fitness effects contains information about the availability of beneficial mu-409

tations (Orr, 2005, 2010). It is of particular interest to study the shape of the beneficial tail of410

this distribution as it determines various aspects about the nature of adaptive walks (Orr, 2010;411

Eyre-Walker, 2006). Bank et al. (2014) previously found that for all of the environments, except412

for 25S, the beneficial tail of the full distribution of fitness effects most likely belonged to the413

Weibull domain. This suggested that populations were close to a well-defined optimum, and the414

available beneficial mutations would be of similar and small size (Orr, 2010; Joyce et al., 2008;415

Bank et al., 2014).416

Figure 3: Distribution of the shape parameter of the beneficial tail of synonymous
mutations. The shape parameter was estimated using the tail shape estimator from empiricIST
and used the information of 1000 samples of the posterior distribution. In all the environments,
the shape of the tail is clearly positive indicating that it belongs to the Fréchet domain. This
implies that most mutations in this distribution will be characterized by nearly neutral effects.
Environmental conditions are indicated by the combination of temperature (25C, 30C and 36C)
and salinity (N = normal and S = high salinity).

We used the tail shape estimator from the empiricIST software to estimate the tail shape of417

the distribution of beneficial synonymous mutations. To obtain this distribution, we subtracted418

the average amino-acid effect from the selection coefficient of each codon. We find that the419

shape parameter of the fitted Generalized Pareto Distribution (GPD) is most likely positive420

in all environments, which indicates that the resulting shape of the beneficial tail is likely to421
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belong to the Fréchet domain (Fig. 3) (Orr, 2010; Joyce et al., 2008). Distributions from this422

domain are characterized by many mutations of small effect, along with few mutations of large423

and unpredictable effect (Joyce et al., 2008; Neidhart and Krug, 2011; Jain and Seetharaman,424

2011). This is consistent with the expectation that most synonymous mutations in the whole425

data set have little effect on fitness, but some have large fitness effects.426

3.4 Synonymous mutations affect the topography of the landscape427

We investigated the effect of synonymous mutations on the topography of the fitness landscape428

by comparing averaged and single-effect landscapes (see Fig. 1 C, 1 D, Material & Methods) for429

each of the 9 amino-acid positions across 6 environments. For all 54 landscapes, we computed430

two statistics: the roughness-to-slope ratio r/s (Szendro et al., 2013) and the locus-specific431

gamma statistic (Ferretti et al., 2016). The roughness-to-slope ratio describes the prevalence432

of epistasis (i.e., the extent of non-linear fitness effects between mutations) in relation to the433

magnitude of fitness effects in the landscape (Carneiro and Hartl, 2010; Schenk et al., 2013).434

The γi→j statistic measures the correlation of fitness effects of the same mutations in a single-435

step distance across all genetic backgrounds. Whereas the roughness-to-slope ratio describes436

the landscape by means of only two values, γi→j results in a detailed fingerprint of the fitness437

landscape that makes heterogeneity of epistasis in the landscape visible. In general all landscapes438

are highly epistatic (r/s > 1), with the magnitude of the roughness-to-slope ratio depending439

on amino-acid position and environment (Fig. S9). Single-effect landscapes are slightly more440

epistatic (higher ratio) than averaged landscapes, although this difference is in general small. In441

high salinity, the difference in the r/s ratio between amino-acid positions and between averaged442

and single-effect landscapes is larger (Fig. S9). The increased epistatic signal observed in these443

environments could be caused by the combination of low absolute growth rates observed in444

high salinity conditions (c.f. Table 1 in Bank et al., 2014) and larger experimental uncertainty445

(S7) in this environment. This indicates that one should be cautious when interpreting the446

roughness-to-slope ratio across data sets, because it may be reflecting differences in growth447

rates and experimental error between environments, rather than genuine changes in the epistatic448

component of the landscape. Computing the γi→j statistic shows that averaged and single-effect449

landscapes tend to display the same type of epistasis within amino-acid position and environment450

