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Abstract 

The article presents a novel stochastic mathematical model of mitosis in heterogeneous 

(multiple-phenotype), age-dependent cell populations. The developed computational 

techniques involve flexible use of differentiation tree diagrams. The applicability of the model 

is discussed in the context of the Haeckelian (biogenetic) paradigm. In particular, the article 

puts forward the conjecture of generality of Haeckel’s recapitulation law. The conjecture is 

briefly collated against relevant scientific evidence and elaborated for the specific case of 

evolving/mutable cell phenotypes as considered by the model.  The feasibility, basic regimes 

and the convenience of the model are tested on examples and experimental data, and the 

corresponding open source simulation software is described and demonstrated. 
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1. Introduction  

Explosive growth of information on molecular components and mechanisms of life constitutes 

one of the hallmarks of scientific modernity. The main contributors to this process are certainly 

the biochemistry and biomicroscopy R&D. This study however, only cherry picks some of the 

major findings of mainstream cell biology to devise the very minimalist computational model 

of cell proliferation dynamics. The approach is essentially phenomenological and 

complemented by a corresponding view of evolutionary theory. 

The subject of mathematical modelling of cell phenotype dynamics is recurrent in the literature. 

One of the early but in-depth examples of nonlinear Ordinary Differential Equations (ODE) 

systems applications to immunology is the work of Perelson et al (1997), which actually treats 
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coupled rate equations for the mixture of different cellular and molecular components in blood. 

More recently, the ODE approach was applied, in particular, to model abnormal regimes in 

haematopoiesis with multiple phenotypes (Colijn et al 2005a, Colijn et al 2005b), and 

competition-mediated proliferation in two-phenotype cell culture (Bove et al 2017). It is well-

known, however, that the right-hand sides of such ODEs are the subject of meticulous designs 

bordering with art, as ODEs, being a general method, are not specially suited for cell 

proliferation modelling. Among stochastic techniques it is worth mentioning the version of the 

two-phenotype stochastic model of concurrent haematopoiesis (Roeder et al 2002) extended 

for the case of several phenotypes (Glauche 2007) and the multi-phenotype model of bone 

marrow featured by cellular automaton-style considerations (Bessonov et al 2008), the latter 

being the closest to the presented approach. Another stochastic cellular automaton model 

(Sundstrom et al 2016) studied tumorigenesis with multiple phenotypes by taking into account 

2D and 3D spatial effects and limitations, but not cell differentiation. The work (Lu et al 2007) 

analysed the mitosis in two-phenotype systems on the basis of the algorithm by Gillespie 

(1984), also without cell differentiation. In the work (Jones 2010), the Bayesian age-dependent 

branching process modelling was applied to simulate three-phenotype dynamics with 

differentiation; this method is conceptually quite complex but it does not work with an arbitrary 

lineage formation tree.  An integrated PDE approach was used to devise the two-phenotype 

model of kidney cell proliferation in a mouse embryo to fit the Optical Projection Tomography 

(OPT) data (Lefevre et al 2013), and the two-phenotype model of hematopoiesis (Adimy et al 

2005), but these techniques are also hard to generalise for the case of many phenotypes. The 

same is true for the diverse set of models reviewed in the work on colonic crypt and colorectal 

cancer modelling (Johnston 2008). 

Summarising this brief overview of computational methods, one can notice that neither of the 

existing modelling approaches develops methodology and software specifically for the mitotic 

multiple-phenotype systems which is both intelligible and convenient for biologists as well as 

general and flexible enough to cover cross-physiology subjects. This issue is addressed in the 

modelling chapter, but first the article elaborates on the nature of the mentioned generality.  

Namely, the article argues in favour of the abstract biogenetic (Haeckelian) law for the living 

(replication-based, evo-devo) systems. The “primordial rock” hypothesis is put forward to 

emphasize the common evolutionary origin of mitotic cell phenotypes and the general nature 

of what is vaguely recognized today as “epigenetic determinism” (Waggoner et al 2015), but 

likely can be attributed to the above mentioned biogenetic recapitulation. 

