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Abstract

For humans and for non-human primates heart rate is a reliable indicator of an individual’s current
physiological state, with applications ranging from health checks to experimental studies of cogni-
tive and emotional state. In humans, changes in the optical properties of the skin tissue correlated
with cardiac cycles (imaging photoplethysmogram, iPPG) allow non-contact estimation of heart
rate by its proxy, pulse rate. Yet, there is no established simple and non-invasive technique for
pulse rate measurements in awake and behaving animals. Using iPPG, we here demonstrate that
pulse rate in rhesus monkeys can be accurately estimated from facial videos. We computed iPPGs
from seven color facial videos of three awake head-stabilized rhesus monkeys. Pulse rate estimated
from iPPGs was in good agreement with reference data from a pulse-oximeter with error of pulse
rate estimation below 5% for 82% of all epochs, and below 10% for 98% of the epochs. We conclude
that iPPG allows non-invasive and non-contact estimation of pulse rate in non-human primates,
which is useful for physiological studies and can be used toward welfare-assessment of non-human
primates in research.

Keywords: heart rate, photoplethysmography, imaging, non-human primates, signal processing,
welfare.

1 Introduction

Heart rate is an important indicator of the functional status and psycho-emotional state for humans,
non-human primates (NHP) [1-3| and other animals [4,5]. A common and the most direct tool
for measuring heart rate is the electrocardiogram (ECG) [6]. ECG acquisition requires application
of several cutaneous electrodes, which is not always possible even for human subjects |7]. ECG
acquisition in NHP is complicated by the fact that conventional ECG electrodes require shaved skin
and that awake animals do not easily tolerate skin-attachments unless extensively trained to do so.
Hence, ECG in NHPs is either collected from sedated animals [6,8,(9] or by implanting a telemetry
device in combination with highly invasive intracorporal sensors [10-12]. For a non-invasive ECG
acquisition from non-sedated monkeys a wearable jacket can be used [1,|13}/14], but this also requires
extensive training and physical contact when preparing the animal, which may affect the physiological
state.

If heart rate is of interest, but not other ECG parameters, a low-cost alternative to ECG is provided
by the photoplethysmogram (PPG). PPG utilizes variations of the light reflected by the skin which
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correlate with changes of blood volume in the microvascular bed of the skin tissue [15]. PPG allows
quite accurate estimation of pulse rate [16-18|. For many applications, pulse rate is a sufficient
proxy for heart rate, the latter of which can be, strictly speaking, only assessed from direct cardiac
measurements, such as ECG. Conventional PPG still requires a contact sensor comprising a light
source to illuminate the skin and a photodetector to measure changes in the reflected light intensity,
as used for example in medical-purpose pulse oximeters.

Imaging photoplethysmogram (iPPG) has been proposed [19-21] as a remote and non-contact alter-
native to the conventional PPG in humans. iPPG is acquired using a video camera instead of a
photodetector, under dedicated [19,22-24] or ambient |21},[25] light. The video is usually recorded
from palm or face regions [21H25].

Pilot studies have demonstrated the possibility of extracting iPPG from anesthetized animals, specif-
ically pigs [26,[27]. Since iPPG allows easy and non-invasive estimation of pulse rate, this technique
would be very useful for NHP studies. If applicable in non-sedated and behaving animals, it could,
for instance, contribute to the welfare of NHP used in research. To our best knowledge, there were
no attempts to acquire iPPG from NHPs. In this paper, we demonstrate iPPG extraction from NHP
facial videos and provide the first empirical evidence that rhesus monkeys pulse rate can be successfully
estimated from iPPG.

2 Materials and methods

2.1 Animals and animal care

Research with non-human primates represents a small but indispensable component of neuroscience
research. The scientists in this study are aware and are committed to the great responsibility they
have in ensuring the best possible science with the least possible harm to the animals |28].