(Fig. 4, Fig. S10). In general, magnitude and sign epistasis (when the effect and sign of a451

mutation depends on the genetic background where it appears) are prevalent and we observe452
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only few cases of reciprocal sign epistasis (both mutations switch sign when combined; Fig. S10).453

Since reciprocal sign epistasis is a necessary, but not a sufficient condition for multiple fitness454

peaks in a landscape (Poelwijk et al., 2011), its low prevalence suggests that there should be few455

fitness peaks in both averaged and single-effect landscapes. In contrast to the results from the456

roughness-to-slope ratio, the γi→jstatistic shows smaller differences between environments. As457

this statistic computes results based on the correlation and not the effect size of fitness effects458

across genetic backgrounds, it is less sensitive to variation in growth rates and experimental459

error. In fact, most differences in the type of epistasis are found when comparing the order460

in which mutations occur. In particular, landscapes resulting from non-synonymous mutations461

(γ1→2, γ2→1) display in general strong epistasis (Fig. 4), compared to landscapes that include462

synonymous mutations (γ1→3, γ2→3, γ3→1, γ3→2). However, the presence of magnitude/sign463

epistasis in both γ3→1, γ3→2 landscapes suggests that synonymous mutations do not have the464

same effects across different amino-acids. Similar to what was observed in the roughness-to-slope465

ratio, there is variation across amino-acid positions for both non-synonymous and synonymous466

mutations.. Thus, the structure of the codon table (i.e., the existence of synonymous and non-467

synonymous mutations) imposes a strong general pattern of epistasis on the landscape. However,468

variation in this pattern across positions and environments indicates that every single amino-acid469

position has indeed a differently shaped fitness landscape.470

3.5 Impact of synonymous mutations on adaptive walks471

Including synonymous mutations changes the topography of the landscape, which may affect the472

accessibility of different mutational paths by creating additional peaks and sinks in the fitness473

landscape. To quantify the impact of synonymous effects on adaptive walks, we calculated474

the number of optima, the mean expected length of adaptive walks, and the variance in the475

number of steps for the single-effect and averaged landscapes. We based our calculation on476

the assumption of the strong-selection weak-mutation limit (Gillespie, 1984), in which evolution477

happens by means of sequential mutational changes that result in an adaptive walk that ends478

in a fitness peak (e.g. Orr, 2005; Schoustra et al., 2009; Frank, 2014; Zagorski et al., 2016).479

We define a fitness peak as any genotype with fitness higher than all single-step mutational480

neighbors. For averaged landscapes, in which all synonymous mutations are assigned equal481

fitness, we consider a fitness plateau spanned by synonymous codons as a single local optimum482

if all non-synonymous codons in a distance of a single nucleotide step have lower fitness (as in483
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Figure 4: Gamma statistic calculated for pairs of mutations in different codon po-
sitions for single-effect landscapes for the 9 amino-acid positions studied (y-axis)
in the different environments (x-axis). In general, non-synonymous mutations on top of
each other (γ1→2, γ2→1) show prevalence of sign epistasis (γ between 1 to -1/3), while non-
synonymous mutations on top of synonymous mutations (γ1→3, γ2→3) show higher prevalence
of magnitude epistasis (γ between 1 and 0). There is no clear variation across environments
(x axis), but we find a clear impact of amino-acid position in the type of epistasis (y axis).
Interestingly, both gγ3→1 and γ3→2 indicate a potential epistatic hotspot in positions 582 and
583 across all environments.

