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Abstract

Understanding the seasonal patterns of influenza transmission is critical to help plan public health measures for the management and
control of epidemics. Mathematical models of infectious disease transmission have been widely used to quantify the transmissibility
of and susceptibility to past influenza seasons in many countries. The objective of this study was to obtain a detailed picture of the
transmission dynamics of seasonal influenza in Switzerland from 2003–2015. To this end, we developed a compartmental influenza
transmission model taking into account social mixing between different age groups and seasonal forcing. We applied a Bayesian
approach using Markov chain Monte Carlo (MCMC) methods to fit the model to the reported incidence of influenza-like-illness
(ILI) and virological data from Sentinella, the Swiss Sentinel Surveillance Network. The maximal basic reproduction number,
R0, ranged from 1.46 to 1.81 (median). Median estimates of susceptibility to influenza ranged from 29% to 98% for different
age groups, and typically decreased with age. We also found a decline in ascertainability of influenza cases with age. Our study
illustrates how influenza surveillance data from Switzerland can be integrated into a Bayesian modeling framework in order to
assess age-specific transmission of and susceptibility to influenza.
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1. Introduction1

Seasonal influenza has a significant impact on public health.2

The annual epidemics cause numerous medical consultations3

and pose a risk for influenza-related complications like viral4

pneumonia, bacterial superinfection or death in risk groups5

such as patients with chronic pulmonary or cardiac disease6

(Taubenberger and Morens, 2008). While the vast majority of7

influenza-attributed deaths occur in those over 65 years, healthy8

children under five years have the highest admission rate, par-9

ticularly infants under six months (Cromer et al., 2014). Dur-10

ing pregnancy, influenza infections are a significant and under-11

appreciated public health problem with an increased risk of hos-12

pitalization and death (Memoli et al., 2013). In order to better13

design public health strategies aiming at reducing the burden14

and morbidity due to influenza, it is indispensable to understand15

the characteristic transmission patterns of influenza in different16

populations.17

Among the most important parameters that determine in-18

fluenza transmission in a given population are the basic repro-19

duction number R0 (i.e., the average number of secondary in-20

fections from one infected individual during his or her entire21

infectious period in a completely susceptible population) and22

the proportions of specific age groups that are susceptible to23

the infection. Furthermore, comparing health seeking behavior24

during different influenza seasons can provide information on25

the varying severity of the epidemics. These and other criti-26

cal parameters can be estimated by fitting mathematical models27
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of influenza transmission to epidemiological data (Goeyvaerts28

et al., 2015; Yuan et al., 2017). A number of studies have sys-29

tematically analyzed multiple influenza seasons using mathe-30

matical models, for example Baguelin et al. (2013) for Eng-31

land and Wales, Lunelli et al. (2013) for Italy, and Goeyvaerts32

et al. (2015) for Belgium. Only a few studies have used mathe-33

matical models to study influenza transmission in Switzerland.34

Chowell and colleagues analyzed the 1918 influenza pandemic35

in Geneva (Chowell et al., 2006, 2007; Rios-Doria and Chow-36

ell, 2009), and Smieszek et al. (2011) used a spatial individual-37

based model to study the spread of H3N2 during the 2003/200438

season. To our knowledge, however, there are no mathemati-39

cal modeling studies that analyze the transmission dynamics of40

influenza in Switzerland over multiple seasons.41

Many countries maintain extensive influenza surveillance42

systems for tracking the course and extent of the yearly epi-43

demics. In Switzerland, the monitoring is performed by Sen-44

tinella, the Swiss Sentinel Surveillance Network, since 198645

(Somaini et al., 1986). This network is a co-project between46

the Swiss Federal Office of Public Health (SFOPH) and 150–47

250 general practitioners (GP) who report all cases of influenza-48

like-illness (ILI) on a voluntary basis. ILI is a symptom com-49

plex consisting of typical symptoms of influenza infections,50

such as malaise, fever, cough, and muscle pain. On the basis of51

the data collected in this sentinel network, the SFOPH publishes52

the weekly incidence of ILI-related GP consultations. In addi-53

tion, some of the patients within the network who suffer from54

ILI are virologically tested through a nasopharyngeal swab that55

can be used to determine strain-specific positivity for influenza.56

In this study, we conducted a detailed analysis of the trans-57

mission dynamics of ten influenza seasons in Switzerland from58
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2003–2015. We used a compartmental influenza transmis-59

