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Abstract 

Understanding heterogeneity in neural phenotypes is an important goal on the path to 

precision medicine for autism spectrum disorders (ASD). Age is a critically important variable 

in normal structural brain development and examining structural features with respect to 

age-related norms could help to explain ASD heterogeneity in neural phenotypes. Here we 

examined how cortical thickness (CT) in ASD can be parameterized as an individualized 

metric of deviance relative to typically-developing (TD) age-related norms. Across a large 

sample (n=942 per group) and wide age range (5-40 years), we applied a normative 

modelling approach that provides individualized whole-brain maps of age-related CT 

deviance in ASD. This approach isolates a highly age-deviant CT subtype with a median 

prevalence of 7.6% across all brain regions and prevalence within specific regions that can 

be greater than 10%. Individuals in this ASD subtype are statistical outliers in case-control 

models and this small subset of individuals drives a large majority of small effect results from 

case-control comparisons. Testing age-normed CT scores also highlights on-average 

differentiation and associations with behavioural symptomatology that is separate from 

insights gleaned from traditional case-control approaches. This work showcases a novel 

individualized approach for understanding ASD heterogeneity that could further prioritize 

work on a subset of individuals with significant cortical pathophysiology represented in age-

related CT deviance. 
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Introduction 

Autism spectrum disorder (ASD) is a clinical behavioural consensus label we give to a 

diverse collection of patients with social-communication difficulties and pronounced 

repetitive, restricted, and stereotyped behaviours 1. Beyond the single label of ASD, patients 

are in fact widely heterogeneous in phenotype, but also with regards to the diversity of 

different aetiologies 2. Even within mesoscopic levels of analysis such as examining brain 

endophenotypes, heterogeneity is the rule rather than the exception 3. At the level of 

structural brain variation, neuroimaging studies have identified various neuroanatomical 

features that might help identify individuals with autism or reveal elements of a common 

underlying biology 3. However, the vast neuroimaging literature is also considerably 

inconsistent, with reports of hypo- or hyper-connectivity, cortical thinning versus increased 

grey or white matter, brain overgrowth, arrested growth, etc, leaving stunted progress 

towards understanding mechanisms driving cortical pathophysiology in ASD.  

 

Multiple explanations could be behind this inconsistency across the literature. Methodology 

widely differs across studies (e.g., low statistical power, different ways of estimating 

morphology or volume) and is likely a very important factor 4,5. Initiatives such as the ABIDE 
6 have made it possible to significantly boost sample size by pooling together data from 

several different studies. However, within-group heterogeneity in the autism population also 

immediately stands out as another factor obscuring consistency in the literature, particularly 

when the dominant approach of case-control models largely ignores heterogeneity within the 

ASD population. In particular, some autism-related heterogeneity reported in literature might 

be explained by factors such as age 7,8. Indeed, with regards to structural brain features of 

interest for study in ASD (e.g., volume, cortical thickness, surface area), these features 

change markedly over development 9–12. However, typical approaches towards dealing with 

age revolve around group statistical modelling of age as the variable of interest or removing 

age as a covariate and then parametrically modelling on-average differences between case 

versus controls. While these are common approaches in the literature, they do not 

immediately provide individualized estimates of age-related deviance. In contrast, normative 

models of age-related variation may likely be an important alternative to these approaches 

and may mesh better with some conceptual views of deviance in ASD as being an extreme 

of typical population norms 13. In contrast to the canonical case-control model, normative age 

modelling allows for computation of individualized metrics that can hone in on the precision 

information we are interested in – that is, deviance expressed in specific ASD individuals 

relative to non-ASD norms. Such an approach may be a fruitful way forward in isolating 

individuals whom are ‘statistical outliers’. The reasons behind why these individuals are 
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outliers relative to non-ASD norms may be of potential clinical and/or mechanistic 

importance. Indeed, if we are to move forward towards stratified psychiatry and precision 

medicine for ASD 14, we must go beyond case-control approaches and employ dimensional 

approaches that can tell us information about which individuals are atypical and how or why 

they express such atypicality.  

 

In the present study, we employ normative modelling on age-related variability as a means 

to individualize our approach to isolating specific subsets of patients with very different 

neural features. Here we focus specifically on a neural feature of cortical morphology known 

as cortical thickness (CT). CT is a well-studied neuroanatomical feature thought to be 

differentially affected in autism and has received increasing attention in recent years 12,15–19. 