Three adult male rhesus monkeys (Macaca mulatta) participated in the study (Table[1). All animals
had been previously implanted with cranial titanium or plastic “head-posts” under general anesthesia
and aseptic conditions, for participating in neurophysiological experiments. The surgical procedures
and purpose of these implants were described previously in detail [29,30]. Animals were extensively
trained with positive reinforcement training |31 to climb into and stay seated in a primate chair, and
to have their head position stabilized via the head-post implant. This allows implant cleaning, precise
recordings of gaze and neurophysiological recordings while the animals work on cognitive tasks in front
of computer screen. Here, we made opportunistic use of these situations to record facial videos in
parallel. The experimental procedures were approved of by the responsible regional government office
(Niedersaechsisches Landesamt fuer Verbraucherschutz und Lebensmittelsicherheit (LAVES)). The
animals were pair- or group-housed in facilities of the German Primate Center (DPZ) in accordance
with all applicable German and European regulations. The facility provides the animals with an
enriched environment (incl. a multitude of toys and wooden structures [32], natural as well as artificial
light and access to outdoor space, exceeding the size requirements of European regulations. The
DPZ’s veterinarians, the animal facility staff and the lab’s scientists carefully monitor the animals’
psychological and veterinary welfare.

During the video recordings, the animals were head-stabilized and sat in the primate chair in their
familiar experimental room, facing the camera. Recording sessions were performed during the prepa-
ration phase for the cognitive task. Animals were not rewarded during the video recording to minimize
facial motion from sucking, chewing or swallowing.
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Table 1: Subjects data and illumination conditions of experimental sessions. For illumination we
used either fluorescent lamps mounted at the room ceiling (Philips Master T1-D 58W /840, 4000K cold
white) or setup halogen lamps (Philips Brilliantline 20W 12V 36D 4000K). Luminance was measured
by luminance meter LS-100 (Minolta) with close-up lens No 135 aiming at the ridge of the monkey nose
(settings: calibration preset; measuring mode abs.; response slow; measurement distance ~ 55 cm).

Animal ‘ Sessions ‘ Age, full years ‘ Weight, kg ‘ [Numination ‘ Luminance, cd/m?
Sun 1,2 16 12.0 fluorescent 87.5
Fla 3,4 8 14.4 fluorescent-+daylight 12.9
Mag 5,6,8,9 11 10.6 fluorescent+daylight 12.8
7 12 10.1 halogen+daylight 4.0

2.2 Materials and set-up

Our study of pulse rate estimation consisted of nine experimental sessions. Video acquisition param-
eters for Sessions 1-7 where RGB video was recorded are provided in Table Most methods and
results are reported for the RGB video. In addition, monochrome infrared (IR) video was acquired
during Session 2 (simultaneously with RGB) and in Sessions 8 and 9, as a control to compare pulse rate
estimation from IR and RGB video, see Section for details. All videos were acquired at ambient
(non-dedicated) light, see Table [1] for details. We used different illumination conditions since setting
a particular illumination is often not possible in everyday situations, and we wanted our video-based
approach to be able to cope with this variability.

Table 2: Video acquisition parameters for Sessions 1-7. Kinect here abbreviates the RGB sensor of a
Microsoft Kinect for Xbox One; Chameleon stands for Chameleon 3 U3-13Y3C (FLIR Systems, OR,
USA) with 10-30mm Varifocal Lens H3Z1014 (Computar, NC, USA) set approximately to 25 mm.
Color resolution for both cameras is 8 bit per channel. For Chameleon 3 aperture was fully opened,
automatic white-balance was disabled.

Session Sensor Frame | Video resolution, Distance to Session, Epoch
rate, fps pixels monkey face, cm | duration, s | duration, s
1 Kinect 30 1920 x 1080 25 420 34.1
2 Kinect 30 1920 x 1080 50 307 34.1
3 Chameleon 50 1280 x 1024 30 275 20.5
4 Chameleon 100 640 x 512 30 160 20.5
5 Chameleon 50 1280 x 1024 30 204 20.5
6 Chameleon 50 640 x 512 30 93 20.5
7 Chameleon 50 1280 x 1024 30 500 20.5

Facial videos of rhesus monkeys were processed to compute iPPG signals. Fig [I] illustrates the main
steps of iPPG extraction, which we will consider below in detail: selection of pixels that might con-
tain pulse-related information is described in Section [2.2.1] computation and processing of iPPG is
considered in Section 2.2.21

To estimate pulse rate from iPPG (videoPR) we computed the discrete Fourier transform (DFT) of
iPPG signal in sliding overlapping windows; for each window pulse rate is estimated by the frequency
with highest amplitude in the heart-rate bandwidth, which is 90-300 BPM (1.5-5 Hz) for rhesus
monkeys |2,/33H35]. This approach is commonly used for human iPPG [22,/24,125], so we applied it
here to make our results comparable. The length of DFT window was 1024 points for all sessions
except Session 4 where a window length of 2048 points was used due to higher video frame rate. This
window length corresponds to 34.1 s for Sessions 1, 2 and 20.5 s for other sessions, see Table 2 A
larger window leads to poor temporal resolution, while a smaller window results in crude frequency
resolution (>4 BPM).
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Figure 1: Flowchart of iPPG extraction. (A) We start from a sequence of RGB frames and define
for them a region of interest (ROI). (B) For each frame we select ROI pixels containing pulse-related
information (shown in white). (C) For these pixels we (D) compute across-pixel averages of unit-
free non-calibrated values for red, green and blue color channels. (E) iPPG signal is computed as
a combination of three color signals and then (F) refined by using several filters (see main text for
detail).

