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Abstract 21 

Approximate Bayesian computation (ABC) is widely used to infer demographic history of populations and 22 

species using DNA markers. Genomic markers can now be developed for non-model species using 23 

reduced representation library (RRL) sequencing methods that select a fraction of the genome using 24 

targeted sequence capture or restriction enzymes (genotyping-by-sequencing, GBS). We explored the 25 

influence of marker number and length, knowledge of gametic phase, and tradeoffs between sample 26 

size and sequencing depth on the quality of demographic inferences performed with ABC. We focused 27 

on 2-population models of recent spatial expansion with varying numbers of unknown parameters. 28 

Performing ABC on simulated datasets with known parameter values, we found that the timing of a 29 

recent spatial expansion event could be precisely estimated in a 3-parameter model. Taking into account 30 

uncertainty in parameters such as initial population size and migration rate collectively decreased the 31 

precision of inferences dramatically. Phasing haplotypes did not improve results, regardless of sequence 32 

length. Numerous short sequences were as valuable as fewer, longer sequences, and performed best 33 

when a large sample size was sequenced at low individual depth, even when sequencing errors were 34 

added. ABC results were similar to results obtained with an alternative method based on the site 35 

frequency spectrum (SFS) when performed with unphased GBS-type markers. We conclude that 36 

unphased GBS-type datasets can be sufficient to precisely infer simple demographic models, and discuss 37 

possible improvements for the use of ABC with genomic data. 38 

 39 

Introduction 40 

Patterns of DNA variation among individuals are commonly used to unravel events in the history 41 

of populations, such as demographic expansion, population splits, and admixture. Rapid progress in 42 

sequencing technologies at the start of the 21
st
 century has allowed the inference of increasingly 43 
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complex demographic models, by using increasingly complete genomic datasets. However, this increase 44 

in amount of data and complexity of demographic scenarios necessitates new statistical methods for 45 

analysis and inference. Tackling large genetic datasets with inherent errors and uncertainties requires 46 

sophisticated techniques for marker development. In parallel, inferring complex historic demographic 47 

scenarios with several populations and numerous demographic parameters necessitates efficient 48 

algorithms to provide accurate parameter estimates and model validation measures. Reviews and 49 

improvements of methods have recently emerged (Schraiber & Akey, 2015), illustrating the fast pace of 50 

change in the field of statistical genetics. However, the efficiency of inference methods for different 51 

types of demographic models as well as effects of completeness of genomic datasets need to be 52 

understood to ensure quality and accuracy of inferences. 53 

 54 

Demographic inference in natural populations of non-model organisms 55 

In less than 30 years, human demographic inference has taken a leap, evolving from the 56 

evidence for a single African origin of all humans using a few non-recombining mitochondrial markers 57 

(Cann et al., 1987), to  the inference of highly complex demographic scenarios using whole genomes 58 

(Harris & Nielsen, 2013). Although there is still room for improvement in demographic inference of 59 

human populations (Schraiber & Akey, 2015), human genomics is at the leading edge of inference from 60 

DNA data. Unfortunately, the state-of-the-art statistical inference techniques applied to human data are 61 

currently out of reach for studies of natural populations of non-model organisms. Knowledge from 62 

demographic inference of these species is, however, crucial: it is often the most efficient way to 63 

determine how to manage invasive species (Benazzo et al., 2015; Guillemaud et al., 2010), to conserve 64 

endangered species or ecosystems (Chan et al., 2014; Dussex et al., 2014; Lopez et al., 2006; Quéméré et 65 

al., 2012), and to predict the future distribution and abundance of widespread species that are of 66 
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economical or ecological importance (Holliday et al., 2010; Zinck & Rajora, 2016). The good news is the 67 

genomic revolution has reached non-model organisms, creating a spectrum of levels of genetic 68 

knowledge across a broad range of taxa. Using a few microsatellites or moderate-sized panels of 69 

resequenced SNPs is still common practice (Y. Li et al., 2010; Zinck & Rajora, 2016), but most current 70 

studies of non-model species now use genomic methods to extract markers for inference. In recent 71 

years, sequencing whole genomes of non-model species has become feasible in some organisms with 72 

small genomes (Boitard et al., 2016; Liu et al., 2014) and has allowed the inference of detailed 73 

demographic models using Approximate Bayesian Computation (ABC) or Pairwise Sequential Markovian 74 

Coalescent (PSMC) (Nadachowska-Brzyska et al., 2013). For organisms with larger genomes or for studies 75 

with lower data requirements, reduced-representation library (RRL) sequencing, through either targeted 76 

capture or restriction enzymes, is widely applied (Davey et al., 2011). RRL techniques involving 77 

restriction enzymes (commonly referred to as RADseq or genotyping-by-sequencing, GBS) output a large 78 

number of short sequences (100bp, or longer with paired-end sequencing) from across the genome and 79 

have proven useful in population genetics studies and inference involving maximum likelihood methods 80 

based on the site frequency spectrum (SFS) or ABC methods (Narum et al., 2013). Most recently, the 81 

number of published drafts of whole genomes for non-model species has increased dramatically, 82 

granting access to longer sequences through the second category of genomic markers: targeted 83 

enrichment. This approach allows the use of linkage information for population genetics inference (Li & 84 