Recent work from our group also identified a genetic correlate for autism specific CT 

variation despite considerable heterogeneity in group specific CT in children with autism 

(Romero-Garcia, Warrier, Bullmore, Baron-Cohen, & Bethlehem, in press). A study 

examining ABIDE I cohort data discovered case-control differences in CT, albeit very small 

in effect size (Haar et a.., 2014). Similarly, the most recent and largest study to date, a 

mega-analysis combining data from ABIDE and the ENIGMA consortium, also indicated very 

small on-average case-control differences in cortical thickness restricted predominantly to 

areas of frontal and temporal cortices, and indicate very subtle age-related between-group 

differences and substantial within-group age-related variability 19. Overall, these studies 

emphasize two general points of importance. First, age or developmental trajectory is 

extremely important 8,21–23. Second, given the considerable within-group age-related 

variability and the presence of a large majority of null and/or very small between-group 

effects, rather than attempting to find on-average differences between all cases versus all 

controls, we should shift our focus to capitalize on this dimension of large age-related 

variability and isolate autism cases that are at the extremes of this dimension of normative 

variability. 

 

Given our novel approach of age-related normative CT modelling, we first compare the utility 

of age-related normative modelling directly against case-control models. We then describe 

the prevalence of ASD cases that show clinically significant age-related deviance in CT (i.e. 

> 2 SD from age-related norms) and show how a metric of continuous variability in age-

related deviance in CT is expressed across the cortex in autism. Finally, we identify 

important age-deviant CT-behaviour associations and assess whether such dimensional 

analyses associated with behaviour identify similar or different regions than typical case-

control analyses.  
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Methods 

Participants 

In this study, we first sought to leverage large neuroimaging datasets to yield greater 

statistical power for identifying subtle effects. To achieve this, we utilized the ABIDE datasets 

(ABIDE I and II) (see Supplementary Table S1 and S2 for full list of sites used in the current 

analyses). Groups were subsequently matched on age using the non-parametric nearest 

neighbour matching procedure implemented in the Matchit package in R (https://cran.r-

project.org/web/packages/MatchIt/index.html) 24. After matching case and control groups we 

were left with a sample size N=942 per group (Table 1). Because of power limitations in past 

work with small samples, we conducted an a priori statistical power analysis indicating that a 

minimum case-control effect size of d = 0.168 could be detected at this sample size with 

80% power at a conservative alpha set to 0.005 25. For analyses looking at brain-behaviour 

associations, we examined a subset of patients with the data from the SRS (N=418) and 

ADOS total scores (N=521). With same power and alpha levels the minimum effect for SRS 

is r = 0.177 and r = 0.158 for the ADOS. 

 
Table 1: Sample characteristics of age 

 Autism  Control  Group difference 
  n mean median sd   n mean median sd   W p 
Male 816 16.15 13.55 8.89  714 16.52 13.57 8.87  285120 0.472 

Female 126 15.05 12.58 8.28  228 13.32 11.02 5.48  15816 0.115 

 

Imaging processing and quantification 

For the ABIDE I release we used the available FreeSurfer reconstructions. For the ABIDE II 

release cortical surface reconstruction was performed using the MPRAGE (T1) image of 

each participant in FreeSurfer v5.3.0 (http://surfer.nmr.mgh.harvard.edu/). The 

reconstruction pipeline performed by FreeSurfer “recon-all” involved intensity normalization, 

registration to Talairach space, skull stripping WM segmentation, tessellation of the WM 

boundary, and automatic correction of topological defects. Briefly, non-uniformity intensity 

correction algorithms were applied before skull stripping 26, resulting in resampled isotropic 

images of 1mm. An initial segmentation of the white matter tissue was performed to 

generate a tessellated representation of the WM/GM boundary. The resulting surface is 

deformed outwards to the volume that maximize the intensity contrast between GM and 

cerebrospinal fluid, generating the pial surface 27. Resulting surfaces were constrained to a 
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spherical topology and corrected for geometrical and topological abnormalities. Cortical 

thickness of each vertex was defined as the shortest distance between vertices of the 

GM/WM boundary and the pial surface 28. Because surface reconstruction failed for 13 

subjects (out of 1114), we chose to not conduct manual segmentations and excluded these 

subjects from any subsequent analysis. 