Video processing, ROI selection and computation of color signals are implemented in C++ using
OpenCV (opencv.org). iPPG extraction and processing, as well as pulse rate estimation, are imple-
mented in Matlab 2016a (www.mathworks.com).

Reference pulse rate (refPR) values were obtained by a pulse-oximeter CAPNOX (Medlab GmbH,
Stutensee) using a probe attached to the monkey’s ear. This pulse-oximeter does not provide a data
recording option, but it detects pulses and displays on the screen a value of pulse rate computed as
an inverse of the average inter-pulse interval over the last 5 s. The pulse-oximeter measures pulse rate
within the range 30-250 BPM with a documented accuracy of + 3 BPM. The pulse-oximeter screen
was recorded simultaneously with the monkeys’ facial video and pulse rate was extracted off-line from
the video.

To compare videoPR with refPR, we used epochs of length equal to the length of DFT windows with
50% overlap (see Table . For this we averaged the refPR values over the epochs. Note that the
quality of the raw iPPG signal was low compared to the contact PPG acquired by the pulse-oximeter.
Therefore we were unable to directly detect pulses in the signal, which would provide better temporal
resolution (see Section for details).

2.2.1 Selecting and refining the region of interest

To reduce spatially uncorrelated noise and enhance the pulsatile signal, we averaged values of color
channels over the ROI [21,36]. In order to select pixels containing maximal amount of pulsatile
information, we used the following three-step algorithm:

Step 1. A rectangular boundary for the ROI was selected manually for the first frame of the video. Since
no prominent motion was expected from a head-stabilized monkey, this boundary remained the
same for the whole video. We tried six heuristic regions shown in Fig[2} the best iPPG extraction
for most sessions was achieved for the nose-and-cheeks region 3 (Fig [3]).

Step 2. Since hair, eyes, teeth, etc. provide no pulsatile information and deteriorate quality of the
acquired iPPG, only skin pixels should constitute the ROI. To distinguish between skin and
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Figure 2: Regions of interest used for iPPG extraction from the video of Sessions 1 (A) and 5 (B): (1)
full face, (2) face below eyes, (3) nose and cheeks, (4) nose, (5) cheek, (6) mouth with lips.
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Figure 3: Amplitude spectrum densities of raw iPPG acquired from regions 1-6 (Fig[2) from video of
Session 1, 340-374 s. The frequency corresponding to the refPR value and its second harmonic are
indicated by dashed and dotted lines, respectively. Although the peak corresponding to the pulse rate
is most prominent for region 3, it is distinguishable for other regions as well.

Step 3.

non-skin pixels, we transformed frames from the RGB to the HSV (Hue-Saturation-Value) color
model as recommended in . We excluded all pixels having either H, S or V value outside of
a specified range. Three HSV ranges describing monkey skin for different illumination conditions
(Table |1)) were selected by manual adjustment under visual control of the resulting pixel area,
see Table [3l

In addition, for each frame we excluded all outlier pixels that differed significantly from other
pixels in the ROI. The aim of this step was to eliminate pixels corrupted by artifacts. Namely,
we excluded pixel (7,7) in the k-th frame if for it the value of any color channel cZ’j did not
satisfy the inequality N

my — 1.50 < C;C’] < myg + 1L.50y,

where m; and o are the mean and standard deviation of color channel ¢ for pixels included in
the ROI of the k-th frame at steps 1-2.
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Table 3: HSV ranges used for skin detection in RGB videos.

Session ‘ Hue (H), degrees ‘ Saturation (S), u.a. ‘ Value (V), u.a.