Jakobsson, 2012). 85 

 86 

Approximate Bayesian Computation and other approaches 87 

In this paper, our aim is to explore ABC for datasets obtained from reduced-representation 88 

library sequencing in non-model organisms. We also compare the results obtained with those from a SFS 89 
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approach based on approximation of the composite likelihood (Excoffier & Foll, 2011). We chose to 90 

explore ABC because of its versatility: It accommodates a wide spectrum of demographic models and 91 

dataset types. Although it was originally developed for inferences in evolutionary biology, the statistical 92 

framework of ABC has been extended to a variety of disciplines, from cell biochemistry and 93 

epidemiology to neural networks, extending beyond the realm of biology into meteorology, astrophysics 94 

(Weyant et al., 2013) and computer sciences (Condon & Cukier, 2016). ABC has been reviewed in a 95 

number of publications and its algorithms and techniques are being refined constantly (Bertorelle et al., 96 

2010; Csilléry et al., 2010; Lintusaari et al., 2016; Marin et al., 2012; Sunnaker et al., 2013). For 97 

applications in demographic inference using genetic data, the general ABC method involves the 98 

following steps. First, a large number of datasets are simulated under a specific demographic model 99 

using the coalescent (Kingman, 1982). Parameters used for simulations are drawn from prior 100 

distributions that are pre-defined by the user. The simulated datasets are then compared to the 101 

observed dataset through calculation of summary statistics. Finally, simulated datasets with the closest 102 

vector of statistics to the vector of observed summary statistics are selected. A regression adjustment 103 

based on the local relationship between statistics and parameters is then usually performed to 104 

approximate the posterior distribution of each model parameter from the parameter values of selected 105 

simulations. ABC is suitable when inferring models for which the likelihood function is intractable, as it 106 

relies on approximating the likelihood function using a large number of simulations. However, each one 107 

of the numerous steps in the implementation of ABC requires users to make empirical decisions. There is 108 

particularly a need to improve our understanding of the relationship between the type of markers 109 

obtained to build genetic datasets and the way genetic data is subsequently summarized on its power to 110 

tease apart demographic models and produce accurate parameter estimates. 111 

 112 
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Previous work exploring ABC 113 

The need to test the inference power of datasets for demographic models of interest has been 114 

recognized in recent years, both in terms of model selection and parameter estimation. Robert et al. 115 

(2011) warned against the use of insufficient summary statistics in ABC model choice, opening the door 116 

to improved methods for model testing and the associated choice of summary statistics  (Marin et al., 117 

2014; Prangle et al., 2013). Among theoretical results and general guidelines, Marin et al. (2014) 118 

suggested the use of different sets of summary statistics for estimation and model selection. Several 119 

studies show the use of preliminary simulations testing parameter estimation and model choice with 120 

different number and length of markers and number of individuals (Sousa et al., 2012; Stocks et al., 121 

2014), type of molecular markers (Cabrera & Palsbøll, 2017) and choice of summary statistics and 122 

models considered (Benazzo et al., 2015; Guillemaud et al., 2010; Li & Jakobsson, 2012; Sousa et al., 123 

2012; Stocks et al., 2014). As most scientists have switched to using genome-wide data, there is a need 124 

to expand this set of simulation studies to test and understand the power of different types of genomic 125 

data. As part of such an effort, Li & Jakobsson (2012) simulated large, phased genomic datasets 126 

comparable to human genomic datasets at the time. Under 2-population split models, they found that 127 

ABC produces accurate estimates for most but not all parameters and concluded ABC is well suited to 128 

large genomic datasets summarized with LD-based statistics. Robinson et al. (2014) tested the effects of 129 

the number and length of unphased genomic sequences and compared them to the effect of the 130 

number of individuals sequenced for the inference of three-population admixture models. They found 131 

that increasing the number and length of sequences was more beneficial than increasing sample size. 132 

Shafer et al. (2015) investigated the power of ABC on short diploid sequences obtained by GBS. They 133 

focused on a wide range of simple 1-population and 2-population models with bottleneck, growth, 134 

migration and a combination of these parameters. They found that population changes such as ancient 135 
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temporary bottlenecks would not be inferred correctly regardless of the number of markers available. 136 

This set of studies provides valuable information about the use of genomic data in ABC. Our aim is to 137 

extend this knowledge by directly comparing ABC results from molecular markers obtained with 138 

different types of RRL sequencing techniques, different sequencing effort allocations, and different 139 

levels of genomic knowledge. This will hopefully help future ABC users who do not have access to 140 

complete genomic data to select methods and develop genomic datasets that are best suited to answer 141 

the demographic questions they are addressing. 142 

 143 

General model and datasets 144 

Here, we focused on estimating parameters for a set of 2-population models of demic expansion 145 

that are applicable to studies of species invasion, reintroduction, or natural colonization. We tested the 146 

power of ABC on these models using a range of marker sets obtainable by RRL methods: datasets with a 147 

large number of short genomic reads would correspond to single-end GBS sequencing, whereas fewer 148 

but longer diploid sequences correspond to a targeted enrichment approach. For each type of dataset, 149 

we quantified the potential benefits of knowing the gametic phase of sequence markers by including or 150 

excluding linkage-related statistics at the data-summarizing step. We expect to observe an improvement 151 

in the inference for datasets with long sequences. For each model assessed, we also tested the effect of 152 

time since colonization. We hypothesize that recent events might be inferred more accurately with 153 

datasets containing linkage information, due to the generally higher rate of recombination compared to 154 

mutation, and to the potential information contained in long haplotypes. This part of the analysis is also 155 

motivated by the fact that overestimates of divergence times are a common result of demographic 156 

inference in empirical studies (Holliday et al., 2010) and this upward bias has been found for some 157 

demographic scenarios in simulation studies (Benazzo et al., 2015). We therefore aim to explore this 158 
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potential bias by testing increasingly old events within the same models. As NGS techniques require a 159 

trade-off between sample size and individual sequencing depth, and are characterized by high 160 

genotyping errors, we explore the effect of different trade-offs at different sequencing error rates. 161 