 

Across both ABIDE I and ABIDE II cortical thickness was extracted for each subject using 

two different parcellations schemes: an approximately equally-sized parcellation of 308 

regions (~500mm2 each parcel) 29,30 and a parcellation of 360 regions derived from multi-

modal features extracted from the Human Connectome Project (HCP) dataset 31. The 308-

region parcellation was constructed in the FreeSurfer fsaverage template by subdividing the 

68 regions defined in the Desikan-Killiany atlas 32. Thus, each of the 68 regions was 

sequentially sub-parcellated by a backtracking algorithm into regions of ~500mm2, resulting 

in a high resolution parcellation that preserved the original anatomical boundaries defined in 

the original atlas 33. Surface reconstructions of each individual were co-registered to the 

fsaverage subject. The inverse transformation was used to map both parcellation schemes 

into the native space of each participant.     

Statistical analyses 

There are likely many variables that contribute to variability in CT between individuals and 

across the brain. In order to visually assess the contribution of some prominent sources of 

variance we adopted a visualization framework derived from gene expression analysis 

(http://bioconductor.org/packages/variancePartition) 34 and included the most commonly 

available covariates in the ABIDE dataset: Age, Gender, Diagnosis, Scanner Site, Full-scale 

IQ, Verbal IQ, Handedness, SRS and Set (ABIDE I or ABIDE II). Given that ABIDE was not 

designed as an integrated dataset from the outset, it seems plausible that scanner site might 

be related to autism or autism-related variables (e.g., some sites might have different case-

control ratios or only recruited specific subgroups). Figure 1 shows the ranked contribution of 

those covariates. Perhaps unsurprisingly, scanner site and age proved to be the most 

dominant sources of variance (each explaining on average around 15% of the total 

variance). Our initial conventional analysis was aimed to delineate potential broad case-

control differences, as has been done in previous studies 5,19. We used a linear mixed effects 

model with scanner site as random effect. Given the potentially strong contribution of age 

and gender we chose to include both as fixed effect covariates in the model. Multiple 

comparison correction was implemented with Benjamini-Hochberg FDR at q<0.05 35. 
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Figure 1: Explained variance in cortical thickness for each covariate 

Age-related normative modelling 

Normative modelling of age-related CT effects was done utilizing data from the typically-

developing group (TD) (see Figure 2 for a schematic overview). We used a local polynomial 

regression fitting procedure (LOESS), where the local width or smoothing kernel of the 

regression was determined by the model that provided the smallest sum of squared errors. 

To align the TD and ASD groups, both were binned into one year age bins. For each age bin 

and every brain region we computed a normative (TD) mean and standard deviation. These 

statistical norms were then used to compute a w-score (analogous to a z-score) for every 

individual with autism. The w-score for an individual reflects how far away their CT is from 

TD norms in units of standard deviation. Because w-scores are computed for every brain 

region, we get a w-score map for each participant showing at a precise spatial level how 

each brain region for that individual is atypical relative to TD norms. Age bins that contained 

fewer than 2 data-points in the TD group were excluded from subsequent analysis as the 

standard deviations for these bins would essentially be zero (and thus the w-score could not 

be computed). Because w-score maps are computed for each individual, we ran hypothesis 

tests at each brain region to identify regions that show on-average non-zero w-scores – that 

is, a linear mixed effects model of w-score deviation from zero with scanner site as random 

effect and stratified by gender (FDR corrected at q<0.05). To assess the effect of age-
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related individual outliers on the global case-control differences we re-ran the hypotheses 

tests on w-scores after removing region-wise individual outliers (based on a 2SD cut-off).  

 

 
Figure 2: Schematic overview of normative modelling. In first instance LOESS regression is used to estimate the 
developmental trajectory on CT for every individual brain region to obtain an age specific mean and standard 
deviation. Then we computed median for each one-year age-bin for these mean and median neurotypical 
estimates to align them with the ASD group. Next, for each individual with autism and each brain region the 
normative mean and standard deviation are used to compute a w-score relative to their neurotypical age-bin.  
 