sion model with seasonal forcing taking into account age-60

specific social mixing and health-care seeking behavior. We61

fitted the model to ILI and virological test data from Sentinella62

in a Bayesian framework using Markov chain Monte Carlo63

(MCMC) methods. This allowed us to obtain a comparative64

analysis of the transmissibility of and susceptibility to past in-65

fluenza seasons in Switzerland.66

2. Methods67

2.1. Data68

We used data from Sentinella, the Swiss Sentinel69

Surveillance Network (http://www.sentinella.ch) (So-70

maini et al., 1986) that were provided by the SFOPH. The data71

set provides the numbers of ILI-related GP consultations, zi(n),72

per 100,000 inhabitants during week n, where i = 1, . . . , 5 in-73

dicates five age groups of 0–4, 5–14, 15–29, 30–64, and 65+74

year olds. From ISO week 39 to week 16 in the following year,75

a subset of these patients with ILI were virologically tested for76

influenza via a nasopharyngeal swab (Hôpitaux Universitaires77

Genève, accessed 24 Nov, 2017). The swabs were analyzed us-78

ing viral cell culture until 2005/2006 and using a more sensitive79

RT-PCR since then. We denoted the total number of virologi-80

cal swab tests during week n and for age group i as vi(n), and81

the number of tests that were positive for influenza as v+
i (n).82

No age-specific virological data was available for the seasons83

2007/2008 and 2013/2014, and we excluded these two seasons84

from our analysis.85

2.2. Transmission model86

We developed a deterministic, population-based model that
describes human influenza transmission across different age
groups in Switzerland. Assuming an SEIR (susceptible-
exposed-infected-recovered) structure and gamma-distributed
latent and infectious periods (Keeling and Rohani, 2008), the
model can be described by the following set of ordinary differ-
ential equations (ODEs):

dS i

dt
= −β(t)S i

5∑
j=1

χi j
I1 j + I2 j

N j
,

dE1i

dt
= β(t)S i

5∑
j=1

χi j
I1 j + I2 j

N j
− 2σE1i,

dE2i

dt
= 2σE1i − 2σE2i,

dI1i

dt
= 2σE2i − 2γI1i,

dI2i

dt
= 2γI1i − 2γI2i.

dRi

dt
= 2γI2i.

(1)