Fumagalli (2013) found that increasing sample size at the cost of decreasing depth was beneficial in the 162 

inference of diversity measures and population structure. Here, we extend this hypothesis to ABC 163 

inference. Finally, we compared our ABC results with those obtained from an approximate likelihood 164 

method using the site frequency spectrum from simulated reduced-representation libraries. As they 165 

provide millions of genome-wide SNPs without ascertainment bias, restriction enzyme-based genomic 166 

sequencing techniques seem to be particularly well suited to SFS-based inference methods. Comparing 167 

SFS results with ABC results on a range of models and datasets will inform future work on demographic 168 

inference in non-model organisms. 169 

 170 

Methods 171 

Demographic models 172 

We focused on a basic 2-population model of demic expansion (fig.1a). A pre-existing 173 

population, population 1, is of constant size N1. At time TEXP before present, the spatial population 174 

expansion begins: population 2 is created by 2 migrants from population 1. Population 2 then grows 175 

exponentially between times t=TEXP and t=0 (the present) to size N2 at t=0. The rate of population growth 176 

r is defined by the other parameter values through the formula r=��� �
���

��

)/TEXP. Model 1 therefore has 177 

just 3 independent unknown parameters: N1, N2, and TEXP. We created additional models of increasing 178 

complexity by adding parameters. In models 2 and 4, the number of founders of population 2, N02, is 179 

unknown (fig.1b and fig.1d); in models 3 and 4, migration is allowed from population 1 to population 2, 180 

with the parameter m21 describing a per-generation migration rate (fig.1c and fig.1d). In all four models 181 
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described above, the mutation rate and the recombination rate are fixed. We chose wide and uniform 182 

parameter priors for population sizes to accommodate a wide range of types of organisms, and a log-183 

uniform prior for the timing of the expansion event, as this study intends to focus on more recent rather 184 

than ancient expansion events (Table 1). 185 

 186 

Generating sets of coalescent simulations 187 

For each of the four models, we created a set of 1 million simulations with each of the five types of 188 

datasets described below, with a fixed number of 10 diploid individuals sampled per population. For 189 

datasets corresponding to single-end RADseq sequencing techniques, we simulated 10,000 independent 190 

DNA sequences of 100bp each. For datasets corresponding to sequence capture methods, we created 191 

100 independent DNA sequences of 10kb each. Additionally, we explored a range of possible 192 

configurations between these two types of datasets (Table 2). With 4 models and 5 types of datasets, we 193 

obtained a total of 20 combinations of models and datasets, each with a million simulations. We used 194 

the program scrm (Staab et al., 2015), which simulates datasets by creating the ancestral recombination 195 

graph following the Wiuf and Hein method (1999). We used custom Rscripts (R Core Team, 2016) 196 

inspired by scripts from Shafer et al. (2015) to compute the simulations, and made them available in the 197 

supporting information. 198 

 199 

Summary statistics 200 

For each simulation we computed all summary statistics available in the program msABC 201 

(Pavlidis et al., 2010). The available statistics include diversity statistics (number of segregating sites and 202 

θ estimates) and summaries of the SFS (Tajima’s D and Fay and Wu’s H). These statistics were calculated 203 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 24, 2018. ; https://doi.org/10.1101/252650doi: bioRxiv preprint 

https://doi.org/10.1101/252650
http://creativecommons.org/licenses/by-nc/4.0/


10 

 

for each population and for the whole sample. The available statistics also include summaries of the 2d-204 

SFS: differentiation measures such as the pairwise FST and the number of private and shared 205 

polymorphisms. Finally the Thomson estimator of TMRCA and its variance were calculated for each 206 

population and for the whole sample. To test the effect that knowing haplotype information has on 207 

inference, the ABC analysis was performed twice on each model-dataset type combination. The first 208 

time, we summarized data using only the statistics mentioned above, which are calculated at the SNP 209 

level and therefore are available when the gametic phase of the diploid sequences is unknown. The 210 

second inference was performed on the same dataset, but additional statistics Zns (Kelly, 1997), dvk and 211 

dvh (Depaulis & Veuille, 1998) based on linkage information were used to summarize the data. These 212 

additional statistics are calculated at the haplotype level and so are only available in cases where the 213 

gametic phase of the diploid sequences is known. For each set of simulations, we computed the mean 214 

and variance of every statistic over all sequence markers in the dataset. As a result, 58 statistics were 215 

computed for datasets with known gametic phases (hereafter referred to as “phased”, or “hap.phase 216 

1”), and 43 statistics were computed for datasets with unknown gametic phases (hereafter referred to as 217 

“unphased”, or “hap.phase 0”). 218 

Using a high number of statistics to summarize genetic data has harmful effects on the quality of 219 

the ABC inference, a problem commonly referred to as the “curse of dimensionality” (Blum et al., 2013). 220 

