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339 

 340 

Figure 3. Functional Connectivity Findings: Comparing the Task-Rest FC Difference to the Task-Evoked FC.  The 341 
circle graphs indicate significant FC findings (p>0.03, FDR-corrected). Abbreviations of regions are based on the 342 
Brainnetome Atlas. A) Significant Task-Rest Difference Functional Connectivity. Positive correlations during the 343 
movie relative to rest are noted with red lines; negative correlations during the movie relative to rest are noted with 344 
blue lines.  B) Significant Task-Evoked Functional Connectivity. Positive correlations across two repeated viewings of 345 
the movie are denoted with red lines; negative correlations across two viewings of the movie are denoted with blue 346 
lines.   347 

 348 
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 349 

How much of the task-rest FC difference is explained by the task-evoked activity? 350 

 After linearly regressing the task-evoked FC activity from the task-rest FC difference using 351 

1) the Yeo et al. 17-network atlas (2011), 2) the previously obtained 24 spatial ICs, and 3) the 246-352 

region Brainnetome Atlas (Fan, et al., 2016), we determined that the mean percent variance 353 

explained by the task-evoked activity for the 17-network atlas was 15.86 ± 3.30%, 5.19 ± 1.25% 354 

for the ICA maps, and 3.55 ± 0.73% for the 246-region atlas (all values: mean ± SEM); the mean 355 

value was calculated across sessions. Taking the mean percent variance of these three methods 356 

yielded an overall value of 8.20 ± 1.40% across both sessions and methods. Thus, only about 3-357 

15% of the task-rest FC difference can be explained by the task-evoked activity. 358 

 359 

Discussion 360 

  We have shown that the difference between FC at rest and during a task, which contains 361 

an unknown mixture of task-evoked and spontaneous signals, cannot be explained by separating 362 

the task-evoked FC from the connectivity profile. The results lead to the following findings: 1) 363 

connectivity between resting-state and task states is mostly conserved; 2) during the resting-364 

state, non-visual sensory-related functional networks (e.g. somatomotor, auditory) were more 365 

coupled to visual networks than during the movie; 3) the task-evoked FC was predominantly 366 

characterized by positive and restricted correlations among regions within the visual system, and 367 

4) task-evoked FC accounted for only 3-15% of the FC difference between task and rest 368 

conditions. Therefore, the results suggest that the task-evoked FC and the spontaneous FC are 369 

neither linear nor additive, which was somewhat surprising to us.  370 

FC during a task and at rest is mostly conserved 371 

  Consistent with several prior studies (Cole, et al., 2014; Gratton, et al., 2016; Krienen, et 372 

al., 2014), we also identified a relatively high degree of similarity between the apparent FC during 373 

resting-state and the task using both seed-based and whole-brain methods (Pearson correlation 374 

values of 0.5-0.6, Fig. 2B). This is likely due to the presence of dominating spontaneous, ongoing 375 

sources in both conditions that strongly contribute to the signals correlated with one another in 376 

FC fMRI. Despite this similarity, however, we observed more widespread connectivity in the 377 

resting-state, as well as stronger within-visual coupling as compared to during the movie task.   378 

Apparent FC differences between rest and task are not explained by task-evoked activity 379 

As expected, task-evoked FC was only observed within task-related, visual regions. These 380 

areas appeared to be more restricted and less coupled to other regions than in the resting-state 381 

or during the task (Fig. 1). In contrast, the connectivity differences involving visual regions 382 

between the two conditions were predominantly negative and/or not significant. Instead, we 383 

found widespread negative differences between task-related networks and non-visual sensory 384 

areas (e.g. somatomotor, auditory cortices). In addition, thalamic regions, which have not often 385 

been incorporated in analyses of FC changes, were more anti-correlated with one another and 386 

more positively correlated to portions visual cortex during the movie task. Finally, positive 387 
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functional connectivity from the occipital cortex and fusiform gyrus to the inferior frontal 388 

junction (IFJ) resulted from the subtraction that also were not reproduced; functionally, the IFJ 389 

has been implicated in attentional circuits and in cognitive control (Baldauf and Desimone, 2014; 390 