The next and major part of the study is then devoted to the stochastic, differentiation tree-based 

mathematical model of heterogeneous mitotic proliferation. The model involves only a handful 

of essential phenotype parameters, those being cell cycle duration, probabilities of 

differentiation and exit (which may include apoptosis), and the generation counting threshold. 

The last property might seem unusual but it actually isn’t. For example, an index identical to 

the generation counting threshold was introduced in the theoretical model (Jones 2010) 

describing brain cell generation; there, it was explained as “the number of cell cycles [the 

progenitor] cell must go through before it is competent to produce oligodendrocyte”. In the 

modelling work on mitosis with cell differentiation (Hasenauer 2013), one of the presumptions 

was that “in most multicellular organisms the mother cell divides symmetrically into two 

daughter cells which inherit the age of the mother cell”; this “age knowledge” property of cells 

is also synonymic to a generation counting ability. The biochemical evidence that cells are 

capable of counting numbers of divisions and utilising this information in decision making, has 

been recently discovered (Li et al 2016, Bernitz et al 2016).  
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The article is concluded by examining properties and outcomes of the computational model. 

The explanatory/predictive capability of the model is confirmed on several test cases, including 

applications to real-world data on renal development in mice (Lefevre et al 2013) and 

proliferation of the MDCK cell line in culture (Bove et al 2017). 

 

2. The Paradigm 

As mentioned above, advances in microscopy and in the understanding of genetics in terms of 

molecular components became defining factors for studying cells at mesoscopic level. In 

corresponding considerations in the literature, the notions of a cell’s functional “mission” and 

distinct phenotype are central. They reflect not only the existential meaning of physiological 

purpose, but also common origins and relational directionality - it isn’t possible to get a 

phenotype from anything else except other (precursor, progenitor, predecessor, parent) 

phenotypes. It is worth mentioning that the term “phenotype” itself was used in the first place 

in order to describe physical traits and the morphological/functional sameness of macroscopic 

animals and plants (albeit later being agglomerations of distinct organs that are in their turn 

agglomerations of cells). In macroscopic (species)-level biology the term “phenotype” was 

associated with a whole package of notions dictated by evolutionary principles - mutations, 

feature heritability, intra- and interspecific competition, “selection pressure”, as well as the 

well-known phylogenetic evolutionary tree diagrams. Another powerful albeit less frequently 

mentioned paradigm is Haeckel’s biogenetic law of embryonic development -” Ontogeny 

recapitulates Phylogeny”; its basis and meaning have remained a subject of intense theoretical 

debate for a significant period of time (e.g. (Laubichler et al 2009). Its modern formulation in 

zoology is the following: “The definite form of an animal develops on the top of the preexisting 

embryonic form of its ancestors” (Sharov 2014). Note that this formulation also allows 

recursion, as it implies some sort of directed (in general, one-to-many) relation between 

ancestral and descendant forms. The general formulation seems even simpler, being almost 

tautological: “The current form develops on the top of the prototype form (of its ancestor)”. 

This is illustrated schematically in Figure 1. It is interesting to note that in recent literature, this 

“develop” keyword becomes more and more associated with the literal, “epigenetic” view of 

development as a consecutive, ordered activation (expression) of certain groups of genes 

(Waggoner et al 2015).  The role of genes in recapitulation was also discussed in an earlier 

work by Ohno (1995). One can conclude, therefore, that any such concerted activation of genes 

may be (or rather cannot be anything else but) a part of, or an equivalent to “sliding along the 

branch” of a certain lineage tree of ancestral prototypes.  