1,2 [-30, 30] [10, 110] [0, 240]
3,4,5,6 [-50, 50] [10, 145] [0, 240]
7 [-50, 50] [10, 145] 100, 240]

2.2.2 Extraction and processing of imaging photoplethysmogram

Color signals 7, g). and bj, were computed as averages for each color channel over the ROI for every
frame k. Then, prior to iPPG extraction, we mean-centered and scaled each color signal ¢} to make
them independent of the light source brightness level and spectrum, which is a standard procedure in
iPPG analysis [22,24]:
C;c — Mg,Mm

Mg, M

Cl =

where my, ps is an M-point running mean of color signal ¢}

l=k—M+1
For k < M we use my, ;. We followed [24] in taking M corresponding to 1 s.

For iPPG extraction we used the “green-red difference” (G-R) method [39], which is simple and effec-
tive for computing human iPPG [24,40|. This method is based on the assumption that green color
signal carries maximal amount of pulsatile information, while red color signal contains little relevant
information but allows to compensate those artifacts common for both color channels (see Section
for a discussion of pulsatile information provided by different colors). Thus iPPG was computed as a
difference of green and red color signals:

Pk = 9k — Tk,
where g, and 7 are mean-centered and scaled green and red color signals, respectively.

We have also employed two other methods for iPPG extraction, CHROM [22] and POS [24], that are
most effective for computing human iPPG [24,40]. POS computes iPPG as a combination of color

signals:
X

O%k,L
Pk = gk — b + == (gr + bx — 2r),
Ok,L
where 0,?7 ;, and 0’%7 ;, are L-point running standard deviations of zy = g — by and yp = gi + by, — 2ry,,
respectively.

CHROM combines color signals in a slightly different way:

T

Ok.L
pr = 0.77r, — 0.51g, — —=(0.77r + 0.51g; — 0.77by),
Ok,L

where o7 ; and O'Z ; are L-point running standard deviations of z; = 0.77ry — 0.51g; and y, =
0.77r, + 0.51g; — 0.77b;. For both methods we took L corresponding to 1 s so that the time window
captured at least one cardiac cycle as recommended in [24].

Note that our implementation of POS and CHROM methods is slightly different from the original
in [22],24]: to ensure signal smoothness, we compute running means and standard deviations instead
of computing segments of iPPG in several overlapped windows and then gluing them by the overlap-
add procedure described in [22]. Processing of iPPG signal for POS and CHROM methods was the
same as for G-R method.
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Since we used low-cost cameras, we expected a poor quality of the raw iPPG signal compared to
contact PPG. Therefore we post-processed iPPG using three following steps, typical for iPPG signal

processing ,.

Step 1.

Step 2.

Step 3.

We suppressed frequency components outside of the heart-rate bandwidth 90-300 BPM (1.5—
5 Hz) using finite impulse response filter of the 127th order with a Hamming window as suggested

in [25].

We suppressed outliers in the iPPG signal by cropping amplitude of narrow high peaks that
could deteriorate performance on the next step:

3, Pk > mpw + 30kw,
/
Pe =9 =3 Pe < Mik,w — 30kWw,
PR W otherwise,
Ok, W

where my  and o,y are W-point running mean and standard deviation of the iPPG signal
respectively:

L Wl 1 w-1 2
_ 2 _ _
=\ e ()

We took W equal to 2 s to have estimates of mean and standard deviation over several cardiac
cycles.

We applied a wavelet filtering proposed in to suppress secondary frequency components.
This filtering consists of two steps: first a wide Gaussian window suppresses frequency compo-
nents remote from the frequency corresponding to maximum of average power over 30 s (global
filtering for suppressing side bands that could cause ambiguities in local filtering). Then a narrow
Gaussian window is applied for each individual time-point’s maximum (local filtering to empha-
size the “true” maximum). As suggested in the original article, we employed Morlet wavelets.
We used scaling factors 2 and 5 for global and local filtering, respectively (see for details),
since these parameters provide best pulse rate estimation in our case. We implemented wavelet
filtering using Matlab functions cwtft/icwtft from Wavelet Toolbox.

To demonstrate the effect of the multi-step iPPG processing, we show in Fig [4] how each processing
step magnifies the pulse-related component.

amplitude [a.u.] amplitude [a.u.] amplitude [a.u.]

0 ! |
285 290 295 300
time [s]

Figure 4: Effect of iPPG processing. (A) Raw iPPG extracted using G-R method from the video of
Session 1, (B) iPPG after band-pass filtering, (C) iPPG after wavelet filtering.
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3 Results

3.1 Main result: estimation of pulse rate from RGB video

To check the usefulness of the iPPG signal for pulse rate estimation in rhesus monkeys, we com-
puted several quality metrics characterizing values of pulse rate derived from the video (videoPR) in
comparison with the reference pulse rate from the pulse-oximeter (refPR).