Sundermann and Pfleidferer, 2012). Overall, these differences between rest and task FC were 391 

largely not represented in the task-evoked FC patterns. 392 

The fact that the task-evoked FC did not reveal the difference between the FC during the 393 

task and the FC at rest (i.e. spontaneous FC) suggests that correlations in ongoing, spontaneous 394 

activity are driving this difference. Therefore, it is likely that this intrinsic activity drives the 395 

coupling of task-evoked networks to other regions. 396 

Rest and task correlations negatively interact 397 

  The task-evoked FC explained less than 15% of the FC differences between the task and 398 

resting-state. Therefore, it seems that the task-evoked FC and spontaneous FC are neither 399 

independent nor linearly additive.  Beyond this, however, we would like to tease apart the nature 400 

of the rest-task interaction: is the task suppressing spontaneous activity or amplifying it? Our 401 

observations that the movie-watching task reduced the extent and strength of FC suggest that 402 

the task suppresses spontaneous activity. 403 

  He (2013) and several others (Bianciardi, et al., 2009; Churchland, et al., 2010; Monier, et 404 

al., 2003; Ponce-Alvarez, et al., 2013), also suggest a negative task-rest interaction. Initial 405 

evidence suggests that this negative interaction may help facilitate the task execution (Boly, et 406 

al., 2007; Deneux and Grinvald, 2017; Hesselmann, et al., 2008) (see Northoff, et al. (2010) and 407 

Ferezou and Deneux (2017) for review), or  may increase with task difficulty (Garrett, et al., 2014; 408 

Szostakiwskyj, et al., 2017). As such, it may bear functional significance.  409 

 The negative task-rest interaction may or may not hold true for all tasks. Passive versus 410 

active task engagement may not equally affect spontaneous signals (Broday-Divir, et al., 2017; 411 

Ferezou, et al., 2006; Otazu, et al., 2009). Crochet and Petersen (2006) found that active and 412 

conscious engagement in a task gave rise to more desynchronization of ongoing activity than 413 

passive or conscious states (e.g. in the anesthetized states). In our natural vision task, subjects 414 

actively engaged in the movie with free eye movement. Speculatively, cognitively engaging in the 415 

task itself, rather than simply having a visual experience, explains the nonlinear interaction 416 

between spontaneous and evoked functional connectivity. However, this remains to be tested.  417 

  Using natural vision, we noticed that the suppression of spontaneous correlations during 418 

the task was not consistent throughout the brain. The greatest magnitude of this change was 419 

within the components of the visual system; these regions exhibited the greatest dissimilarity 420 

between task-evoked FC and the apparent FC difference between the movie and resting-state 421 

conditions. These findings may be mediated simply by 1) reduced spontaneous activations in 422 

visual areas relative to other regions, or 2) by a reduced synchrony of cortical oscillations in task-423 

related regions. In EEG, alpha band oscillations are postulated to stem from the rhythmic 424 

fluctuations of inhibitory neurons, and engaging in certain tasks such as eye-opening, 425 

desynchronizes the alpha-band power (see Klimesch, et al. (2007) for review). Other reports 426 

relate resting-state inhibitory neurotransmitter concentrations, such as GABA 427 
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(Muthukumaraswamy, et al., 2009; Northoff, et al., 2007) or anesthetics thought to modulate 428 

GABA (Maandag, et al., 2007), to task-induced changes in specific regions. Here, we cannot 429 

disentangle whether location differences in spontaneous FC suppression are mediated by region-430 

specific reduced activations or de-coupling of neuronal oscillations, but this is certainly an area 431 

for future investigation.  432 

Methodological Considerations 433 

 Indeed, naturalistic stimuli (Hasson, et al., 2004) are of particular significance in studies 434 

of rest-task interaction. Natural stimuli provide a rich behavioral context reflective of the 435 

activities of daily life (e.g. viewing natural scenes with sharp, moving edges or engaging in 436 

conversation) that unfold over relatively long time scales (Hasson, et al., 2010). It has 437 

experimentally been proven that neural responses to naturalistic stimuli are reliable and 438 