 

  

Figure 1 Formal representation of biogenetic progression from form E to form F. The “form” (e.g. phenotype) is 

considered to be a set of well-defined sub-forms. The sets (E\F) and (F\E) denote some definite sub-forms 

developed in E but not in F, and vice versa. In other words, in order to progress to form F having form E as a 

base, one needs to lose some old and acquire some new sub-forms. 
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Despite many of the evo-devo ideas eventually becoming mainstream in the sub-cellular level 

literature, the relational tree diagrams for mammal cell phenotypes had not been studied in 

great detail until very recently (with the notable exception of haematopoiesis), and the cellular 

analogue to the biogenetic recapitulation law is missing completely. It is interesting to note that 

in the work (Jones 2010), the mathematical formalism developed to model branching processes 

in molecular evolution (similar to the ones used in the BEAST (Bouckaert et al 2014) and 

MrBayes (Huelsenbeck et al 2001) programs) but also applicable for phylogenetic 

macroevolution, was adapted to describe progenitor cells’ mitosis and differentiation in the 

brain, - but in this case the branching tree of cell types was not referred to as “phylogenetic”.  

The following statements, albeit hypothetical, are aimed at easing this disparity and hopefully 

bringing the subject of cellular recapitulation beyond semantics. They also try to elucidate the 

similarity between cells in terms of the common origin (and common place of origin) of cellular 

phenotypes.  

1. Haeckel’s recapitulation law is the general horizontal principle for all hierarchical levels 

of life driven by heritability and variation/selection (molecular, organelle, cell, organ, 

organism).  

2. For example, the well-known haematopoietic lineage tree based on hematopoietic stem 

cells (HSCs, Metcalf 2007) is “phylogenetic” in the Haeckelian sense. Haematopoiesis 

recapitulates the “embryonic” stages of evolution of mitotic pre-multicellular (and partly 

pre-eukaryotic) phenotypes in the succession of ancestral liquid organs that eventually 

became blood. This is the specific (albeit the most ancient) case of animal organogenesis.  

3. The cellular “evolution” mentioned in (2) once took place in oceanic, shallow-water, 

calcium-rich geological structures (“primordial rock”, a precursor to coral reefs). The 

environmental pressure caused by the reefs’ different climatic niches has led to the 

accumulation of corresponding cell differentiation potentials in their genomes. The 

internal locus of the source of blood-forming and of other stem cells in the animal body 

(bone marrow, Sousa et al 2013) points at such origin directly. The similarity between 

the structures of bone and coral is a known fact (Bronzino 2006). It is also known that 

both calcium dependent bone-forming osteoblasts and bone-resorbing osteoclasts derive 

straight from bone marrow cells (Heinemann et al 2011). Yet another hint is calcium 

signalling, which is ubiquitous in the regulation of such a number of cellular functions, 

that it may be considered a defining feature of cellular life per se.  

4. From this perspective, one can consider the “primordial broth” within that “primordial 

rock” as the ancestral organ of blood and lymph, and the rock itself as an ancestor of bone 

tissue. 

5. Any cellular process involving proliferation, migration, differentiation and structure 

formation (e.g. embryo development, tissue regeneration, immune response, 

inflammation, cancer, bacterial infection, angiogenesis, etc.), “plays back” the 

corresponding pre-recorded elementary steps (patterns) of biotic evolution. In particular, 

biotic recapitulation is the only way of building a functional supra-cellular level biology 

(tissue/organ/organism). 

6. Cancer is a specific case of organogenesis, implementing pre-recorded phenotype 

progression routes that are, arguably, either archaic, or concomitant (parasitic) to 

mainstream lineage formation. In viable organisms, these biogenetic routes are either 

blocked or have negligible probability, but may be initiated by mutation.  

7. During development via Haeckelian recapitulation, cell populations are controlled by 

generation counting. Namely, the precursor phenotype cells count the number of 

divisions during mitosis and, after reaching some threshold number, progress to the (one 
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of the) next allowed phenotype(s). It is reasonable to assume that such generation-

counting control is behind organ scaling and allometry phenomena (Shingleton 2010). 

The evidence of as well as the prospective mechanisms and biochemical basis for cell 

division counting have recently been discovered (Li et al 2016, Bernitz et al 2016). In 

particular, in algal cell cultures, this counting mechanism is associated with a specific 

protein CDKG1 (Li et al 2016); the amount of this protein in the cell is reduced after each 

division. 