The values of quality metrics presented in Table [ show that pulse rate estimation from iPPG was
successful. Bearing in mind that accuracy of refPR is == 3 BPM, obtained values of mean absolute
error for videoPR are rather good. Altogether, for 80% of epochs error of pulse rate estimation was
below 7 BPM (which is 5% of rhesus monkey average heart rate 140 BPM), and for 82% of epochs
error of pulse rate estimation was below 5% of refPR value. The low correlation between videoPR
and refPR for Session 4 is explained by two outlier data-points for which refPR is above average while
videoPR is well below average (estimation errors for these epochs are 18 and 11 BPM); after excluding
these two points the correlation for Session 4 was 0.82.

Table 4: Quality metrics for iPPG-based pulse rate estimates. FError was calculated as the difference
between videoPR and refPR; the Pearson correlation coefficient (corr) was computed between videoPR
and refPR across epochs in each session.

Session | Animal | Number | Mean absolute | Epochs with absolute error below | Correlation
of epochs | error, BPM | 3.5 BPM | 7BPM | 5% | 10%
1 Sun 23 2.32 74% 100% 87% | 100% 0.88
2 Sun 16 3.95 69% 75% 5% | 94% 0.52
3 Fla 26 2.81 69% 96% 96% | 100% 0.74
4 Fla 15 4.32 60% 80% 80% | 93% 0.02
5 Mag 19 3.78 58% 89% 95% | 100% 0.92
6 Mag 8 2.16 75% 100% | 100% | 100% 0.98
7 Mag 48 7.01 31% 56% 67% | 98% 0.85

Fig |5 shows the Bland-Altman plots for all sessions of each monkey. One can see that for most epochs
the error of pulse rate estimation was low; it was slightly higher for high pulse rate.

Fig[6]shows power spectra of the processed iPPG and average values of videoPR for Sessions 1 and 5 in
comparison with the reference pulse rate from the pulse-oximeter (refPR). For both sessions, videoPR
allows to track the pulse rate changes comparably to the data from pulse-oximeter

3.2 Multi-step iPPG processing results in better pulse rate estimation

In this study we used a multi-step procedure for iPPG signal processing. To demonstrate that all the
steps are important for the quality of pulse rate estimation, we estimated pulse rate omitting certain
processing steps. Average quality metrics for these estimates are presented in Table [5 as one can see
only a combination of filters improves the pulse rate estimation.

Table 5: Quality metrics averaged over all sessions for different variants of iPPG processing.

Processing type Mean absolute | Epochs with absolute error below | Correlation
error, BPM 3.5 BPM ‘ 7 BPM

no processing (Fig ‘ ) 8.2 48% 72% 0.48

only band-pass filter (Fig ) 9.9 48% 72% 0.50

only wavelet filter 214 43% 55% -0.13

complete processing (Fig ) 4.4 56% 80% 0.74
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Figure 5: Bland-Altman plots of pulse rate estimates for monkeys Sun (A), Fla (B) and Mag (C).
Solid lines show mean error, dashed lines indicate the limits of agreement between videoPR and refPR
(mean error £ 1.96 times standard deviation of the error). Dotted lines represent the regression line,
regression coefficients were significant for data of Sun (p = 0.005) and Mag (p = 0.01), indicating that
estimation errors slightly increased with pulse rate (this might be partially due to lower precision of
refPR for high pulse rate values that are unusual for humans). Regression coefficient for Fla data (B)
was insignificant (p = 0.13).
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Figure 6: Power spectrum of iPPG (A, B) and pulse rate values (C, D) for Sessions 1 and 5 respectively.


https://doi.org/10.1101/252403
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/252403; this version posted January 25, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

3.3 Comparison of methods for iPPG extraction

All results reported so far were obtained using G-R method for iPPG extraction. We have
additionally estimated pulse rate from the iPPG signal extracted by CHROM and POS
methods. Fig[7] shows that performance of all methods was rather similar, although iPPG extracted
by CHROM resulted in a number of large pulse rate estimation errors. Worse performance of CHROM
was likely due to the fact that it is based on a model of a human skin , thus additional research is
required to adjust it for iPPG extraction in NHP.
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Figure 7: Comparison of iPPG extraction methods. (A) Mean values with 95% confidence intervals
(estimated as 1.96 times standard error) of absolute pulse rate estimation error and (B) share of epochs
with absolute error below 7 BPM for G-R, POS and CHROM methods across Sessions 1-7.