where i = 1, . . . , 5 indicates the five age groups 0–4, 5–14, 15–87

29, 30–64, and 65+ year olds. We assumed a fixed population88

size N = 100,000, partitioned into the different age groups ac-89

cording to the age distribution in Switzerland (Swiss Federal90

Statistical Office, accessed 24 Nov, 2017). Individuals are con-91

sidered susceptible S if they have not been infected and have92

no (cross-)immunity from previous influenza infections or vac-93

cination. After infection, exposed individuals E remain latently94

infected for an average of 1/σ days before they become in-95

fectious individuals I for an average of 1/γ days. After nat-96

ural clearance, individuals enter the recovered compartment R.97

β(t) denotes the time-dependent transmission rate (see Seasonal98

transmissibility) and χ = (χi j)i, j describes the contact matrix99

(see Contact matrix).100

2.2.1. Contact matrix101

In absence of population-based survey data (Mossong et al.,102

2008), the structure of social contacts can be inferred from cen-103

sus and demographic data, such as household size and compo-104

sition, age structure, rates of school attendance, etc. (Fumanelli105

et al., 2012). Based on these data, Fumanelli et al. (2012) sim-106

ulated a population of synthetic individuals in order to derive107

contact matrices for various member states of the European108

Union, Norway and Switzerland. We transformed the published109

matrix of adequate contacts in Switzerland by dividing the ma-110

trix by the age structure of the Swiss population (Swiss Federal111

Statistical Office, accessed 24 Nov, 2017). This resulted in the112

contact matrix χi j that provides the average number of adequate113

contacts an individual of age group i has with individuals of age114

group j (see Supplementary material).115

2.2.2. Seasonal transmissibility116

Whereas influenza epidemics in tropical and subtropical re-117

gions often occur twice a year during the rainy seasons, there118

is a strong seasonal cycle in temperate regions (Tamerius et al.,119

2013). The oscillation in transmissibility is most likely caused120

by changes in temperature and humidity (Shaman et al., 2010,121

2011; Lofgren et al., 2007). The sinusoidal curve β(t) =122

β0 + ε cos(2π(t − φ)/52.14) provides a reasonable approxima-123

tion to model the seasonal forcing of influenza, where β, ε,124

and φ are auxiliary variables. We used the following parameter125

transformations to introduce the basic reproduction number R0:126

β0 =
γ
ρ(χ) (R0,min + ∆R0/2) and ε =

γ
ρ(χ) (∆R0/2), where R0,min is127

the minimum of R0 and ∆R0 = R0,max − R0,min. We calculated128

R0 =
β
γ
ρ(χ) using the next generation matrix (Odo Diekmann,129

2013; Heffernan et al., 2005), where ρ(χ) is the spectral radius130

of the contact matrix χ.131

2.2.3. Likelihood function132

In order to embed the incidence of ILI and the virological133

data into a likelihood model, we followed a similar method to134

the one described by Baguelin et al. (2013). We assumed that135

for each age group i only a proportion pai of influenza cases is136

ascertainable, which means that the following conditions must137

be fulfilled:138

1. the individual is infected with influenza139

2. the individual is symptomatic and seeks a GP140

3. the GP records the individual as ILI141
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4. if the GP performs a nasopharyngeal swab, the test result142

is positive.143

While the majority of these ascertainable influenza cases are
caused by the national epidemic, there is an additional influx of
cases from abroad. We modeled this influx with the constant
parameter ζc. We then described the total incidence of weekly
ascertainable influenza cases per 100,000 as follows:

ζi(n) = 2σpai
N
Ni

∫ n+1

n
E2i(t) dt + ζc , (2)

where n denotes the corresponding week. We introduced the
random variable za

i (n) that describes the sampled ascertainable
influenza cases according to a truncated negative binomial dis-
tribution with dispersion parameter Φ:

za
i (n) ∼ nBin(ζi(n),Φ|za

i (n) ≤ zi(n)) . (3)

The negative binomial distribution can account for variation in
the sampling process, e.g., GP consultations that are not uni-
formly distributed throughout a week, and additionally allows
for over-dispersion of cases due to stochastic processes that are
not captured by the deterministic model. We used the follow-
ing parameterization: if X ∼ nBin(µ,Ψ) then E(X) = µ and
Var(X) = µ + µ2/Ψ. The variable za

i (n) serves as an auxiliary
variable, since the ascertained cases cannot be directly derived
from the incidence of ILI. Rather, we used za

i to calculate the
proportion za

i (n)/zi(n), which describes the probability of de-
tecting influenza using a nasopharyngeal swab within the set
of ILI-related GP consultations. We can then describe the total
number of influenza-positive cases, v+

i (n), among vi(n) individ-
uals that provided a swab test in age group i using a binomial
distribution:

v+
i (n) ∼ Bin(vi(n), za

i (n)/zi(n)) . (4)

