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Abstract 35 

The perception of gender and age of unfamiliar faces is reported to vary 36 

idiosyncratically across retinal locations such that, for example, the same 37 

androgynous face may appear to be male at one location but female at another. Here 38 

we test spatial heterogeneity for the recognition of the identity of personally familiar 39 

faces in human participants. We found idiosyncratic biases that were stable within 40 

participants and that varied more across locations for low as compared to high 41 

familiar faces. These data suggest that like face gender and age, face identity is 42 

processed, in part, by independent populations of neurons monitoring restricted 43 

spatial regions and that the recognition responses vary for the same face across these 44 

different locations. Moreover, repeated and varied social interactions appear to lead 45 

to adjustments of these independent face recognition neurons so that the same 46 

familiar face is eventually more likely to elicit the same recognition response across 47 

widely separated visual field locations. 48 

Significance statement 49 

In this work we tested spatial heterogeneity for the recognition of personally familiar 50 

faces. We found retinotopic biases that varied more across locations for low as 51 

compared to highly familiar faces. The retinotopic biases were idiosyncratic and 52 

stable within participants. Our data suggest that, like face gender and age, face 53 

identity is processed by independent populations of neurons monitoring restricted 54 
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spatial regions and that recognition may vary for the same face at these different 55 

locations. Unlike previous findings, our data show how the effect of learning modifies 56 

the representation of face identity in cortical areas with spatially restricted receptive 57 

fields. This new perspective has broader implications for understanding how learning 58 

optimizes visual processes for socially salient stimuli. 59 

Introduction 60 

We spend most of our days interacting with acquaintances, family and close friends. 61 

Because of these repeated and protracted interactions, the representation of 62 

personally familiar faces is rich and complex, as reflected by stronger and more 63 

widespread neural activation in the distributed face processing network, as compared 64 

to responses to unfamiliar faces (Gobbini and Haxby, 2007; Taylor et al., 2009; 65 

Gobbini, 2010; Natu and O’Toole, 2011; Bobes et al., 2013; Sugiura, 2014; Ramon and 66 

Gobbini, 2017; Visconti di Oleggio Castello et al., 2017a). Differences in 67 

representations are also reflected in faster detection and more robust recognition of 68 

familiar faces (Burton et al., 1999; Gobbini et al., 2013; Ramon et al., 2015; Visconti di 69 

Oleggio Castello and Gobbini, 2015; Visconti di Oleggio Castello et al., 2017b). Thus, 70 

despite the subjective feeling of expertise with faces in general (Diamond and Carey, 71 

1986), our visual system seems to be optimized for the processing of familiar faces. 72 

The mechanisms underlying the prioritized processing of familiar faces are still a 73 

matter of investigation (Guntupalli and Gobbini, 2017; Ramon and Gobbini, 2017; 74 

Young and Burton, 2017). 75 
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The advantage for familiar faces could originate at different stages of the face 76 

processing system. The classic psychological model by Bruce and Young (1986) posits 77 

that recognition of familiar faces occurs when the structural encoding of a perceived 78 

face matches stored representations (Bruce and Young, 1986). In this model the 79 

stored representations of familiar faces consist of “an interlinked set of expression-80 

independent structural codes for distinct head angles, with some codes reflecting the 81 

global configuration at each angle and others representing particular distinctive 82 

features” (Bruce and Young, 1986, p. 309). Behavioral evidence supports the 83 

hypothesis that local features are processed differentially for personally familiar faces. 84 

For example, in a study of perception of gaze direction and head angle, changes in eye 85 

gaze were detected around 100ms faster in familiar than in unfamiliar faces (Visconti 86 

di Oleggio Castello and Gobbini, 2015). In another study, the advantage for personally 87 

familiar faces was maintained after face inversion, a manipulation that is generally 88 

thought to reduce holistic processing in favor of local processing (Visconti di Oleggio 89 

Castello et al., 2017b).  90 

Could local features be sufficient to initially drive a differential response to personally 91 

familiar faces? In a study measuring saccadic reaction time, correct and reliable 92 

saccades to familiar faces were recorded as fast as 180 ms when unfamiliar faces were 93 

distractors (Visconti di Oleggio Castello and Gobbini, 2015). In an EEG study using 94 

multivariate analyses, significant decoding of familiarity could be detected at around 95 