3.4 Effects of motion on iPPG quality

Although we have considered here iPPG extraction for head-stabilized monkeys, our subjects exhibited
a considerable number of facial movements. Figl§|illustrates their negative impact on iPPG extraction
quality: the more prominent are movements during an epoch, the lower is quality of extracted iPPG.
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Figure 8: Influence of facial movements on quality of iPPG signal from Sessions 3 (A) and 5 (B). We
assess quality of iPPG by signal-to-noise ratio as suggested in 22| (we considered frequency components
as contributing to signal if they are in range [refPR — 9 BPM, refPR + 9 BPM] or [2refPR — 18 BPM,
2refPR + 18 BPM]). We estimate amount of motion by averaging mean squared differences between
successive frames. In epochs with more motion, iPPG signal-to-noise ratio is mostly lower. (Note the
inversed y-axis for motion.)
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3.5 Estimation of pulse rate from infrared video

To check the possibility of iPPG extraction from monochrome infrared (IR) video in NHP, we recorded
video using the Kinect IR sensor during Session 2. Additionally, we conducted Sessions 8 and 9 (see
Table [1I) using the monochrome camera Chameleon 3 U3-13Y3M (FLIR Systems, OR, USA) with
ultraviolet /visual cut-off filter R-72 (Edmund Optics, NJ, USA) blocking light with wavelengths below
680 nm. Details of the recorded video are presented in Table[6] Extraction of iPPG from monochrome
IR video was similar to that from RGB video: we computed raw iPPG as average intensity over all
pixels in a ROI (monochrome IR video provides a single intensity channel, so we could not use G-R
method in this case) and then processed the signal as described in Section For ROI selection we
determined skin pixels as having intensity within the range specified in Table [6]

Table 6: Description of experimental sessions with monochrome infrared video recording.

Session Sensor Frame | Video resolution, Distance to Session, Skin
rate, fps pixels monkey face, cm | duration, s filter
2 Kinect IR 30 512 x 424 50 307 100-253
8 Chameleon 100 1280 x 1024 30 133 80-240
9 Chameleon 50 1280 x 1024 30 184 80-240

As indicated by the quality metrics in Table[7], pulse rate estimation from IR video was not successful.
The low quality of estimation reflects that pulse rate had most of the time lower power than other
frequencies related to movements, lighting variations, other artifacts or noise.

Table 7: Quality metrics for pulse rate estimates computed from monochrome IR video.

Session | Number | Mean absolute | Epochs with absolute error below | Correlation
of epochs | error, BPM | 3.5 BPM | 7 BPM

2 16 52.5 13% 19% -0.02

8 12 374 25% 42% -0.13

9 17 97.3 6% 6% -0.01

4 Discussion

4.1 Imaging photoplethysmography under visible and infrared light

Quality of the photoplethysmogram (PPG) acquisition in general strongly depends on the light wave-
length. The PPG signal is generated by variations of the reflected light intensity due to changes in
scattering and absorption of skin tissue. In the ideal case, light would be only absorbed by blood
haemoglobin, which would make PPG a perfect indicator of the blood volume changes [16.|43]. How-
ever, light is also absorbed and scattered by water, melanin, skin pigments and other substances [16].

There is no general consensus about the optimal wavelength for PPG acquisition, but the trend is in
favor of employing visible light |18}44]. Although traditionally PPG was acquired at near infrared
(NIR) wavelengths [15,/16], experiments have shown that the light from the visible spectral range
allows to acquire comparably accurate PPG [43,/45,146] or to even reach higher accuracy [47,48)].
Theoretical studies and simulations in [39] indicate that the best signal-to-noise ratio in iPPG should
be obtained for wavelengths in the ranges of 420-455 and 525-585 nm, with peaks at 430, 540 and
580 nm corresponding to violet, green and yellow light, respectively (see |39, Section 3.5] for details).
Passing through epidermis and bloodless skin is optimal for green (510-570 nm), red (710-770 nm)
and NIR light (770-1400 nm) [49,/50]. However, absorption of haemoglobin is maximal for the green
and yellow (570-590 nm) light [47,|51,52]. This results in a better signal-to-noise ratio for these
wavelengths |18,44,47).
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Our results show that monochrome infrared (IR) video acquired with single non-specialized cameras
and without dedicated illumination was not suitable for iPPG extraction, while RGB visible-light
video was suitable. The striking difference between the results is not altogether surprising. Combining
several color channels when extracting iPPG from RGB video, is more effective than considering data
from a single wavelength |21,22]. Specifically, it makes iPPG extraction from RGB video less sensitive
to movements and lighting variations, while for IR video to compensate them simultaneous video
acquisition from several cameras is typically used [53}54].