widespread (Hasson, et al., 2010; Jääskeläinen, et al., 2008; McMahon, et al., 2015; Mukamel, et 439 

al., 2005), and the connectivity patterns that appear during naturalistic activations better reflect 440 

spontaneously emerging patterns in the resting-state as compared to controlled, artificially 441 

designed stimuli (Wilf, et al., 2017). Our group has shown that by spatiotemporally scrambling 442 

the natural stimulus, widely distributed and highly reproducible fMRI responses could not be 443 

reproduced without the high-level natural content of the movie; low-level visual features  alone 444 

significantly reduced the degree and extent of reproducible responses (Lu, et al., 2016). 445 

Therefore, naturalistic visual stimuli provide rich task-evoked information about neural dynamics 446 

as compared to more traditional psychophysical stimuli (e.g. Gabor filters).  447 

Optimally isolating the task-evoked activity is important for studies of rest-task 448 

interaction.  One way of reducing the variability present in fMRI signals is through temporal 449 

averaging; however, a very large number of subjects and/or sessions is needed to achieve 450 

appropriate statistical power. Even with a great number samples, the efficacy of simple averaging 451 

in removing spontaneous activity has limitations (Henriksson, et al., 2015; Kim, et al., 2017).  An 452 

earlier approach uses the general linear model (GLM) to construct a trial-to-trial series of 453 

activation parameters (β) for each voxel that can be cross-correlated (Mennes, et al., 2013; 454 

Rissman, et al., 2004); however, whether this method more effectively removes intrinsic activity 455 

than inter-session and inter-subject approaches has yet to be shown. Finally, between inter-456 

session (i.e. “intra-subject”) and inter-subject approaches, inter-session correlations have shown 457 

enhanced reproducibility. (Henriksson, et al., 2015; Lu, et al., 2016). 458 

  Inter-session and inter-subject correlation methods have been understudied in 459 

neuroimaging, and new studies using these methods provide an additional vantage point from 460 

which we may learn about the brain. In this work, our focus was on whether the difference 461 

between the resting-state and the mixed FC observed during the task reflected the task-evoked 462 

FC. It did not, but we shed light on a suppression of correlations of spontaneous activity that 463 

occurs to facilitate a task. However, a consensus regarding this phenomenon still needs to be 464 

formed for additional researchers to fully disentangle its origins and purpose. 465 
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 473 

Figure S1. ICA Components.  Maps obtained using group-level spatial ICA. The thresholding for 474 

display purposes only was determined according to the voxel-wise posterior probability equal to 475 

0.6, per a Gaussian Mixture Model; ICA maps used in any calculations were not thresholded. 476 

Abbreviations from top-to-bottom, left-to-right are as follows: Visual Network 1 (Vis1), Visual 477 
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Network 2 (Vis2), dorsal Default Mode Network (dDMN), Auditory Network 1, Right Executive 478 

Control Network (RECN), Left Executive Control Network (LECN), Language Network (Lang), 479 

inferior Frontal Network (inFr), Visual-Spatial Network (ViSp), Basal Ganglia (BaGa), Cingulate 480 

Network (Cing), Visual Network 3 (Vis3), Lateral Frontal Network (LFro),Visual Network 4 (Vis4), 481 

Precuneus (PrCu), Cerebellum Network 1 (Cer1), ventral Default Mode Network (vDMN), 482 

Auditory Network 2 (Aud2), Visual Network 5 (Vis5), Somatosensory Network (Soma), Motor 483 

Network (Moto), Executive Control Network 1 (ECN1), Executive Control Network 2 (ECN2), and 484 

Cerebellum Network 2 (Cer2).  485 

 486 

Figure S2. Resting-state Inter-session Correlations.  By showing that there are no significant 487 

voxels correlated to the seed voxel across two sessions of the same stimulus, we demonstrate 488 

the efficacy of inter-session correlations in isolating task-evoked activity. The seed voxels were 489 

the same as in Fig. 1 and were derived from the precuneal (left), B) primary visual (left middle), 490 

C) high visual (right middle), and D) motor cortices (right), respectively. The color bar indicates z-491 

transformed cross correlation values. 492 
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