140 ms from stimulus onset (Barragan-Jason et al., 2015).  At such short latencies it is 96 

unlikely that a viewpoint-invariant representation of an individual face’s identity 97 
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drives these differential responses. To account for facilitated, rapid detection of 98 

familiarity, we have previously hypothesized that personally familiar faces may be 99 

recognized quickly based on diagnostic, idiosyncratic features, which become highly 100 

learned through extensive personal interactions (Visconti di Oleggio Castello and 101 

Gobbini, 2015; Visconti di Oleggio Castello et al., 2017b). Detection of these features 102 

may occur early in the face-processing system, allowing an initial, fast differential 103 

processing for personally familiar faces.  104 

Processes occurring at early stages of the visual system can show idiosyncratic 105 

retinotopic biases (Greenwood et al., 2017). Afraz et al. (2010) reported retinotopic 106 

biases for perceiving face gender and age that varied depending on stimulus location 107 

in the visual field and were specific to each subject. These results suggest that 108 

diagnostic facial features for gender and age are encoded in visual areas with limited 109 

position invariance. Neuroimaging studies have shown that face-processing areas 110 

such as OFA, pFus, and mFus have spatially restricted  population receptive fields that 111 

could result in retinotopic differences (Kay et al., 2015; Silson et al., 2016; Grill-Spector 112 

et al., 2017b). Here we hypothesized that detectors of diagnostic visual features that 113 

play a role in identification of familiar faces may also show idiosyncratic retinotopic 114 

biases and that these biases may be tuned by repeated interactions with personally 115 

familiar faces. Such biases may affect recognition of the identities presented in 116 

different parts of the visual field and may be modulated by the familiarity of those 117 

identities. 118 
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We tested this hypothesis by presenting participants with morphed stimuli of 119 

personally familiar individuals that were briefly shown at different retinal locations. In 120 

two separate experiments we found that participants showed idiosyncratic biases for 121 

specific identities in different visual field locations, and these biases were stable on 122 

retesting after weeks. Importantly, the range of the retinal biases was inversely 123 

correlated with the reported familiarity of each target identity, suggesting that 124 

prolonged personal interactions with the target individuals reduced retinal biases. 125 

These findings provide additional support for the hypothesis that asymmetries in the 126 

processing of personally familiar faces can arise at stages of the face-processing 127 

system where there is reduced position invariance and where local features are being 128 

processed, such as in OFA or perhaps even earlier. Our results show that prolonged, 129 

personal interactions can modify the neural representation of faces at this early level 130 

of processing. 131 

Materials and Methods 132 

 

Figure 1. Experimental paradigm. The left panel shows an example of the 
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experimental paradigm, while the right panel shows the locations used in 
Experiment 1 (eight locations, top panel) and in Experiment 2 (four locations, 
bottom panel). 

Stimuli 133 

Pictures of the faces of individuals who were personally familiar to the participants 134 

(graduate students in the same department) were taken in a photo studio room with 135 

the same lighting condition and the same camera. Images of two individuals were 136 

used for Experiment 1, and images of three individuals were used for Experiment 2. All 137 

individuals portrayed in the stimuli signed written informed consent for the use of 138 

their pictures for research and in publications.  139 

The images were converted to grayscale, resized and centered so that the eyes were 140 

aligned in the same position for the three identities, and the background was 141 

manually removed. These operations were performed using ImageMagick and Adobe 142 

Photoshop CS4. The resulting images were matched in luminance (average pixel 143 

intensity) using the SHINE toolbox (function lumMatch) (Willenbockel et al., 2010) 144 

after applying an oval mask, so that only pixels belonging to the face were modified. 145 

The luminance-matched images were then used to create morph continua (between 146 

two identities in Experiment 1, see Figure 2; and among three identities in Experiment 147 

2, see Figure 3) using Abrosoft Fantamorph (v. 5.4.7) with seven percentages of 148 

morphing: 0, 17, 33, 50, 67, 83, 100 (see Figures 2, 3). 149 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/253468doi: bioRxiv preprint 

https://doi.org/10.1101/253468
http://creativecommons.org/licenses/by/4.0/


Visconti di Oleggio Castello et al.   Retinotopic bias in face identification  

8 

 