2.2.4. Parameter priors144

We used the same prior distributions for the parameters for145

all ten seasons. The prior distributions for the latency and infec-146

tious periods were based on estimates from experimental data.147

While Cori et al. (2012) described these periods using shifted148

Weibull distributions, we used gamma distributed durations149

to accommodate multiple compartments in our transmission150

model. The prior distributions of R0,min and ∆R0 were informed151

by findings from Shaman et al. (2010, 2011). We assumed a152

tight prior distribution for the forcing parameter φ, which de-153

scribes the time point when R0 reaches its maximum, around154

the first week of the year. This is in agreement with findings155

from Shaman et al. (2010, 2011) and the time point when abso-156

lute humidity is typically lowest in Switzerland (Swiss Federal157

Office of Meteorology and Climatology MeteoSwiss, accessed158

24 Nov, 2017). We set the prior distribution of the probabil-159

ity of ascertainability around 3% for all age groups, which is160

in agreement with findings from Baguelin et al. (2013). Other161

parameters, including the susceptibility of different age groups162

(see Implementation) were uniformly chosen within reasonable163

intervals. Table 1 provides a summary of all free model param-164

eters together with their prior distributions.165

2.2.5. Implementation166

We fitted the model to the data for each influenza season indi-167

vidually. At t0, we initialized the ODEs with one exposed indi-168

vidual partitioned across the five age groups according to their169

size, i.e., E1i(0) = Ni/N. We further introduced the parameter170

pS i to account for the proportion of susceptible individuals in171

age group i, i.e., S i(0) = pS iNi − Ni/N and Ri(0) = (1 − pS i)Ni.172

All other compartments were set to zero.173

We implemented the MCMC simulations in Stan (Carpenter
et al., 2017; Stan Development Team, 2016), a programming
language written in C++ using a Hamiltonian Monte Carlo
(HMC) procedure with fast convergence. For every season, we
sampled two chains of length 1,000 with a burn-in of 500 using
UBELIX (http://www.id.unibe.ch/hpc), the HPC cluster
at the University of Bern. We visually confirmed convergence
using the chain plots together with package ggmcmc of the pro-
gramming language R (R Core Team, 2015). Since Stan does
not support sampling of discrete variables, we discretized the
likelihood function resulting in the following equation:

zi(n)∑
z=0

nBin(z, ζi(n),Φ|z ≤ zi(n))Bin
(
v+

i (n), vi(n),
z

zi(n)

)
, (5)

where the overall log-likelihood function is the sum of the log-174

arithms of Eq. 5 over all i and n. We ignored data points where175

vi(n) = 0 or zi(n) = 0. For the truncated negative binomial, we176

had to calculate the cumulative distribution. We used a normal177

approximation according to Camp-Paulson to speed up compu-178

tation in Stan (Bartko, 1966).179

3. Results180

The influenza transmission model is capable to reproduce the181

seasonal epidemic curves of ascertainable influenza infections182

for all age groups (Fig. 1). The model fits particularly well to183

the data from the three oldest age groups (15–29, 30–64, and184

65+ year olds), while the numbers of ascertainable influenza185

infections for the two younger age groups (0–4 and 5–14 year186

olds) seem to be somewhat underestimated. This trend is par-187

ticularly apparent for 0–4 year olds where the model underes-188

timates the peak incidence. This systematic trend can be ex-189

plained by the relatively low number of virological samples190

for this age group, which leads to a higher uncertainty of the191

data and a corresponding lower impact on the overall likelihood192

function during the model fit.193

The Bayesian modeling framework allowed us to obtain pos-194

terior distributions of several parameters that describe seasonal195

influenza epidemics in Switzerland (Table 1, Fig. 2 and Sup-196

plementary Material). While most parameters do not seem to197

be correlated, we typically found a slight negative correlation198

between R0,min and ∆R0, between R0,min and susceptibility, pS i,199

and between susceptibility, pS i, and ascertainability, pai (see200

Supplementary material).201

Comparing the posterior distributions of some key parame-202

ters between all epidemics sheds light on the between-season203

variability (Fig. 3). The median values of R0,min range be-204

tween 0.91 and 1.50, and the median values of R0,max range205
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Table 1. Definitions, prior distributions and posterior estimates of the free model parameters that describe the 2009/2010 influenza epidemic in Switzerland.