To isolate subsets of individuals with significant age-related CT deviance, we used a cut-off 

score of 2 standard deviations (i.e. w >= 2 or w<=2). This cut-off allows us to isolate specific 

ASD patients with markedly abnormal CT relative to age-norms. We then calculated sample 

prevalence (percentage of all ASD patients with atypical w-scores), in order to describe how 

frequent such individuals are in the ASD population and across each brain region. A sample 

prevalence map can then be computed to show the frequency of these patients across each 

brain region. We also wanted to assess how many patients have markedly atypical w-scores 
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(beyond 2SD) across a majority of brain regions. This was achieved by computing an 

individual global w-score ratio as follows: 

 

𝑔𝑊 = 	
∑𝑎𝑏𝑠 𝑤 > 2
∑𝑎𝑏𝑠 𝑤 < 2

 

 

We also computed global w-score ratios for positive and negative w regions separately. 

Age-related CT deviance relationships with SRS and ADOS 

To explore whether the w-scores reflect a potentially meaningful phenotypic feature we next 

computed Spearman correlations for each brain region between the most commonly shared 

phenotypic features in ABIDE: ADOS, SRS, SCQ, AQ, FIQ and Age. Resulting p-values 

matrices were corrected for multiple comparisons using Benjamini-Hochberg FDR correction 

and only regions surviving and FDR corrected p-value of p < 0.05 are reported. Given the 

large contribution to the explained variance by scanning site we also replicated all 

correlational analyses on w-scores where scanner site was regressed out (and the region 

means were added to the residuals to enable ease of interpretation). Given the reduced 

sample size in the female group and the known interaction between autism and biological 

sex 36, we conducted normative modelling on the male group only. 

 

Multivariate clustering 
Finally, we explored whether the raw CT values could be used in a multivariate fashion to 

separate groups by diagnosis or illuminate stratification within ASD into subtypes. Here we 

used k-medoid clustering on t-Distributed Stochastic Neighbour Embedding (tSNE) 37. 

Barnes-Hut tSNE was used to construct a 2-dimensional embedding for all parcels in order 

to be able to run k-medoid clustering in a 2D representation and in order to visually assess 

the most likely scenario within the framework suggested by Marquand and colleagues 13. 

Next, we performed partitioning around medoids (PAM), estimating the optimum number of 

clusters using the optimum average silhouette width 38.  

Data and code availability 
Data and code are available on GitHub: https://github.com/rb643/Normative_modeling  
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Results 

Case-control differences versus age-related normative modelling 

Our first analysis examined conventional case-control differences. As expected from prior 

papers utilizing large-scale datasets for case-control analysis (e.g., 5,19), a small subset of 

regions (15%, 49/308 regions) pass FDR correction. Of these regions, most are of very small 

effect size, with 13 of the detected 49 regions showing an effect less than 0.1 standard 

deviations of difference (Figure 3A and 3B). We suspected that such small effects could be 

largely driven by a few ASD patients 39 with highly age-deviant CT. Because we also had 

computed w-scores from our normative age-modelling approach, we identified specific 

‘statistical outlier’ patients with w-scores > 2 standard deviations from typical norms and 

excluded them from the case-control analysis. This analysis guards against the influence of 

these extreme outlier patients, and if there are true on-average differences in ASD, the 

removal of these outlier patients should have little effect on our ability to detect case-control 

differences. However, rather than continuing to identify 49 regions with small case-control 

differences, removal of outlier patients now only revealed 12 regions passing FDR correction 

- a 4-fold decrease in the number of regions detected. Indeed, the majority of case-control 

differences identifying small on-average effects were primarily driven by this small subset of 

highly-deviant patients (Figure 4A and 4B, table 2). These remaining 12 regions with small 

on-average effects were restricted to areas near primary auditory cortex in the superior 

temporal gyrus, posterior cingulate cortex, and areas of visual cortex. 