We used the partial least squares (PLS) method implemented in ABCtoolbox (Wegmann et al., 2010) to 221 

reduce the number of statistics to 5-7 PLS components (see Supplemental methods for details). 222 

 223 

Pseudo-observed datasets 224 
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 For each set of 1M simulations, we created a corresponding set of 100 pseudo observed 225 

datasets (PODs), with parameters randomly chosen from the same priors as for the set of 1M 226 

simulations. By doing so we assume that priors are reliable and reflect the true, unknown distribution of 227 

the PODs. These were then summarized with the same summary statistics as their corresponding set of 228 

1M simulations. 229 

 230 

ABC estimation 231 

We performed the ABC estimation using each POD as the observed dataset to obtain parameter 232 

estimates. The standard ESTIMATE algorithm from the program ABCtoolbox (Wegmann et al., 2010) was 233 

used for all ABC computations to create posterior probabilities from the corresponding set of 1M 234 

simulations, with a post-sampling regression adjustment through ABC-GLM (Leuenberger & Wegmann, 235 

2010). We fixed the tolerance parameter to 10
-3

 , a compromise between having a tolerance threshold 236 

value as low as possible (Li & Jakobsson, 2012) and keeping an appropriate number of simulations to 237 

estimate the posterior from. 238 

 239 

Validation 240 

For each combination of model and type of dataset, we computed a measure of precision and accuracy 241 

called the relative prediction error (RPE), the ratio of the mean squared error over the variance of the 242 

prior, which follows equation (2): 243 

(2) � �

∑ �������
�
��

���
���

��	���
 �




�
  244 
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where ������ is the variance of the prior distribution and i is the number of observations. The RPE was 245 

computed on 1,000 PODs. The advantage of using RPE as a validation statistic is that it directly indicates 246 

the contribution of the genetic dataset to the estimation of the posterior. Another attractive feature of 247 

the RPE is that it allows comparisons between parameters, as it scales from 0 (precise estimate) to 1 and 248 

beyond (in the case of a consistent bias in estimation). 249 

As an additional measure of precision, the 95% highest posterior density interval (HDI) was 250 

calculated on a set of 100 PODs for each combination of model and dataset type. This measure is 251 

defined as the shortest continuous interval with an integrated posterior density of a certain value 252 

(Wegmann et al., 2010).  For each combination of model and dataset type we reported the 95% HDI 253 

coverage, i.e. the number of times (out of 100) the true parameter value fell within the 95% HDI, 254 

expecting values close to 95. 255 

 256 

Testing the effect of TEXP on parameter estimation 257 

 To test the effect of the time of expansion on the precision of the ABC estimation, we created 258 

100 PODs for each set of 1M simulations and 12 fixed values of logTEXP spanning the prior range. RPE and 259 

95%HDI were calculated from the results of each set of 100 PODs. 260 

 261 

Effect of sequencing effort allocation and sequencing error 262 

 The main challenge when developing genomic markers is managing sequencing and variant 263 

calling errors. Sequencing a large number of individuals might increase the precision of population 264 

genetics inference, but with a fixed sequencing budget, this comes at the cost of reduced individual 265 
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sequencing depth, which in turn can affect variant calling and estimation of allelic frequencies 266 

(Fumagalli, 2013). We explored this challenge focusing on model 2 and dataset type 2. We chose a 267 

realistic fixed sequencing effort and derived 3 fixed sampling strategies from it: 250 sampled individuals 268 

at a mean individual depth of 4, 100 individuals with depth 10, and 20 individuals with depth 50. We 269 

then incorporated three per-nucleotide sequencing error rates (0, 10
-2

, 10
-3

), and applied them to each 270 

category described above. The resulting 9 categories of PODs, as well as “perfect” datasets (no depth 271 

sampling and no error) were all simulated using the same 10 parameter combinations. Further details 272 

about the creation of “imperfect” PODs can be found in the supplemental methods. Once these 273 

imperfect PODs were created and summarized, ABC was performed to estimate their true parameter 274 

values. Two additional sets of 1M simulations needed to be created to match the number of individuals 275 

sampled per population: one with 100 diploids per population, and the second with 250. It the latter 276 

case, we only created 610,000 simulations because of computation time limitations. The same tolerance 277 

(0.001) as all other runs was used for the estimation. 278 

 279 

Comparing ABC and SFS estimation 280 

We simulated 10,000 independent DNA sequences of 100bp each for the 4 demographic models 10 281 

times. The resulting 40 datasets were input into both ABCtoolbox and fastsimcoal2, which uses the SFS 282 

to approximate a composite likelihood from a large number of simulations through a conditional 283 

maximization algorithm (see supplemental methods). We compared the results from the two methods 284 

using RPE, credible intervals and confidence intervals. 285 

 286 

Results 287 
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A total of 20 combinations of models and datasets were used as input for ABC simulations 288 