 

3. Computational model 

The computational recipes listed below do not essentially rely upon any of the potentially 

questionable aspects of the “paradigm” presented above, except for possibly the generation 

counting principle. However, the latter can be considered from a purely pragmatic viewpoint 

as well, by simply treating generation counting thresholds as adjustment parameters of the 

model. On the other hand, taking “The Paradigm” into account can be beneficial for further 

progress in understanding the evolutionary “logic” behind every concrete case of 

recapitulation-driven proliferation.  

The main components and principles of the computational model are: 

- Distinct cell phenotypes capable of differentiating from one to another. 

- Cell cycle. In the code, the corresponding parameters are cell cycle durations Tc; 

they are different for different phenotypes. 

- Stochasticity. This is essentially stochastic technique. 

- Differentiation lineage trees, implemented as directional graphs in the code, with 

every node representing a phenotype, and every edge representing the probability 

of differentiation from the current to the next allowed phenotype. 

- Generation-iterating method (“God’s algorithm”, see below). 

- Generation-counting and exit probability control. 

Among these principles, only the last two need further specification.  

The generation-iterating method is recruited as a shortcut to circumvent the difficulty of 

iterating the time-dependent state variables in stochastic modelling. If one chooses some fixed 

t as a time increment driving physiological dynamics, all results become dependent on the 

value of t. Using rate-dependent methods such as the Gillespie algorithm (Gillespie 1984) to 

overcome this adds significant mathematical and computational complexities. In the present 

study, the problem is avoided by using the observation, that in some cases, having a set of (g)-

generation cells is fully sufficient for deducing the set of next (g+1) generation cells. In the 

simple implementation presented in this article, for every newly created (g+1)-generation cell, 

the following parameters are immediately defined: 

1) If it exits the pool or not, instead of continuing (according to exit probability ) 

2) The phenotype - either the parent’s, or the next (depending on the generation count 

threshold) 

3) Generation count - either the parent’s+1, or 1 (ditto) 

4) Birth time - equals the end of the life time of the parent cell 

5) End of life time - (birth time + randomized Tc, depending on the phenotype)  
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Figure 2 “God’s algorithm” in action. Horizontal segments represent cells of different generations, 

correspondingly colour-coded. When computing the time dependencies of cell numbers, one needs to count the 

number of segment intersections (‘hits’) made by the sampling t-lines (dashed black vertical lines)  

During simulations, properties 1, 2, 3 and 5 are stochastically chosen for every new cell, 

whereas properties 2, 3, 4 and 5 are actually kept in computer memory. The term “God’s 

algorithm” reflects the usage of property 5, which implies “knowing the future” of a cell’s fate 

at the time of its birth. Herewith, the cell lifetime values are randomized by sampling from a 

Gaussian distribution centred at Tc with standard deviation Tc (the latter is another phenotype-

specific parameter of the model). Obviously, in order to estimate the number of cells, N(t), as 

a function of time t from such simulations, one needs to count those cells for which time t falls 

within their lifespan (Figure 2). The drawback of the algorithm is that in order to do this, one 

needs to keep a complete record of the history of all cells in memory. Fortunately, this is not 

very problematic, since as was shown for the simplest case above, every cell is represented by 

only 4 numbers (type, generation and the birth and end of life times). Its advantage is that it 

allows replacing iteration by time by the iteration of generations. 

The influence of exit probability  on cell proliferation dynamics can be illustrated by the 

following considerations. Imagine N0  cells of the same type, starting their divisions at time t = 

t0 with cell cycle duration Tc. If  has the meaning of the fraction of cells leaving the pool after 

each division, then the expected number of cells as a function of time, N(t), is obviously 

cT

tt

NtN

0

)]1(2[)( 0



 
        (1) 

Formulae similar to (1) have been published in the literature (e.g. (Lefevre et al 2013, 

Tomlinson et al 1995). It is worth noting that in expression (1), the two essential parameters Tc 

and  are competing, since their effects are, in the general sense, multiplicative. It is therefore 

important to have reasonable estimates of the cell cycle durations Tc when specifying the 

model. These can in many cases may be provided by microscopy (e.g. Bove et al 2017, Lefevre 

et al 2013). 
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Figure 3 Sample phenotype progression probability dependencies as a function of local generation count, 

ranging from threshold-like transitions (blue) to smooth ones (black)  