Parameter Description Prior Estimate (median and IQR)
1/σ Latency period (days) N (1.63, 0.062) 1.67 (1.626–1.704)
1/γ Infectious period (days) N (0.99, 0.252) 1.47 (1.331–1.600)
R0,min Minimal basic reproduction number N (1, 0.252) 1.17 (1.109–1.241)
∆R0 R0,max − R0,min N (1, 0.252) 0.48 (0.417–0.535)
φ ISO week where R0 = R0,max N (1, 12) 1.23 (0.572–1.831)
t0 ISO week of simulated onset of influenza season U ([25, 52 + 3]) 31.89 (28.939–33.889)
ζc Ascertainable influx from abroad (per 100 000) U ([0, 5]) 0.90 (0.697–1.175)
Φ Dispersion parameter U ([0, 100]) 7.38 ( 5.300–10.648)
pa1 Ascertainability in age group 0–4 N (0.03, 0.012) 0.05 (0.045–0.053)
pa2 Ascertainability in age group 5–14 N (0.03, 0.012) 0.05 (0.050–0.058)
pa3 Ascertainability in age group 15–29 N (0.03, 0.012) 0.06 (0.052–0.061)
pa4 Ascertainability in age group 30–64 N (0.03, 0.012) 0.03 (0.025–0.034)
pa5 Ascertainability in age group 65+ N (0.03, 0.012) 0.03 (0.020–0.033)
pS 1 Susceptibility in age group 0–4 U ([0, 1]) 0.94 (0.882–0.976)
pS 2 Susceptibility in age group 5–14 U ([0, 1]) 0.88 (0.817–0.929)
pS 3 Susceptibility in age group 15–29 U ([0, 1]) 0.96 (0.933–0.984)
pS 4 Susceptibility in age group 30–64 U ([0, 1]) 0.88 (0.790–0.931)
pS 5 Susceptibility in age group 65+ U ([0, 1]) 0.30 (0.204–0.408)
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Fig. 1. Model fits to data from seasonal influenza epidemics for five age groups in Switzerland from 2003 to 2015. Black lines represent the best-fit model together
with 95% credible intervals (gray shaded area). The red dots represent the incidence of ascertainable influenza infections multiplied by the proportion of virological
samples that are positive for influenza. The red vertical lines correspond to the 95% confidence intervals of these data according to a binomial distribution. Data are
from the Swiss Sentinel Surveillance Network, Sentinella. The influenza seasons 2007/2008 and 2013/2014 were excluded due to the lack of virological data.
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Fig. 2. Model fits and parameter inference for the 2009/2010 influenza season in Switzerland. The left panels represent a close-up from Fig. 1. The middle and right
panels show posterior distributions of key model parameters. Data are from the Swiss Sentinel Surveillance Network, Sentinella.