(Tables 1 and 2), resulting in a total of 20 million simulated datasets available for analysis, training 289 

simulation sets and PODs. Each set of 1M simulations was used in two runs of estimation: one including 290 

all summary statistics available in msABC, the other one excluding statistics based on linkage 291 

information, for a total of 40 ABC estimations. 292 

 293 

Effect of model complexity on the precision of parameter estimates 294 

In general, the ability to infer demographic history declined rapidly as model complexity 295 

increased. The simplest model (1), estimating only population sizes N1 and N2 and the log-transformed 296 

time of expansion TEXP, allowed the expansion event to be dated accurately. Models 2 and 3 each had 4 297 

parameters: model 2 included the number of founders N02 and model 3 allowed migration from 298 

population 1 to population 2 (m21). For both model 2 and 3, logTEXP was inferred with slightly lower 299 

precision than for model 1. Finally, scenarios corresponding to model 4, which had all 5 parameters, 300 

failed to be correctly inferred. 301 

Not all parameter estimates were sensitive to the addition of parameters in the models: the 302 

precision of contemporary population size estimates N1 and N2 were independent of model complexity. 303 

RPE values for N1, which was constant over generations, were mostly below 0.05 for the four models 304 

assessed (fig. 2). The 95% highest posterior density intervals ranged from 3,000 to 60,000. For N2, the 305 

contemporary population 2 size after exponential growth, 95% HDI intervals were about as wide as the 306 

prior range, indicating a failure to estimate this parameter in all four models (fig. 3). 307 

The expansion time TEXP was generally well estimated in model 1, which is the simplest 3-308 

parameter model (fig. 2) with no migration between demes and the number of founders set to 2. For 309 
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this model, the RPE was mostly below 0.1. The precision of logTEXP estimation was almost as high for the 310 

two 4-parameter models, where the number of founders N02 (model 2) is unknown and needs to be 311 

estimated, or where migration from population 1 to population 2 is likely (model 3). For these two 312 

models, the RPE is below 0.2. The ABC analysis of the 5-parameter model (model 4) was unable to 313 

recover the true TEXP value. 314 

Estimates of the number of founders of population 2 (N02) and migration rate from population 1 315 

to 2 (m21) were surprisingly imprecise in models of low complexity (model 2 and 3) and could not be 316 

recovered at all in model 4 (fig.2 and 3). 317 

 Models 1 to 4 all rely on population 2 growing exponentially from TEXP to the present time. We 318 

tested whether demographic parameters could be estimated more successfully in a model where 319 

population 2 goes through a single sudden population change instead of exponential growth. We 320 

created a new set of 1M simulations based on model 2 (where N02 is a varying parameter) and dataset 321 

type 1 (many short sequences) and a smaller prior range for TEXP (2-500 generations).  In the new model 322 

the size of population 2 changes from N02 to N2 at TEXP/10 and remains constant before and after TEXP/10. 323 

These modifications brought no improvements to any of the parameter estimates (Table S1). 324 

 325 

Do sequence length and linkage-related statistics improve the estimation?  326 

The addition of linkage statistics available in msABC brought no notable improvement in the RPE 327 

and 95% HDI of parameter estimates for all models (fig.2 and fig.3). It even seems to make the 328 

estimation of N1 less precise in some cases for model 1, 2 and 4, although this pattern is inconsistent 329 

across dataset types. ABC performance on models 3 and 4 seemed to be slightly more dependent on 330 
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sequence length, with the inference on large sequences marginally benefitting from haplotype 331 

information. 332 

 333 

Quality of parameter estimates across prior ranges 334 

  For each parameter, we visualized estimated values and 95% HDI of ABC results in relation to 335 

true parameter values to assess performance over the prior range. Results for the 3-parameter model 336 

(model 1) and dataset types 1 and 5 are shown in fig. 4a and 4b, respectively. Results for the complete 337 

set of models are available in supplemental fig. S1. Consistently across models, estimates of N2, N02, and 338 

m21 are largely inaccurate regardless of the true value, with HDI ranges as wide as the prior range. 339 

Conversely, N1 estimates are accurate in all models regardless of the true N1 value. Unlike N1, the values 340 

of TEXP have an impact on the precision of their respective estimates. Accuracy and precision of TEXP 341 

estimates for models 1 and 3 decrease with increasing true value. Interestingly, the opposite pattern is 342 

observed for model 2: more recent events are less precisely inferred than ancient ones (fig. S1, pp. 11-343 

20).  Results for model 4 show a “cross” pattern where most PODs’ logTEXP values are correctly estimated 344 

but some PODs with extreme logTEXP values show estimates at the opposite extreme (fig. S1, pp. 31-32). 345 

This pattern suggests a complex multivariate relationship between model parameters and statistics. 346 

 347 

Effect of the time of the expansion event on the estimation 348 

We tested whether older expansion events are generally more difficult to characterize than 349 

recent ones within the time range specified by the prior. To do this, we studied the effect of the true TEXP 350 

value on the precision of parameter estimates. We find different trends among the 4 models (fig. 5, S2, 351 
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and S3). The precision of inference on model 1 is higher at low TEXP values and decreases at logTEXP>4. 352 

Conversely, for model 2, older events are generally better inferred: estimates of TEXP and N02 increase in 353 

precision as TEXP increases, as shown by the RPE (fig. S2, p.2) and the 95% HDI (fig. S3, p.2). Model 3 354 

shows the best results for moderately recent expansion events (3 < logTEXP < 4), as shown by RPE and 355 