The last feature of the framework is the utilisation of generation counting thresholds. This is 

also straightforward. Certainly, having the proper number of intermediate proliferating 

phenotypes is critical, as their influence is amplified exponentially via mitosis. This is 

illustrated in Figure 3, where the corresponding cell numbers at threshold level are shown to 

be Tg

cellsN 2 , where gT is the number of divisions “allocated” for the phenotype. In the 

implementation, not only the generation threshold gT is taken into account, but also the degree 

of its dispersion gT, which represents the degree of stochasticity in the model’s decision-

making. Both parameters are fed into a standard sigmoid expression to get the corresponding 

probability of progression to the next allowed phenotype. Thus, for a g-th generation cell, this 

differentiation probability Pdiff(g) reads as 

 

















T

T

diff

g

gg
gP

exp1

1
)(         (2) 

It is quite obvious, that any change in the “flow of cell numbers” along the branches of the 

differentiation tree diagram will eventually lead to the formation of cell populations of differing 

size (as represented by final phenotypes), and therefore will cause effects such as organ scaling 

and allometry in embryo development. In the absence of exit, these “flows” of cell numbers 

from a given node are controlled by the relative weights of the outstretching branches (which 

define the corresponding probabilities of choosing this or that branch), and by the parameters 

of generation count thresholding in (2) responsible for the total number of cells of that node’s 

phenotype.  

Finalizing this section, it is relevant to note that the model is neither limited by the specifically 

chosen proliferation method (iterating generations), nor by the absence of the dependence of 

cell phenotype parameters on the presence of cells of other types (“no competition” 

presumption).  
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The numerous and sophisticated models of cell interaction and competition have already been 

known for a relatively long time (e.g. Perelson et al 1997). Such improvements and extensions 

of the technique are possible and can be investigated in the future. 

 

4. Model implementation 

The model was coded in Matlab (Mathworks, Inc.). To represent and use differentiation lineage 

trees, digraph and related graph functions were used. A simple, intuitive GUI is provided. The 

computational performance of the model is satisfactory for simple cases involving about 104 

cells. However, when the total number of cells exceeds 106, the algorithm slows down 

noticeably. No attempt has been made to improve performance via parallelising, although it 

seems possible.  

The software is available at https://github.com/yalexand/CellPopSim. 

 

5. Model properties, results and conclusions 

Typical dynamic regimes can be examined with simple linear succession graphs, containing 

just 2 to 4 consecutive nodes. As to the basic properties, the model demonstrated the expected 

behaviour. Simulations usually start from a single initial proliferating cell of an initial 

phenotype. In the examples drawn below, parameter Tc is set for all phenotypes within a range 

of 15-25  2h, which is typical for eukaryotes’ mitosis.  

 

Figure 4 Sample linear three-phenotype succession C→D→E showing two types of exponential dynamics for 

final phenotype E: “disappearance” at exit probability =0.65 (left), and unrestricted growth at =0.35 (right) 

Figure 4 presents an example of а linear, three-phenotype succession showing two types of 

exponential dynamics for the final phenotype E: “disappearance” at exit probability >1/2 

(Figure 4, left) and unrestricted growth at <1/2 (right). 
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Figure 5 Sample linear three-phenotype succession C→D→E showing the two types of “stable state” for final 

phenotype E: “dynamic” at exit probability =0.5 (left), and genuine quiescence at =0, Tc= (right) 

The Figure 5 compares two ways of reaching equilibrium for the final phenotype. In the first, 

mitosis continues indefinitely with =1/2 but also with gT= (exit-mediated equilibrium). The 

second is establishing genuine quiescence at =0, Tc=, in which case gT becomes irrelevant 

(Figure 5 left and right, correspondingly). The higher level of the plateau on the right plot is 

due to the =0 setting, which preserves all created E-cells.  