Experiment 1 150 

Paradigm 151 

The experimental paradigm was similar to that by Afraz et al., (2010). In every trial 152 

participants would see a briefly flashed image in one of eight locations at the 153 

periphery of their visual field (see Figure 1). Each image was shown for 50 ms at a 154 

distance of 7˚ of visual angle from the fixation point, and subtended approximately 4˚ 155 

x 4˚ of visual angle. The images could appear in one of eight locations evenly spaced 156 

by 45 angular degrees around fixation. For Experiment 1, only the morph ab was used 157 

(see Figure 1). Participants were required to maintain fixation on a central red dot 158 

subtending approximately 1˚ of visual angle. 159 

After the image disappeared, participants reported which identity they saw using the 160 

left (identity a) and right (identity b) arrow keys. There was no time limit for 161 

responding, and participants were asked to be as accurate as possible. After 162 

responding, participants had to press the spacebar key to continue to the next trial. 163 

Participants performed five blocks containing 112 trials each, for a total of 560 trials. 164 

In each block all the images appeared twice for every angular location (8 angular 165 

locations x 7 morph percentages x 2 = 112). This provided ten data points for each 166 

percentage morphing at each location, for a total of 70 trials at each angular location.  167 

Before the experimental session participants were shown the identities used in the 168 

experiment (corresponding to 0% and 100% morphing, see Figure 2), and practiced 169 
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the task with 20 trials. These data were discarded from the analyses. Participants 170 

performed two identical experimental sessions at least four weeks apart. 171 

Participants sat at a distance of approximately 50 cm from the screen, with their chin 172 

positioned on a chin-rest. The experiment was run using Psychtoolbox (Kleiner et al., 173 

2007) (version 3.0.12) in MATLAB (R2014b). The screen operated at a resolution of 174 

1920x1200 and a 60Hz refresh rate. 175 

Subjects 176 

We recruited six subjects for this experiment (three males, including one of the 177 

authors, MVdOC). The sample size for Experiment 1 was not determined by formal 178 

estimates of power, and was limited by the availability of participants familiar with the 179 

stimulus identities. After the first experimental session, two participants (one male, 180 

one female) were at chance level in the task, thus only data from four subjects (two 181 

males, mean age 27.50 ± 2.08 SD) were used for the final analyses. 182 

All subjects had normal or corrected-to-normal vision, and provided written informed 183 

consent to participate in the experiment. The study was approved by the Dartmouth 184 

College Committee for the Protection of Human Subjects. 185 
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Experiment 2 186 

Paradigm 187 

Experiment 2 differed from Experiment 1 in the following parameters (see Figures 1, 188 

3): 1. three morph continua (ab, ac, bc) instead of one; 2. images appeared in four 189 

locations (45˚, 135˚, 225˚, 315˚) instead of eight; 3. images were shown for 100 ms 190 

instead of 50 ms to make the task easier. 191 

All other parameters were the same as in Experiment 1. Participants had to indicate 192 

which of the three identities they saw by pressing the left (identity a), right (identity 193 

b), or down (identity c) arrow keys. 194 

Participants performed ten blocks containing 84 trials each, for a total of 840 trials. In 195 

each block all the images appeared once for every angular location (4 angular 196 

locations x 7 morph percentages x 3 morphs = 84). We used 70 data points at every 197 

angular location to fit the model for each pair of identities. Thus, we used the 198 

responses to different unmorphed images for each pair of identities, ensuring 199 

independence of the models.  200 

Before the experimental session participants were shown the identities used in the 201 

experiment (corresponding to 0% and 100% morphing, see Figure 3), and practiced 202 

the task with 20 trials. These data were discarded from the analyses. Participants 203 

performed two experimental sessions at least four weeks apart. 204 
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Subjects 205 

Ten participants (five males, mean age 27.30 ± 1.34 SD) participated in Experiment 2, 206 

five of which were recruited for Experiment 1 as well. No authors participated in 207 

Experiment 2. The sample size (n = 10) was determined using G*Power3 (Faul et al., 208 

2007, 2009) to obtain 80% power at � = 0.05 based on the correlation of the PSE 209 

estimates across sessions in Experiment 1, using a bivariate normal model (one-210 

tailed). 211 

All subjects had normal or corrected-to-normal vision, and provided written informed 212 

consent to participate in the experiment. The study was approved by the Dartmouth 213 