95% HDI of TEXP and m21 (fig.S2 and S3). Finally, results for model 4 show high values of RPE and 95% HDI 356 

for all parameters, with RPE values mostly above 0.5. 357 

 358 

Effect of sequencing effort allocation and sequencing error 359 

 Focusing on model 2 and datasets of 5,000 x 200bp sequences, we simulated sequencing and 360 

variant calling for three different sample size and depth combinations. The RPE of parameter estimates 361 

for 13 tested PODs is represented in fig. 6. Depth of sequencing (dp) has very little effect on the 362 

precision of estimates: only N1 and logTEXP have a marginally higher RPE when sequencing depth is 363 

simulated. Error rates affect N02 estimates at low depth (N=250, dp=250), as well as logTEXP estimates at 364 

low sample size (N=20, dp=50). The estimation is otherwise robust to introduced errors. For a given set 365 

of PODs (e.g. N=250, dp=4), the precision lost in a parameter estimate because of an error rate of 0.01 366 

(N02) is gained on another parameter (N1), reflecting the limitations of the model estimation process 367 

rather than the effect of sequencing error. However, the results suggest that choosing a larger sample 368 

size with a shallower individual sequencing depth improves estimation over other strategies, especially 369 

for the estimation of logTEXP. 370 

 371 

Comparing ABC with SFS estimation using an approximate composite likelihood 372 
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 Figures 7 and 8 illustrate the performance of ABC and approximate composite likelihood from 373 

the SFS for all models performed with datasets of 10,000 100-kb sequences. Both methods gave similar 374 

results in terms of precision of parameter estimates. The SFS-based method performed slightly better 375 

than ABC in the model with migration (model 3), but the precision of ABC estimates was superior for 376 

model 2 (fig.7). The approximate composite likelihood method generally provided narrower 95% 377 

confidence intervals (fig.8). 378 

 379 

Discussion 380 

We explored the ability of approximate Bayesian computation to characterize a recent event of 381 

spatial expansion from one population of constant size to a new and growing population, a model which 382 

can be broadly applied to studies of species range expansion, invasion biology, or reintroduction of 383 

endangered species. We found that regardless of model complexity, estimates of the size of the growing, 384 

newly founded population (N2) are poor. However this did not prevent successful estimation of other 385 

parameters (N1, logTEXP, and in restricted cases N02). Failure to estimate N2 does not come as a surprise: 386 

estimates of past changes in effective population size from one punctual sampling event commonly rely 387 

on linkage information between markers, a calculation not readily available in ABC packages (Beaumont, 388 

2003). Our result that models of higher complexity are harder to estimate was expected, but in the case 389 

of our expansion models, this trend leads surprisingly quickly to a complete failure to estimate any 390 

parameter, as soon as 5 parameters are involved. While expansion timing was precisely estimated in the 391 

3- and 4- parameter models, it could not be recovered in the 5-parameter model. ABC on model 2, the 4-392 

parameter model including the number of founders but no subsequent migration, successfully estimated 393 

all parameters (except N2) for old expansion events. In contrast, for model 3, the 4-parameter model 394 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 24, 2018. ; https://doi.org/10.1101/252650doi: bioRxiv preprint 

https://doi.org/10.1101/252650
http://creativecommons.org/licenses/by-nc/4.0/


19 

 

including migration between demes, estimations were more successful for recent events. These results 395 

highlight the potential importance of taking into account the timing of an expansion event when 396 

predicting estimation success for a given demographic model. The difficulty of estimating the time of a 397 

founding event with subsequent migration was also reported by Robinson et al. (2014); however, we 398 

show here that for a moderately recent event (10 to 100 generations), it is possible.  399 

 400 

Implications of including haplotype information 401 

Analyses based on unphased sequences exploring similar models to those used here have shown 402 

encouraging results (Robinson et al., 2014). However, no study to date has explicitly compared datasets 403 

of phased and unphased sequences using the same models and same amount of data. Here, we 404 

quantified the benefits of using phased haplotype sequences over single SNPs by including or leaving out 405 

LD-based and haplotype-level statistics at the data summarization step of the ABC inference. 406 

Surprisingly, haplotype information did not substantially improve the precision of parameter estimates, 407 

even when 10-kb sequences were used as markers. Li and Jakobsson (2012) explored ABC with similar 2-408 

population split models and a similar fixed population-wise per-generation recombination rate as in our 409 

study. When they tested different combinations of summary statistics, their results did not demonstrate 410 

any obvious superiority of LD-based statistics over SNP-based statistics. They concluded that the selected 411 

summary statistics should capture as many different aspects of the data as possible, with as little 412 

redundancy as possible. Potentially, phasing the data may not have improved inferences because the 413 

extent of linkage that the chosen statistics are sensitive to differs from the linkage actually present in the 414 

simulated data. Future work when dealing with phased data would require developing expectations of 415 

LD levels and creating or choosing statistics that cover the extent of LD likely to be present in the data. 416 
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One needs to be aware of the difficulties associated with the use of LD information. Firstly, ABC 417 

on phased data requires reasonable knowledge of recombination rates and variability across the 418 

genome. The recombination rate needs to be included as a parameter along with demographic 419 

parameters, or as a nuisance parameter with a hyper-prior. Secondly, simulating the coalescent with 420 

recombination is a complicated process and comes at high computational costs (McVean & Cardin, 421 