 

Figure 6 Sample linear four-phenotype succession C→D→E→F showing unhindered exponential growth (left), 

and delayed “=1/2 carrier”-mediated growth (right)  

The next example presents the four-phenotype linear succession which keeps overall 

exponential growth (Figure 6, left), and the same system with a higher (gT=10 vs. 3 for the plot 

on the right) generation count threshold and an =1/2 setting for the phenotype D (vs. =0 for 

the plot on the right). The =1/2 setting removes exactly half of the newly born phenotype D 

cells during proliferation. Altogether these settings for phenotype D allow delaying the 

exponential growth of phenotype F for about 4 days (Figure 6, right). Therefore, such an 

intermediate phenotype with =1/2 and higher gT can serve as a “carrier to the future” for 

subsequent phenotypes, providing the needed flexibility, e.g. in the case of delayed 

organogenesis.   
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Figure 7 Sample forked five-phenotype proliferation “outbursts”. The terminating nodes E, G and A are all 

subjected to excitation probability =0.8, which provides fast decay (left). On the graph to the right, the 

differentiation probabilities for nodes G and A (edges F→G and F→A) are swapped, resulting in their curves 

changing places, whereas the E node was made the quiescent “single survivor” at Tc= 

 

The simple, six-phenotype forked proliferation “outburst” is shown in Figure 7. On the graph 

to the left, the terminating nodes (final phenotypes) E, G and A are all “dumped” to decay by 

setting =0.8. On the graph to the right, the differentiation probabilities for nodes G and A 

(edges F→G and F→A) are swapped, resulting in their curves changing places, whereas the E 

node was made the quiescent “single survivor” by the setting Tc = . The bar plots display the 

relative number of cells of different types in the studied time window, which makes sense for 

the case of “outburst”.  
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Figure 8 Sample forked seven-phenotype proliferation progressing from “outbursts” (left) to undulations (right) 

after the addition of a self-renewal property to node F. Similarly to the example shown in Figure 6, terminating 

nodes E, G, A and B are all subjected to excitation probability =0.8  

Another example presents the phenomenon of undulations initiated in the seven-phenotype 

“outburst”-type branching system (Figure 8, left) when one of the branching nodes is assigned 

a self-renewing property whereas all other parameters stay the same (Figure 8, right). The 

undulations develop due to the interplay between cell cycle duration Tc and the generation-

counting threshold gT, which demands the periodic reset of the generation counter to g=1 for 

the self-renewing phenotype. Certainly, if gT<1 and gT<<gT, the only two generations allowed 

for this phenotype are either g=1 or g=2; this is the way to effectively “undo” generation 

counting. It is hard to say if a self-renewing node with gT >1 (as in Figure 8, right) can represent 

any biological reality. Nevertheless, as this explanation shows, such hypothetical effects of 

“self-renewal undulations” at gT >1 are intrinsic to the model. On the other hand, the 

involvement of many unrelated proliferating sources will cause undulation smearing, in which 

case undulations will not be noticeable in the experimental data. 
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Figure 9 Sample forked seven-phenotype proliferation progressing from a “stable state” where the terminating 

nodes E, G, A and B are all subjected to excitation probability =0.5 (left) to decaying “outbursts” at =0.8 (right). 

In both cases, the undulations in F and D cell numbers are caused by de-differentiation introduced by edge F→D  

 Another example of undulations, this time caused by introducing the de-differentiation edge, 

is shown in Figure 9. In this case, the generation counting was “undone” for both involved 

nodes as described above, by setting gT<1 and gT<<gT, so that the period of such undulations 

is defined only by the cell cycle duration values, Tc, of these nodes. Undulations also develop 

when terminating nodes are involved (data not shown). It is relevant to note that the undulations 

of cell numbers have been reported in haematopoiesis data and studied in corresponding models 

(Colijn et al 2005a, Colijn et al 2005b). 
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Figure 10 Application of the model to renal organogenesis by fitting OPT microscopy data published by Lefevre 

et al (2013). The data are used with the authors’ permission. Full details in Section 5   
 

The next example (Figure 10) represents an attempt to fit the experimental OPT data reported 

in the work on mouse kidney development by Lefevre et al (2013). This study reports a very 

steep near-exponential growth of the mass of the precursor cap mesenchyme (CM) cells at 

about 2 weeks past conception, before differentiation to the final renal ventricular (RV) cell 

type. In the article, the volume of the CM cells was reported in voxels, with 1 voxel = 4.17µm3. 