Fig. 1 C). By definition, the number of fitness peaks in the averaged landscape has to be lower484

or equal to that of the single-effect landscape. Indeed, we find that there is usually a large485

difference in the number of fitness peaks between single-effect and averaged landscapes (Fig. 5,486

Fig. S11). This difference is environment-dependent and also varies across amino-acid positions487

(Fig. 5, Fig. S11). The variation in the differences between single-effect and averaged landscapes488

is not consistent within buried or exposed positions (see Material & Methods), which suggests489

that the impact of synonymous mutations is not due solely to effects at the structural level of490

the protein. In contrast to what was expected due to the reduced number of observed peaks, we491

observe shorter and less variable adaptive walks for averaged landscapes than for single-effect492
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landscapes (Fig. S12, Fig. S13). This suggests that evolution on the ‘true’ landscape that493

includes effects of synonymous mutations is less predictable (Lobkovsky et al., 2011; De Visser494

and Krug, 2014), and that it may stall at an intermediate optimum created by variation in495

synonymous fitness effects. Different environments leave a stronger signature in single-effect496

landscapes than in averaged landscapes. In fact, for most environments and positions, averaged497

landscapes show only 1 or 2 optima in the landscape (Fig. 5, Fig. S11). Conversely, among the498

single-effect landscapes the 25oC stands out with a large number of peaks, coupled with short499

adaptive walks (Fig. S12). This could reflect the lower constraint on Hsp90 function at low500

temperatures, as well as the lower absolute growth rates of the population under this condition501

which may open up more opportunities for adaptation. In further support for this hypothesis,502

we observe fewer optima and longer and more variable adaptive walks at 36N, which is in503

agreement with the importance of Hsp90 under high temperatures (Hietpas et al., 2013; Bank504

et al., 2014; Boucher et al., 2014; Mishra et al., 2016). This is consistent with the small number505

of beneficial mutations observed by Bank et al. (2014) under this condition. This points to a506

scenario in which there is increased evolutionary constraint, such that the number of solutions507

to the adaptive challenge is very limited.508

Our results allow for an interesting thought experiment regarding the impact of synonymous509

mutations on evolution across populations of different sizes. The average small differences in510

synonymous effects observed here will be only be visible to selection in large populations, where511

they may frequently stall adaptation if the population gets trapped in a local fitness peak.512

Bottlenecks (i.e., sudden drops in the population size), which can occur under natural scenarios513

and are also frequently imposed in experiments, may render synonymous mutations effectively514

neutral and thus erase the difference between averaged and single-effect landscapes. By opening515

mutational paths and bridging fitness peaks, a (temporally) smaller population size could thus516

speed up adaptation and increase its predictability (Wright, 1931; Jain et al., 2011). This effect,517

even if weak, would be in contrast to the slow down of adaptation and decrease of predictability518

of evolution in small populations proposed in standard population-genetic theory (Orr, 2000;519

Lanfear et al., 2014).520
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Figure 5: Figure 5: Number of optima observed from 100 posterior samples of single-
effect (dark blue) and averaged (light yellow) landscapes for positions 582, 584, 586
and 590 (from left to right) across environments. The number of optima is always
higher in single-effect than in averaged landscapes across environments. The number of optima
is smaller at high temperatures, which may indicate increased constraints to adaptation. The
large difference between the number of peaks in averaged and single landscapes suggests that
synonymous mutations can affect adaptation to a new environment by trapping the population
in a local optimum.

3.6 Effects of synonymous mutations are driven by a combination of mecha-521

nisms522

Synonymous mutations can affect fitness by altering speed and accuracy of translation, and523

mRNA folding and stability (Drummond and Wilke, 2008; Kudla et al., 2009; Zhou et al.,524

2009; Sharp et al., 2010; Plotkin and Kudla, 2011; Shabalina et al., 2013; Presnyak et al., 2015;525

Yu et al., 2015; Knöppel et al., 2016; Brule and Grayhack, 2017). It has been proposed that526

protein folding may be affected more significantly by changes in translation accuracy for buried527