2005). With high recombination rates or very long sequences, coalescent simulations might take so long 422 

to run that one would instead use a more efficient inference method than ABC. Moreover, translating 423 

genome-wide observed data into a set of summary statistic values that are readily useable by ABC 424 

programs and comparable to simulated datasets can be a challenge. File input formats in most programs 425 

are currently not compatible with sequence information, and many summary statistics programs do not 426 

offer haplotype-level calculations.  Thirdly, when aligning reads to a fragmented and incomplete 427 

reference genome, as is often the case for non-model organisms, defining haplotypes can be tricky. One 428 

also needs to address problems of sequencing errors, paralogous sequences and imperfect mapping. 429 

Inevitable sequencing uncertainties will affect haplotype statistics more strongly than single-SNP 430 

diversity measures. Data processing errors and filters can severely bias inferences, to the extent of 431 

supporting the wrong demographic model, as revealed by Shafer et al. (2016). Finally, targeted sequence 432 

capture will result in thousands of markers of various lengths. Setting up simulations that correspond 433 

closely to an observed dataset requires approximating the distribution of sequence lengths, and this may 434 

also affect inferences, especially if variances of summary statistics are included at the data 435 

summarization step. Considering the difficulty of obtaining reliable haplotype information in non-model 436 

organisms, the potential difficulties of adapting the use of long sequences to currently available ABC 437 

programs, and computational time, our results tend to suggest that using SNP-level information from 438 

GBS-type data is preferable over targeted sequence capture. 439 
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 440 

Choosing summary statistics 441 

It is important to note that all the results presented here are only valid in the context of our 442 

choice of summary statistics. In the present study, we decided to use the first and second moment of all 443 

statistics available in msABC, and to reduce the dimensionality with a PLS transformation. Several 444 

previous publications have performed simulations either using the two first moments of summary 445 

statistics (Li & Jakobsson, 2012) or only using the mean (Shafer et al., 2015). To our knowledge, only 446 

Robinson et al. (2014) tested the use of 4 moments for summary statistics for models of divergence with 447 

admixture. They compared their results with those obtained using only the mean and found that the 448 

mean alone was sufficient. Although the two first moments may not be the most representative 449 

summaries for some statistics, adding higher-level moments will come at a computational cost. 450 

 451 

It is widely recognized that choosing a set of summary statistics is probably the most challenging 452 

step for ABC users. For instance, the optimal set of statistics for parameter estimation in a given model 453 

might differ from the optimal set of statistics to discriminate between demographic models. As 454 

insufficient summary statistics have detrimental effects on model selection (Robert et al., 2011), 455 

Fernhead and Prangle (2012) introduced “semi-automatic ABC”, which relies on an ABC pilot run and a 456 

subsequent linear regression to choose the most appropriate set of summary statistics. Similarly, 457 

ABCtoolbox 2.0 implements a statistical selection step based on the incremental assessment of inference 458 

power with the addition of summary statistics. However, documentation is lacking for this new feature 459 

of the program. These improvements constitute a promising step towards a more rigourous statistical 460 

framework for the automatic selection of ABC summary statistics. 461 

 462 
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Sequencing effort: go large and shallow! 463 

  We found that “imperfect” datasets created with a high number of individuals sequenced at a 464 

low individual depth seemed to perform consistently better for most parameters than datasets with 465 

fewer individuals and higher depth. This is consistent with Fumagalli (2013), who studied the same 466 

trade-offs on diversity statistics under various demographic settings. This result seems to hold even with 467 

simulations with moderate or high sequencing error rates, although this is difficult to conclude with 468 

confidence considering the large bootstrapped confidence intervals (fig.6). It is worth noting that if the 469 

error rate is not properly estimated during the genotype calling process, more errors will be present in 470 

the final dataset and it is likely that ABC results will be impacted for all sequencing strategies, especially 471 

those with low depth. As ABC summary statistics rely on the SFS and not on individual genotypes, we 472 

suggest that future ABC users sequence large sample sizes at low depth. In this case, estimating the SFS 473 

or derived statistics following methods such as described in Nielsen et al. (2012) and Fumagalli et al. 474 

(2014) has proven more successful than genotype calling in inferring the SFS. There is unfortunately no 475 

straightforward program or pipeline of compatible programs incorporating these methods into an ABC 476 

framework. One possibility is to summarize the SFS into quantiles and to use the latter as summary 477 

statistics in a classic ABC run. Such a process would need to be further tested. 478 

 479 

Comparing ABC to other methods 480 

We did not find large differences in the precision of parameter estimates between ABC and the 481 

SFS-based likelihood method implemented in fastsimcoal2. Shafer et al. (2015) found a similar result 482 

while comparing the performance of ABC with a SFS-based inference implemented in δaδi (Gutenkunst 483 

et al., 2009). They found that δaδi tends to overestimate the time of population split and bottleneck 484 

events, a trend not supported by our findings with fastsimcoal. In addition to parameter estimation, 485 
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Shafer et al. (2015) tested the performance of both methods for model selection and found ABC more 486 

accurate, especially in the case of bottleneck scenarios. 487 

ABC has proven moderately useful for demographic inference with long, genome-wide 488 

haplotypes but comparisons with alternative approaches are scarce. Notable examples include 489 

Nadachowska-Brzyska et al. (2013), who used ABC and PSMC in a complementary way. Robinson et al. 490 