Assuming a cell radius of a6µm, the estimate for cell volume is (4/3a3)/4.17217[vox], and 

therefore Data[vox]/217 should be close to CM cell numbers. The first “ini” phenotype is used 

as an adjustment. The article reports two CM sub-phenotypes at around 2dpc with Tc =19.6h 

and Tc =15h and comparable amounts, which was implemented in the model. The “slow CM” 

is then used as a “carrier” precursor to the point where the fast growth of CM cells starts (“final 

CM”).  The resulting adjustment for this phenotype was done for the “no apoptosis” case, =0, 

as suggested in the article, and Tc =18h. The RV phenotype’s settings included =0 and Tc =. 

As shown in Figure 10, the model allows detecting the appearance of the final RV phenotype 

at a very early stage of renal development and in a quantitative manner.  
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Figure 11 Fitting of the time dependence of the number of proliferating MDCK cells published in Bove 2017 to 

expression (1), performed using the Matlab fminsearch function. Note the log Y scale. The data in Fig 11, 12 are 

used with the authors’ permission 

 

Figure 12 Adjustment of the time dependence of the number of proliferating MDCK cells published in Bove 2017 

using a three-stage proliferation model 

The last example considered in the study is the volume-limited proliferation of the 

immortalized MDCK cell line in a Petri dish, reported in a study of homeostasis with cell 

competition (Bove et al 2017). The competing phenotype was represented by the same MDCK 

cells, but lacking the polarity protein scribble. The present study, however, focuses on the basic 

(wild type) MDCKwt cells only (the green curve in Figure 2f of the article). The MDCKwt cell 

numbers, as a function of time (Figures 11 and 12) and cell cycle duration Tc =18h were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 29, 2018. ; https://doi.org/10.1101/253203doi: bioRxiv preprint 

https://doi.org/10.1101/253203
http://creativecommons.org/licenses/by-nc-nd/4.0/


measured with very high precision. As shown in the Figure 11, first, the approximately 

exponential middle part of the dependency of cell number on time is chosen in order to fit it to 

expression (1); fitting was performed with the cell cycle duration Tc fixed at Tc =18h. This 

allowed estimating the apoptosis probability, 0.056, and the starting cell number, N0. Next, 

these parameters were used to define the “seed” and the middle “mitotic” phenotype in the 

simple chain proliferation model with three “phenotypes” termed “seed”, “mitotic” and 

“inhibited”, respectively (Figure 12). It turns out, that in order to find a good adjustment for 

the whole dataset, it is enough to set the apoptosis rate of the “inhibited” phenotype to the 

familiar value of =½. In the experiment and the article’s discussion, these three “phenotypes” 

were certainly not distinguishable from one another. However, this example, as well as the 

previous one, demonstrate that such decomposition of cells into groups according to their 

“mission” can be applied in a variety of cases to describe hypothetical population dynamics.  

In conclusion, it is worth emphasizing again that the motivation and intrigue behind the 

developed computational model of cell proliferation was the conjecture of the generality of the 

biogenetic recapitulation law as propounded in “The Paradigm” section. According to this 

conjecture, Haeckel’s law is one of the overarching principles of biological causality. The 

presented model shows how it can contribute to the understanding of mitotic proliferation with 

multiple differentiating phenotypes. Although the exact molecular mechanisms of genetics-

driven recapitulation have yet to be discovered in full, it is believed that with the presented 

approach, coupled with the support of viable mathematical models, mechanistic “recapitulation 

physiology” can be introduced and further utilised to the benefit of biological R&D as a whole. 
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