between 1.46 and 1.81. The pattern of age-specific suscepti-206

bility to influenza, pS i, appears to be similar across seasons.207

Susceptibility is usually highest among 0–4 year olds (seasonal208

medians between 0.75 and 0.97) and decreases with increas-209

ing age. The posterior distributions for susceptibility are typ-210

ically widest for the two oldest age groups (30–64 and 65+211

year olds), which can be explained by the wider age range com-212

pared to the younger age groups. The greatest exception from213

the pattern of decreasing susceptibility with age represents the214

influenza season 2014/2015. Here, 14–29 year olds show the215

lowest susceptibility while it is close to 100% for all other age216

groups. Ascertainability of influenza infections shows a similar217

pattern to susceptibility and decreases with increasing age, with218

most median values ranging around 5%. The influenza season219

2014/2015 again shows a divergent pattern with the highest as-220

certainability in the oldest age group. Finally, the median values221

of the dispersion parameter Φ range from 2.36 in 2008/2009 to222

53.18 in 2012/2013. Those seasons with lower values of Φ ex-223

hibit higher variability in incidence and are indicative of within-224

season variability in ascertainability of influenza cases.225

Since many mathematical modeling studies focus on the226

H1N1 pandemic from 2009/2010, it is worth highlighting our227

results for this particular season (Table 1, Fig. 2). The median228

values of the minimal and maximal basic reproduction number229

were 1.17 (interquartile range (IQR): 1.11–1.24) and 1.65 (IQR:230

1.52–1.78), respectively, and were not significantly different to231

values from other seasons between 2003 and 2015 (Fig. 3).232

The most pronounced differences compared to the other sea-233

sons was the drop in the median values of susceptibility from234

over 88% for 0–4, 5–14, 15–29 and 30–64 year olds to 0.30235

(IQR: 0.20–0.41) for 65+ year olds. Susceptibility for the old-236

est age group increased considerably in the subsequent season237

2010/2011, which was expected because only 55% of influenza238

cases were attributed to H1N1 and 43% were attributed to Type239

B at that time (Hôpitaux Universitaires Genève, accessed 24240

Nov, 2017). Lastly, ascertainability also clearly differed be-241

tween age groups during the 2009/2010 season and was signifi-242

cantly lower for 30–64 and 65+ year olds compared to the three243

youngest age groups.244

4. Discussion245

We developed an influenza transmission model including246

age-structure and seasonal forcing. We then fitted the model247

to Swiss surveillance and virological test data from 2003–2015248

using a Bayesian framework. The model was able to repro-249

duce the transmission dynamics of ten influenza seasons and250

allowed us to infer critical parameters describing the transmis-251

sion of and susceptibility to the annual epidemics. The median252

of the posterior distribution of the maximal basic reproduction253

number, R0,max, ranged from 1.46 to 1.81, which is in good254

agreement with the range of values that have been estimated255

for seasonal influenza epidemics in various countries (Bigger-256

staff et al., 2014). The median estimates of the susceptibility to257

influenza ranged from 29% to 98% for different age groups, and258

typically decreased with age. There was a slight negative cor-259

relation between susceptibility and ascertainability which also260

declined with age. Finally, our Bayesian modeling framework261

identified a considerable reduction in susceptibility to the H1N1262

pandemic from 2009/2010 in the oldest age group. This find-263

ing is in agreement with the observation that adults over the age264

of 60 years had a higher frequency of cross-reactive antibodies265
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Fig. 3. Comparison of key model parameters between influenza epidemics in Switzerland from 2003–2015. Panels show boxplots with interquartile ranges for
the minimal (R0,min) and maximal (R0,min) basic reproduction number (top), susceptibility (pS i) and ascertainability (pai) (middle), and the dispersion parameter Φ

(bottom).

against the pandemic strain, possibly due to prior exposure to266

antigenetically similar viruses (Hancock et al., 2009).267

This is the first mathematical modeling study that investi-268

gates the transmission dynamics of influenza in Switzerland for269

several seasons. Our state-of-the-art Bayesian modeling frame-270

work and MCMC methods allowed us to indirectly infer critical271

parameters that describe the transmission of and susceptibility272

to influenza. Furthermore, our study also shows how virological273

test data can be used in combination with ILI data for producing274

more realistic models.275

There are a number of limitations with our study. First, our276

model contains a relatively large number of free and fixed pa-277

rameters that describe the influenza transmission dynamics in278

different age groups. Characteristically for our Bayesian mod-279

eling approach, the posterior distributions of our parameters280

estimates depend on the assumed prior distributions that were281
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informed by the literature. Some of these parameters are rel-282