(2014) compared their ABC results with an exact likelihood method developed by Lohse et al. (2011) and 491 

found that ABC resulted in more uncertainty, especially in model comparisons. As ABC performance with 492 

linkage information needs to be further explored, comparisons to emerging analytical methods based on 493 

whole genomes or long sequences such as MSMC (Schiffels & Durbin, 2014) or identity-by-descent 494 

haplotype sharing (Harris & Nielsen, 2013) will greatly help refine methods for demographic inference 495 

using data at a genomic scale. 496 

Theoretical improvements of ABC methods are emerging rapidly. Although the results presented 497 

here do not show that ABC benefits greatly from the use of deeper genomic datasets,  the versatility of 498 

ABC might be key to its useful applications in a wide variety of fields, even those progressing rapidly such 499 

as population genetics. Constant methodological improvement, however, requires regular updates to 500 

available ABC programs. 501 
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Figure and table captions 679 

 680 

Figure 1. Demographic models. a) Model 1: A three-parameter model of expansion featuring 681 

colonization of new population 2 by 2 diploid individuals from population 1 at time TEXP. Population 1 is 682 

of constant size N1, whereas population 2 grows exponentially to size N2, its size at present. b) Model 2: 683 

the number of founders of population 2 is a variable parameter. c) Model 3: a per-generation migration 684 

rate from population 1 to population 2 is added as a parameter. d) Model 4 includes all 5 parameters: 685 

N1, N2, TEXP, N02, and m21. 686 

 687 
 688 

Figure 2. Relative prediction error (RPE) calculated from the results of ABC analyses of 20 different 689 

combinations of demographic models and sampling designs (x-axis). For each combination, ABC was 690 

performed on simulated datasets summarized with statistics including linkage-based measures (hap. 691 

phase 1) and on the same set of simulations summarized with only SNP-based statistics (hap. phase 0). 692 

RPE values were calculated from the ABC estimation results of 1000 datasets with parameter values 693 

randomly drawn from their prior distributions. 694 

 695 
 696 

Figure 3. Width of the 95% highest posterior density intervals calculated from the results of ABC 697 

analyses of 20 different combinations of demographic models and sampling designs. Error bars 698 

represent standard errors (N=100 PODs). See caption of figure 2 for more details. 699 
 700 
 701 

Figure 4.  Accuracy of parameter estimates for model 1. Within a plot, each datapoint corresponds to 702 

the estimated value of the parameter (mode of the posterior) vs. the true parameter value for one POD. 703 

Results are shown for a total of 100 PODs. Error bars correspond to the 95% HDI around the estimate. a) 704 

Results with datasets of type 1 (10,000 sequences of 100bp). Top panel shows results on unphased 705 

datasets, bottom panel shows results for phased datasets. b) Results with datasets of type 5 (100 706 

sequences of 10,000bp). Top panel shows results on unphased datasets, bottom panel shows results for 707 

phased datasets. 708 

 709 

 710 

Figure 5. RPE of model parameters for different fixed values of TEXP. Results are shown for ABC runs with 711 

datasets of type 1 (10k sequences, 100-bp long). For a given parameter, results from different models 712 

are shown in the same plot window with different characters and colours. To see results for other 713 

model-dataset combinations as well as 95% HDI results, please see supporting information. 714 

 715 

Figure 6. RPE and bootstrapped confidence intervals of model 2 parameters under different sequencing 716 

strategies and per-nucleotide error rates. N corresponds to the number of diploid individuals sequenced, 717 

dp to the mean individual sequencing depth. “perf” corresponds to perfect datasets whereas “err0”, 718 

“err0.001” and “err0.01” correspond to datasets where the sequencing process was simulated, with 719 

depth sampling and errors introduced at rates 0, 0.001, and 0.01 substitutions per nucleotide 720 

respectively. 13 PODs were used for each treatment. 721 

 722 
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Figure 7. RPE calculated from 100 datasets for models 1 to 4 using two different inference methods: 723 

ABC, computed on SNP-level summary statistics, and approximate composite likelihood, computed from 724 

the SFS. In both cases, datasets had 10,000 sequences of 100bp genotyped in 20 diploid individuals. 725 

 726 

 727 

Figure 8. Width of the 95% HDI from ABC results, compared to 95% CI from the SFS inference method. 728 

For each of the four demographic models, the same 10 simulated datasets were used as pseudo-729 

observed datasets for both the ABC and the SFS runs. HDI and CI widths were calculated from 100 730 

bootstraps. Numbers correspond to the coverage of 95% CI (out of 10 PODs). PODs had 10,000 731 

sequences of 100bp genotyped in 20 diploid individuals. 732 

 733 

 734 

Table 1. Model parameters with their associated prior ranges 735 

estimated 

in models Parameter Symbol Prior range Unit 

- Mutation rate µ 0.000000009  -  

- recombination rate R 0.00000001  -  

1,2,3,4 population size 1 N1 U(10,000:100,000) ind. 

1,2,3,4 population size 2 N2 U(10,000:100,000) ind. 

1,2,3,4 time of expansion TEXP logU(2:10,000) gen 

2,4 initial population size 2 N02 U(2:1000) ind. 

3,4 migration rate from 1 to 2 m21 U(0.001:0.01)  -  

 736 

 737 

 738 

Table 2. Description of the 5 types of simulated datasets 739 

  

number of 

sequences 

sequence 

length 

(bp) 

number of 

diploid 

individuals 

1 10,000 100 20 

2 5,000 200 20 

3 1,000 1,000 20 

4 500 2,000 20 

5 100 10,000 20 
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