 

In contrast to a canonical case-control model, we computed normative models of age which 

resulted in individualized w-scores that indicate how deviant CT is for an individual 

compared to typical norms for that age. This modelling approach allows for computation of 

w-scores for every region and in every patient, thus resulting in a w-score map that can then 

itself be tested for differences from a null hypothesis of 0, indicating no significant on-

average ASD deviance in age-normed CT. These hypothesis tests on normative w-score 

maps initially revealed no regions surviving FDR correction. However, like the original case-

control analysis where we observed that statistical outlier patients significantly influenced the 

results, we removed these outliers and then re-ran the test for identifying such on-average 

differences in CT-normed scores. Removing such outliers now boosted the number of 

detected regions from 0 to 12 (Figure 4C and 4D, table 3). Interestingly, the resulting 12 

detected regions with an on-average CT-normed difference are completely non-overlapping 

with the 12 regions detected in the canonical case-control analysis. These regions are 

restricted to areas of visual cortex, motor cortex, and para-hippocampal gyrus. Also of 
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particular note is the reversal of directionality of effect in visual cortex. Whereas, case-

control analysis with outliers included signalled the possibility of thicker visual cortices in 

ASD, this analysis on w-scores and with outliers removed suggests that the majority of the 

ASD population actually shows a slight on-average decrease (not increase) in thickness. 

This indicates that a normative age-modelling indeed identifies different aspects of small on-

average CT differences in ASD compared to canonical case-control modelling approaches 

(Figure 4B, 4D).  

 

 
 
Figure 3: Effect sizes (A) and regions passing FDR correction (B) for linear mixed effect modelling of 
conventional case control difference analysis. Cohen’s d values represent ASD – Control, thus blue denotes 
ASD<Control and red denotes ASD>Control. Cohen’s d is computed using: 
https://github.com/mvlombardo/utils/blob/master/cohens_d.R  
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Figure 4: Effect sizes (A) and regions passing FDR correction after outlier removal (B) for linear mixed effect 
modelling of conventional case control difference analysis. Cohen’s d values represent ASD – Control, thus blue 
denotes ASD<Control and red denotes ASD>Control. Effect sizes based on mean/standard deviation for w-
scores (C) and regions passing FDR correction after outlier removal (D). In lower two panels blue denotes on 
average thinner regions and red denotes on average thicker cortex. 
	
Table	2:	Main	effect	of	diagnosis	on	LME	after	outlier	removal	
Region	 p	 pFDR	 Cohens	d	

lh_lateraloccipital_part3	 2.38E-04	 1.12E-02	 0.14	

lh_posteriorcingulate_part1	 1.45E-04	 1.11E-02	 0.09	

lh_rostralmiddlefrontal_part4	 9.89E-04	 3.38E-02	 0.1	

lh_superiortemporal_part5	 1.23E-04	 1.11E-02	 0.13	

lh_superiortemporal_part6	 2.31E-04	 1.12E-02	 0.14	

rh_lateraloccipital_part1	 1.18E-03	 3.65E-02	 0.12	

rh_lateraloccipital_part4	 1.45E-03	 4.07E-02	 0.08	

rh_lingual_part5	 1.78E-03	 4.56E-02	 0.06	

rh_precuneus_part7	 1.16E-04	 1.11E-02	 0.1	

rh_superiortemporal_part4	 6.83E-04	 2.63E-02	 0.1	

rh_superiortemporal_part6	 2.54E-04	 1.12E-02	 0.1	

rh_transversetemporal_part1	 1.07E-04	 1.11E-02	 0.13	
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Table	3:	Main	effect	of	diagnosis	on	w-score	after	outlier	removal	
Region	 p	 pFDR	 Cohens	d	

lh_lateraloccipital_part7	 4.78E-04	 1.34E-02	 -0.13	

lh_lateraloccipital_part8	 1.20E-04	 7.42E-03	 -0.14	

lh_lingual_part4	 1.55E-04	 7.98E-03	 -0.14	

lh_parahippocampal_part2	 1.44E-03	 3.70E-02	 0.12	

lh_pericalcarine_part1	 8.97E-06	 1.38E-03	 -0.17	

lh_pericalcarine_part2	 2.93E-04	 1.00E-02	 -0.13	

lh_postcentral_part1	 2.87E-06	 8.83E-04	 -0.18	

rh_lingual_part4	 3.55E-04	 1.09E-02	 -0.13	

rh_pericalcarine_part1	 8.58E-05	 6.61E-03	 -0.15	

rh_pericalcarine_part2	 2.44E-04	 1.00E-02	 -0.14	

rh_pericalcarine_part3	 2.80E-04	 1.00E-02	 -0.13	

rh_postcentral_part1	 1.61E-05	 1.65E-03	 -0.16	

 
 

Isolating ASD individuals with significant age-related CT deviance 

While the normative modelling approach can be sensitive to different pathology than 

traditional case-control models, another strength of the approach is the ability to isolate 

individuals expressing highly significant CT-deviance. We operationalized ‘clinically 

significant’ deviance in statistical terms as w-scores greater than 2SD away from TD norms. 