Additional research is however required to check whether visible or IR light is generally preferable for
iPPG extraction in NHP. In particular, two following obstacles may hinder accurate iPPG extraction
from RGB video of NHP faces under visible light:

e High melanin concentration. Melanin strongly absorbs visible light with wavelengths below
600 nm [16], which degrades the quality of PPG for humans with a high melanin concentration
[41,55]. This often motivated using red or NIR light for PPG acquisition [16}|17], but some
modern methods for iPPG extraction successfully alleviate this problem [55]. To the best of our
knowledge, melanin concentration in monkey facial skin was not compared to that of humans,
and the question of melanin concentration influence on iPPG extraction in NHP remains open.

e Insufficient light penetration depth. For a light of wavelength A within 380-950 nm (visible
and NIR light) with fixed intensity, the higher \ is, the deeper the light penetrates the tissue
[46,56]. This is important since pulsatile variations are more prominent in deeper lying blood
vessels. For instance, the penetration depth of the blue light (400-495 nm) is only sufficient to
reach the human capillary level [39,57], providing little pulsatile information [23]|. Green light
penetrates up to 1 mm below the human skin surface, which makes the reflected light sensitive
to the changes in the upper blood net plexus and in the reticular dermis [39,/56]. To assess blood
flow in the deep blood net plexus, one uses red or NIR light with penetration depth above 2
mm [21,56]. Insufficient penetration depth of visible light may hinder iPPG acquisition from
certain parts of human body [19,39], but human faces allow extraction of accurate iPPG from
the green and even the blue light component [21,/46].

For rhesus monkeys iPPG extraction is simplified by the fact that their facial skin has a dense
superficial plexus of arteriolar capillaries [58|. It has been previously demonstrated [59] that
subtle changes in facial color of rhesus monkeys caused by blood flow variations can be detected
using a camera sensor. For other NHP it is not clear which wavelength if any would be sufficient
to penetrate the skin and systematic studies are required to answer this question.

4.2 Video acquisition and region of interest selection

A good video sensor is necessary for successful iPPG extraction. In this study we used three different
sensors: RGB and IR sensors of a Microsoft Kinect for Xbox One and Chameleon 3 1.3 MP (color and
monochrome models), details are provided in Table

Table 8: Characteristics of sensors used for the experiments (according to [60-62|).

Camera ‘ Max. video resolution, pixels ‘ Pixel size, um ‘ Max. frame rate, fps
Kinect RGB 1920x1080 3.1 30
Kinect IR 512x424 10 30
Chameleon 3 1.3 MP 1280x1024 4.8 149

Although all these CMOS-sensors have moderate characteristics, they are better than sensors of most
general-purpose cameras used for iPPG extraction in humans (see, for instance, |25,/63]). Still, spe-
cialized cameras, like those used in [23,39], could provide more robust and precise iPPG extraction in
NHP. For the choice of the camera such characteristics as pixel noise level and sensitivity are crucial,
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since iPPG extraction implies detection of minor color changes. Besides, sufficient frame rate is re-
quired to capture heart cycles. For humans the minimal frame rate for iPPG extraction is 15 fps 25|,
though in most cases 30 fps and higher are used [63|. Since heart rate for rhesus monkeys is almost
twice as high as for humans, higher frame rate is required. In our study frame rate of 30 fps (provided
by Microsoft Kinect) was sufficient to estimate pulse rate from iPPG; in general we expect that 50 fps
should be enough for accurate iPPG extraction in rhesus monkeys.

For practical applications, one needs a criterion for rejecting video frames if they contain too little
reliable pulsatile information for accurate iPPG extraction. One possible solution is to reject video
frames as invalid if the signal-to-noise ratio of the acquired iPPG is not above a threshold computed
from ROIs that do not contain exposed skin (e.g. regions covered by hair). See also |[64] for a method
of rejecting invalid video based on spectral analysis.