(structural) positions, as they are often involved in the formation of crucial secondary and528

tertiary structures of the protein (Drummond and Wilke, 2008; Zhou et al., 2009; Saunders529

and Deane, 2010). We evaluated whether the effect of synonymous mutations that we observe530
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can be explained by variation in codon preference or mRNA stability. For that, we analyzed531

a full linear model incorporating temperature, medium composition, residue position, Gibbs532

free energy, melting temperature of mRNAs, and codon usage frequency, as well as all possible533

interactions of those factors. We also estimated the slopes of linear regressions for each predictor534

to quantify the contribution of these factors to the fitness effects of synonymous mutations for535

each environment and amino-acid position. As may be expected, considering the diverse amino-536

acid positions and environments studied, no clear predictors of codon fitness emerged. We found537

fitness effects of synonymous mutations to be affected by interactions between residue positions538

and temperature, medium composition, mRNA melting temperature and Gibbs free energy,539

and codon usage frequency (Table S3). In addition, we saw a clear impact of residue position540

and temperature in the fitness effects of synonymous mutations (Table S3, Fig. S14). Despite541

generally weak correlations between fitness effects and the predictors (r2 for codon frequency:542

0.0235, r2 for Gibbs free energy: 0.0217, r2 for melting temperature: 0.0246), correlations tended543

to be stronger at higher temperatures in standard medium (Fig. S15). Namely, we observed544

that in 36N there is a deleterious effect of higher mRNA stability for positions 585 and 587,545

and a beneficial effect of higher mRNA stability for positions 583 and 584 (Fig. S15b,S15c). At546

this temperature, more common codons show beneficial effects at positions 586, 587 and 590,547

and negative effects at positions 583, 585 and 588. This indicates that the impact of mRNA548

stability and codon frequency on the fitness effects of synonymous mutations is dependent on549

residue position and environment. The usage of different synonymous codons allows cells to550

slow down or arrest protein production in response to sudden environmental changes and to551

optimize resource production (Zhang et al., 2009; Fredrick and Ibba, 2010; Tuller et al., 2010).552

Our results suggest that a combination of several mechanisms drives the effects of synonymous553

mutations. Namely, we found a correlation of fitness effects of synonymous mutations with554

mRNA stability and codon frequency. This is in line with other studies demonstrating that555

synonymous codons affect mRNA stability (Hilgers, 2006; Romero and Arnold, 2009; Presnyak556

et al., 2015) by modulating protein translation kinetics through optimal codon usage (Akashi,557

1994; Drummond and Wilke, 2008; Presnyak et al., 2015; Harigaya and Parker, 2016). However,558

synonymous mutations do not show consistent effects within buried (586 to 590) or exposed559

positions (582 to 585). Finally, we observe that the effects of synonymous mutations and their560

predictors are environment-dependent, with stronger effects at high temperatures.561
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4 Conclusion562

The impact of the codon table on the evolutionary dynamics on fitness landscapes has received563

little attention. This is a consequence of the vast size of the nucleotide space and the result-564

ing fitness landscape dimensionality, which has led to most studies restricting themselves to565

the amino-acid level. This study demonstrates the importance of considering the codon level,566

because every single amino-acid position results in a fitness landscape that varies across envi-567

ronments. Using rate estimates obtained with empiricIST, a new software for the estimation568

of growth rates from deep mutational scanning data, we investigated the consequences of in-569

cluding synonymous mutations when characterizing the fitness landscape of single amino-acid570

positions across environments. Results demonstrate the extent to which synonymous mutations571

may impact the topography of the fitness landscape and affect adaptation, as well as their572

environmentally-dependent effects. The strongest effects are observed at high temperature,573

where the Hsp90 protein is likely under the strongest evolutionary constraint. Interestingly, we574

find support for a heavy-tailed distribution of beneficial synonymous effects across all environ-575

ments, suggestive of mutations with many small effects, and few with potentially large effects.576

A structural analysis indicates that synonymous effects can be mediated by changes in mRNA577

stability and variation in codon preference. However, effects are strongly dependent on the578

residue position under study, which makes a clear identification of the predictors of synonymous579

effects difficult. Overall, this study demonstrates how synonymous mutations can directly im-580

pact both the path and endpoint of an adaptive walk, and thus highlights the importance of581

their consideration in the study of fitness landscapes.582
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