By applying this cut-off, we can then describe what proportion of the ASD population falls 

into this CT subtype category. Over all brain regions the median prevalence for these 

patients is around 7.6%. This prevalence estimate is much higher than the expected 4.55% 

prevalence one would expect for greater than 2 standard deviations of difference. The 

distribution of prevalence across brain regions also has a positive tail indicating that for a 

small number of brain regions the prevalence can jump up to more than 10%. Expressed 

back into sample size numbers, if 10% of the ASD population had clinically significant CT 

abnormalities, with a sample size of n=942, this means that n=94 patients possess such 

significant issues. Underscoring the prevalence of these significant cases is important since 

as shown earlier, it is likely that primarily these ‘statistical outlier’ patients drive most of the 

tiny case-control differences observed.  
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Figure 5: Region specific prevalence of atypical w-scores. Panel A shows the by region prevalence of individuals 
with a w-score of greater than +/-2. For visualization purposed these images are thresholded at the median 
prevalence of 0.076. Panel B shows the overall distribution of prevalence across all brain regions. 
 

There are other interesting attributes about this subset patients. With regard to age, these 

patients were almost always in the age range of 6-20, and were much less prevalent beyond 

age 20. The median age of outliers across brain regions ranged from [10.6 – 20.2] years old, 

with an overall skewed distribution towards the younger end of the spectrum (supplementary 

Figure S1 and S3), showing that CT deviance potentially normalizes with increasing age in 

ASD. Patients with clinically significant CT deviance were also largely those that expressed 

such deviance within specific brain regions and were not primarily subjects with globally 

deviant CT. To show this we computed a w-score ratio across brain regions that helps us 

isolate patients that show globally atypical CT deviance across most brain regions. The 

small number of patients with a ratio indicating a global difference (n=18) were those that 

had globally thinner cortices. Upon visual inspection of the raw data for these participants, it 

is clear that the global thinning effect is not likely a true biological difference but rather one 

likely driven by artefact in the raw images (Supplementary Figure S2).  

Associations between individualized metrics of age-related CT deviance 

and behavioural measures of symptomatology 

An additional advantage of the use of normative modelling over the traditional case-control 

modelling is that we can use the individualized deviation as a novel metric for finding 

associations with phenotypic features. Here we use w-scores to compute Spearman 

correlations for the most commonly shared phenotypic features in the ABIDE dataset: 

ADOS, SRS, SCQ, AQ, FIQ and Age. After correcting for multiple comparisons across 

phenotype and region (6 phenotypic measures * 308 regions = 1848 tests) we identified a 
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number of brain regions that survive multiple comparison corrections for the SRS and ADOS 

scores (Figure 5 and supplementary figure S4). SRS is associated with w-scores primarily in 

areas of lateral frontal and parietal cortex, while ADOS is associated with w-scores primarily 

in lateral and inferior temporal cortex. Notably, these regions are largely different from 

regions that appear to show on-average differentiation in case-control and w-score analyses. 

Given that scanning site explains a large proportion of overall variance we also re-ran our 

correlation analysis after regressing out scanner site from the w-scores (and adding the 

overall mean for ease of interpretation). Parcellation did not affect these results (see 

supplementary materials). As outlined before, in order to show that results were independent 

of the parcellation scheme used we performed the same analysis using the HCP parcellation 
31. Using a different parcellation scheme did not affect the regional correlations for the SRS 

score as the overall pattern largely overlapped (supplemental figure S5). For the ADOS 

correlations the patterns seemed less robust across parcellation schemes. 

 

Interestingly, we also performed the same analysis after regressing out scanning site from 

the raw CT values (and computing w-scores after this regression). Perhaps somewhat 

unsurprisingly this approach removed all effects. This is most likely due to the fact that 

scanning site is known to interact with numerous other variables such as age (most scanning 

sites contributed data from a specific age range) and diagnosis (the case-control ratio varies 

substantially across scanning sites and in some cases regressing out site might thus also 

remove diagnostic signal). 