atively well-known and characterized, such as the infectious283

period or the range of R0. For others, we had to make some284

reasonable assumptions. Particularly for the ascertainability,285

which describes the probability that an influenza-infected in-286

dividual becomes symptomatic, seeks a GP and would exhibit287

a positive virological test, little information is available. Due288

to the observed correlation between ascertainability and sus-289

ceptibility in our model, it would be desirable to have a better290

informed prior distribution of the former parameter for deter-291

mining the latter more precisely. The probability of ascertain-292

ability also affects the estimated influenza attack rates that vary293

between 2–56% for the different age groups (see Supplemen-294

tary material). There exists considerable uncertainty about the295

annual attack rates for seasonal influenza (Somes et al., 2018),296

and estimates based on seroprevalence surveys are highly sensi-297

tive to seropositivity thresholds (Wu et al., 2014). While some298

of our values are relatively high, they are consistent with esti-299

mates of 2–4 influenza infections per decade at risk (Kucharski300

et al., 2015). Nevertheless, the relatively high estimates of301

the influenza attack rates for some age groups could indicate302

a higher ascertainability in Switzerland, compared to the study303

by Baguelin et al. (2013) for England and Wales, which would304

result in lower attack rates. Second, we did not consider de-305

tailed human demography of Switzerland (e.g., death of indi-306

viduals) and relied on a simulated social contact matrix. We307

also ran our model using the German POLYMOD data from308

Mossong et al. (2008) (see Supplementary material) and found309

that this results in only minor differences in the model fits and310

posterior distributions. Hence, we believe that the reconstructed311

social contact matrices from Fumanelli et al. (2012), and sim-312

ilar approaches (Prem et al., 2017), provide a useful template313

for incorporating social contact data into mathematical mod-314

els of influenza transmission when no survey data are avail-315

able. Third, our model did not take into consideration the dif-316

ferent virus strains/subtypes that were circulating during each317

season (Smieszek et al., 2011). Hence, we assumed that infec-318

tion by strain/subtype provides immunity against infection by319

another strain/subtype. Furthermore, the epidemics of different320

strains/subtypes can peak at different times, and their transmis-321

sion rates can differ between age groups. For example, during322

the 2012/2013 season, the 0–4 and 5–14 year olds were mainly323

infected with influenza type B, while 65+ year olds were pri-324

marily infected with H3N2 (Hôpitaux Universitaires Genève,325

accessed 24 Nov, 2017). Pooling the different strains/subtypes326

together is less problematic as long as the seasonal influenza327

epidemics are dominated by one strain/subtype. However, this328

is not the case for all seasons from 2003–2014 (see Supplemen-329

tary material). Since the weekly numbers of positive virolog-330

ical samples in our data were often low, stratifying the model331

by strains/subtypes would have considerably limited the abil-332

ity of our Bayesian modeling framework to infer the necessary333

parameters. This is why we decided to focus on the overall dy-334

namics of influenza transmission and fitted the model for each335

season individually.336

Finally, we did not have data on the yearly influenza vaccina-337

tion uptake in the Swiss population. Hence, we could not inves-338

tigate the effects of current or alternative vaccination strategies339

on influenza transmission in Switzerland. It is also important340

to note that the reduced levels of susceptibility among different341

age groups should be interpreted as a result of (cross-)immunity342

from previous influenza infections as well as vaccination.343

Our modeling framework was inspired by the study from344

Baguelin et al. (2013) that analyzed strain-specific transmission345

of seasonal influenza in England and Wales from 1995/1996 to346

2008/2009 including data from weekly virological swabs. The347

authors concluded that the efficiency of the traditional vacci-348

nation strategy targeting older adults and risk groups could be349

improved by including children. The relatively high incidence350

and susceptibility among young age groups (0–4 and 5–14 year351

olds) in our model suggests that it would yield similar results if352

children were vaccinated. In contrast to Baguelin et al. (2013),353

we included seasonal forcing in our model which improved the354

model fits of the peak incidence (Shaman et al., 2010, 2011;355

Lofgren et al., 2007) while not considerably increasing model356

complexity.357

Lunelli et al. (2013) used a similar SEIR to better understand358

the influenza transmission dynamics in Italy during a 9-year pe-359

riod. Instead of virological data, they used annual serological360

data from antibody tests. This allowed them to estimate the sus-361

ceptibility to influenza in each age group at the beginning and362

at the end of each season. While antibody tests have the advan-363

tage that they can be performed independently from a surveil-364

lance network, it is unclear how accurately they can be used365

as a marker for influenza infections in a population. The au-366

thors found reporting rates between 19.7% and 33.4%, which367

are considerably higher than our estimates of ascertainability as368

well as those estimated in the study by Baguelin et al. (2013).369

Our modeling approach could be extended in several ways.370

Since we assumed seasonal forcing of influenza transmission,371

our model could in principle be fit to multiple seasons simul-372

taneously (Goeyvaerts et al., 2015; Axelsen et al., 2014). Such373

models then allow to describe waning and boosting of immu-374

nity and can be used to predict the magnitude of outbreaks in375

upcoming seasons. Another possible extension would be to376

include more detailed contact structures, such as households377

(Tsang et al., 2016; Cauchemez et al., 2004) or social networks,378

that can affect transmission of influenza as well as the effect of379

control measures such as vaccination (Barclay et al., 2014).380

This study shows how influenza surveillance and virological381

test data from Switzerland can be integrated into a Bayesian382

modeling framework. By assessing the underlying transmis-383

sion dynamics of influenza, rather than just the incidence of384

ILI, the model complements current surveillance efforts and im-385

proves our understanding of seasonal influenza epidemics. Ad-386

ditional data, such as longitudinal antibody tests and surveys387

that study Swiss-specific social contact and mixing patterns as388

well health seeking behavior would help to further improve our389

model. While the presented modeling framework can be used390

to estimate the age-specific transmission of and susceptibility391

to past influenza epidemics, it would be desirable to incorporate392

vaccination data in future studies for assessing the effectiveness393

of current and alternative vaccination scenarios in Switzerland.394
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