In this paper we have only considered manual selection of ROI, which is acceptable for head-stabilized
NHPs. In the general case, automatic face tracking would be of interest [65]. In this study, a cascade
classifier using the Viola-Jones algorithm [66] allowed detection of monkey faces in recorded video.
Furthermore, techniques for automatic selection of regions providing most pulsatile information in
humans [36,/67] can be adopted.

For non-head-stabilized NHP, robustness of the iPPG extraction algorithm to motion is especially
important. For humans this problem can be successfully solved by separating pulse-related variations
from image changes reflecting the motion [68], but for NHP additional research is required. In par-
ticular, hair covering parts of NHP face can provide references for successful compensation of small
motion (see [39], where similar methods are proposed for humans).

An even more challenging task is iPPG extraction for freely moving NHP. In this case distance of
the animal face to camera sensor and relative angles to the sensor and to the light sources are time
dependent. For humans, a model taking this into account was suggested in [24], however its stable
performance has been only demonstrated for relatively short (several meters) and nearly constant
distances from the face to the camera. Nevertheless, recent progress in iPPG extraction from a long
distance video 63| and in compensation of the variable illumination angle and intensity [24,69] gives
hope that required models might be developed in future.

4.3 Pulse rate estimation

In our study estimated pulse rates were in the range of 95-125 BPM for monkey Sun, 125-150 BPM
for Fla and 160-230 BPM for Mag, which agrees with previously reported values of heart rate (120-250
BPM) for rhesus monkeys sitting in a primate chair |2,13335]. Performance of our method for pulse
rate estimation (Table 4] was only slightly worse than those reported for humans: mean absolute error
obtained in |70] was 2.5 BPM; fraction of epochs with error below 6 BPM (about 8% of average human
pulse rate) for the best method considered in [71| was achieved for 87% of epochs; reported values
of the Pearson correlation coefficient vary from 0.87 in [71] to 1.00 in [25]. Comparing our results
with outcomes of human studies, one should also allow for the imperfect reference since data from
pulse-oximeter are not as reliable as ECG.

In this study we used the discrete Fourier transform (DFT) for pulse rate estimation. Despite of
its popularity this method is often criticized as being imprecise [19,|71]). Indeed, application of DFT
implies analysis of iPPG signal in a rather long time window (20-40 s), while pulse rate is non-stationary
and scarcely remains constant for several heart beats in row [19]. These fluctuations blur the iPPG
spectrum and may hinder pulse rate estimation.

As an alternative to using DFT, we estimated instantaneous pulse rate from inter-beat intervals defined
either as difference between adjacent systolic peaks (maximums of iPPG signal) or as diastolic minima
(troughs of the signal) |7]. Since the wavelet filter greatly smoothed the signal and modified its
shape (see Fig , we excluded this processing step. We tested several methods for peak detection in
PPG [72,[73], but the results were inconclusive and highly dependent on the quality of iPPG signal,

13


https://doi.org/10.1101/252403
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/252403; this version posted January 25, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

therefore we do not present them here. Further research is required to find suitable algorithms for
estimation of inter-beat intervals from iPPG in NHP. Specifically, the choice of methods for iPPG signal
processing prior to peak detection seems to be important. Note that the post-processing applied here
destroys the shape of pulse waves (see Fig . However, in this study the quality of iPPG signal was
only sufficient for a rough frequency-domain analysis, thus the shape of iPPG signal was not critical.

4.4 Summary

Here we evaluated and documented the feasibility of imaging photoplethysmogram (iPPG) extrac-
tion for pulse rate estimation in rhesus monkeys. Our future work will focus on enhancement of
iPPG extraction quality, development of a method for robust iPPG extraction in NHP without head-
stabilization and investigating the possibility of effective pulse rate estimation from infrared video.

In summary, we demonstrated the possibility of imaging photoplethysmogram extraction from RGB
facial video of head-stabilized macaque monkeys. For the video recording we used general-purpose cam-
eras and ambient artificial light. Our results show that one can estimate, accurately and non-invasively,
the pulse rate of awake NHPs without special hardware for illumination and video acquisition and using
only standard algorithms of signal processing. This makes imaging photoplethysmography a promis-
ing tool for non-invasive and non-contact remote estimation of pulse rate in non-human primates,
applicable for behavioral and physiological studies of emotion and social cognition, as well as for the
welfare-assessment of animals in research.
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