 

 
Figure 5: FDR Corrected Symptom correlations between w-scores and SRS and ADOS respectively. 

Clustering 

Despite the limited main diagnosis effect on CT over the majority of brain regions and the 

fact that only a small subset of individuals appears to contribute to this difference, it may still 

be possible that the multivariate patterning in CT may capture some diagnostic effect. Thus, 
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we performed exploratory clustering analysis to determine if raw CT values across the whole 

brain could be used to delineate the ASD group from the TD group. In addition, we reasoned 

a data-driven clustering approach might also reveal subgroups within each group (e.g. 

Lombardo et al., 2016). Results from clustering the neighbour embedded raw CT scores are 

shown in Figure 6. As can be observed in panel B, the within-group heterogeneity is entirely 

captured by normative heterogeneity and the overall density plots for both groups are close 

to identical. The pattern we find when projecting the whole brain raw cortical thickness into a 

2-dimensional embedding most closely resembles the 3rd scenario outlined by Marquand 

and colleagues 13, whereby disease related variation is nested with the normal variation. Our 

results show that, when it comes to whole-brain cortical thickness, the condition related 

variation is entirely nested within the neurotypical variation. Obviously, the present clustering 

and embedding approaches only provide one way of clustering or segregating case-control 

variation in cortical thickness. Other multivariate approaches that do not take the same data 

reduction step might be able to more finely parse out sub-groups or potential case-control 

differences. Additionally, other measures than CT might provide a different picture. In is 

interesting however to note that both dimensions were correlated with age. Dimension one 

showed a significant negative correlation: R2 = -0.26, p = 2.2e-16. Whereas dimension 2 

showed a stronger positive correlation: R2 = 0.43, p = 2.2e-16. No correlations were 

observed with any of the other common phenotypic measures. Thus, this 2-dimensional 

embedding likely captures the variability in cortical thickness expansion and thinning over 

the course of development, but is not sensitive enough to pick up potential alterations in the 

overall trajectory of this process between groups. 

 
Figure 7: tSNE Clustering 
Panel A shows the results from k-medoid clustering of the 2D embedding of the raw CT values as achieved by 
tSNE. K-medoid clustering clearly identifies 2 clusters. However, as Panel B shows, these clusters did not 
provide any meaningful distinction on diagnosis.  
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Discussion 

In the present study, we find that with a highly-powered dataset, conventional analyses 

reveal small case-control differences in cortical thickness in autism restricted to a small 

subset of regions. In general, this idea about subtle effect sizes for case-control comparisons 

is compatible with other recent papers utilizing partially overlapping data - Haar and 

colleagues utilized only ABIDE I data 5, while van Rooji and colleagues 19 utilized both 

ABIDE I and II dataset combined with further data from the ENIGMA consortium. While 

these statements about small effect sizes are not novel, we contribute a novel idea here in 

our findings that suggest that even these small effect sizes may be misleading and over-

optimistic. Utilizing normative modelling as a way of identifying and removing CT-deviant 

outlier patients, we find here that most small case-control differences are driven by a small 

subtype of patients with highly CT-deviance for their age. In contrast, we further showed that 

analysis of CT-normed scores (i.e. w-scores) themselves reveals a completely different set 

of regions that are on-average atypical in ASD. The directionality of such differences also 

reverses in some cases. For instance, Haar and colleagues discovered that areas of visual 

cortex are thicker in ASD compared to TD in ABIDE I 5. Our case-control analyses here 

largely mirror that finding. However, analysis of w-scores and having removed outliers, 

indicates a significant difference below 0, where 0 indicates no difference from age-norms. 

This difference below 0 is indicative of the ASD group showing on-average thinner visual 

cortices. This effect is apparent after the removal of highly CT-deviant ASD outliers and thus, 

is representative of a slight on-average difference in the majority of ASD patients. Thus, here 

is a clear case whereby our novel normative age modelling approach identifies effects that 

are completely obscured and reversed compared to what a traditional case-control analysis 

might reveal.  

 

The revelation of new insights via normative age modelling, alongside cleaning up 

interpretations behind case-control models, both highlight the significant utility of such a 

novel approach. Because the presence of a small subtype in ASD shows highly age-deviant 

CT and that this subtype misleadingly drives on-average inferences from case-control 

models, it is important for the field to better understand how prevalent is this subtype and 

which brain regions this subtype might affect. With our normative modelling approach, we 

were able to quantify the prevalence of this CT outlier subtype at a median prevalence of 

7.6% when taking into account all brain regions – an estimate much larger than the expected 

4.55% for standard deviations greater than 2. However, there is some heterogeneity across 

brain regions, as a small proportion of brain regions are even more enriched in this subtype 

and can contain greater than 10% prevalence.  
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We also noted that this small subtype showing highly age-atypical CT was predominantly 

restricted to the childhood to early adult age range. In later adult ages, the prevalence of this 

subtype drops off. This could be a potential indicator that highly atypical CT is more 

prevalent and detectable at earlier ages. It will be important to assess even earlier age 

ranges such as the first years of life 21, as well as later adult years when significant aging 

processes begin to take effect 41. Importantly, the interpretations behind why this subtype of 

patients is so atypical also needs to be addressed. Mirroring work in autism genetics, 

whereby discoveries are continually being made regarding very small proportions of the ASD 

population being explained by highly penetrant genetic mechanisms 42, it also may be the 

case that such individuals with highly age-deviant CT are individuals with specific highly 

penetrant biological mechanisms underlying them, and possibly related to neurogenesis and 

other factors that are implicated in CT changes (Romero-Garcia et al., In Press). With animal 

models of highly penetrant genetic mechanisms linked to autism, it is notable that such 

mechanisms have heterogeneous effects on brain volume 43. Thus, it will be important for 

future work to parse apart explanations behind why such a small subset of individuals 

appear to have such highly age-deviant CT features. 

 

Normative modelling was also applied towards identifying continuous associations between 

the degree of age-related CT deviance and symptom severity as measured by the SRS and 

ADOS. Here we find collections of areas that are largely different from regions detected as 

showing on-average case-control or on-average non-zero w-score differences. These results 

likely suggest that w-score can pick up on some aspect of dimensional variability related to 

behavioural symptoms. However, as was the case for the case-control analyses, the effect 

sizes for these associations with behavioural symptoms were very small. In addition to 

common univariate analysis approaches, we also explored novel multivariate approaches for 

assessing differentiation in CT patterning. However, these analyses largely reinforced the 

notion that at least within this large dataset, autism related variation of cortical thickness is in 

fact largely nested within the normal variation, and that a good explanatory predictor of such 

variation is age.  

 

Finally, there are a number of caveats to consider in the present study. First and foremost, 

the present data are cross-sectional and the normative age modelling approach cannot 

make claims about trajectories at an individual level. With longitudinal data, this normative 

modelling approach could be extended. However, at the moment the classifications of highly 

age-deviant CT individuals are limited to static normative statistics within discrete age-bins 

rather than based on statistics from robust normative trajectories. The dataset also 
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represents ASD within an age range that misses very early developmental and also very late 

adulthood periods. The dataset also presents a post-hoc collection of sites accumulated 

through the ABIDE initiative, whereby scanners, imaging acquisition sequences and 

parameters, sample ascertainment, etc, are highly heterogeneous. As a result, we observed 

that site had a large effect on explaining variance in CT and this is compatible with 

observations made by other studies 5. Furthermore, it is likely that there may systematic 

interaction between scanner site and some variables of interest such as age (e.g. different 

scanning sites will likely have recruited specific age cohorts). Future work with more 

homogenous imaging sequences, scanner hardware, etc, that bolster multi-site combination 

of data is warranted in order to reduce this pronounced site related issue. 

 

In conclusion, the present study showcases a novel normative age modelling approach in 

ASD and one that can significantly impact the interpretation of conventional case-control 

modelling, but which can also shed significant new insight into heterogeneity in ASD. We 

show that results from case-control analyses, even within large datasets, can be highly 

susceptible to the influence of ‘outlier’ subjects. Removing these outlier subjects from 

analyses can considerably clean up the inferences being made about on-average 

differences that apply to a majority of the ASD population. Rather than only being nuisances 

for standard group-level analyses, these outlier patients are significant in their own light, and 

can be identified with our normative age modelling approach. Normative models may provide 

an alternative to case-control models that test hypotheses at a group-level, by allowing 

additional insight to be made at more individualized levels, and thus help further progress 

towards precision medicine for ASD.  
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