College Committee for the Protection of Human Subjects. 214 

Familiarity and contact scales 215 

After the two experimental sessions, participants completed a questionnaire designed 216 

to assess how familiar each participant was with the identities shown in the 217 

experiment. Participants saw each target identity, and were asked to complete 218 

various scales for that identity. The questionnaire comprised the “Inclusion of the 219 

Other in the Self” scale (IOS) (Aron et al., 1992; Gächter et al., 2015), the “Subjective 220 

Closeness Inventory” (SCI) (Berscheid et al., 1989), and the “We-scale” (Cialdini et al., 221 

1997). The IOS scale showed two circles increasingly overlapping labeled “You” and 222 

“X”, and participants were given the following instructions: Using the figure below 223 

select which pair of circles best describes your relationship with this person. In the figure 224 

“X” serves as a placeholder for the person shown in the image at the beginning of this 225 
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section, and you should think of “X” being that person. By selecting the appropriate 226 

number please indicate to what extent you and this person are connected (Aron et al., 227 

1992; Gächter et al., 2015). The SCI scale comprised the two following questions: 228 

Relative to all your other relationships (both same and opposite sex) how would you 229 

characterize your relationship with the person shown at the beginning of this section?, 230 

and Relative to what you know about other people's close relationships, how would you 231 

characterize your relationship with the person shown at the beginning of this section? 232 

Participants responded with a number between one (Not close at all) and seven (Very 233 

close) (Berscheid et al., 1989). The We-scale comprised the following question: Please 234 

select the appropriate number below to indicate to what extent you would use the term 235 

“WE” to characterize you and the person shown at the beginning of this section. 236 

Participants responded with a number between one (Not at all) and seven (Very much 237 

so). For each participant and each identity we created a composite “familiarity score” 238 

by averaging the scores in the three scales.  239 

We also introduced a scale aimed at estimating the amount of interaction or contact 240 

between the participant and the target identity. The scale was based on the work by 241 

Idson and Mischel (2001), and participants were asked to respond Yes/No to the 242 

following six questions: Have you ever seen him during a departmental event?, Have you 243 

ever seen him during a party?, Have you ever had a group lunch/dinner/drinks with him?, 244 

Have you ever had a one-on-one lunch/dinner/drinks with him?, Have you ever texted 245 

him personally (not a group message)?, and Have you ever emailed him personally (not a 246 
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group email)? The responses were converted to 0/1 and for each participant and for 247 

each identity we created a “contact score” by summing all the responses. 248 

For each subject separately, to obtain a measure of familiarity and contact related to 249 

each morph, we averaged the familiarity and contact scores of each pair of identities 250 

(e.g., the familiarity score of morph ab was the average of the scores for identity a and 251 

identity b).  252 

Psychometric fit 253 

For both experiments we fitted a group-level psychometric curve using Logit Mixed-254 

Effect models (Moscatelli et al., 2012)  as implemented in lme4 (Bates et al., 2015). For 255 

each experiment and each session, we fitted a model of the form 256 

�� �  logit 	
�� � �
� � ������
�

���

�  

where k indicates the subject, n is the number of angular locations (n = 8 for the first 257 

experiment, and n = 4 for the second experiment), Ii
 is an indicator variable for the 258 

angular location, �i are the model fixed-effects, and zi are the subject-level random-259 

effects (random intercept) . From this model, we defined for each subject the Point of 260 

Subjective Equality (PSE) as the point x such that logit(x) = 0.5, that is for each angular 261 

location 262 

����
� � � 
�
�

� ���
�

� ���
�

� � �����
� 
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Thus, the PSE for subject k at angular location i can be decomposed in a population-263 

level PSE and a subject-specific deviation from the population level, indicated with 264 

PSEp and ΔPSEk respectively. 265 

In Experiment 2 we fitted three separate models for each of the morph continua. In 266 

addition, prior to fitting we removed all trials in which subjects mistakenly reported a 267 

third identity. For example, if an image belonging to morph ab was presented, and 268 

subjects responded with c, the trial was removed.  269 

To quantify the bias across locations, we computed a variance score by squaring the 270 

Δ����, and summing them across locations, that is ���� �  ∑ �Δ������	
���  . Because 271 

this quantity is proportional to the variance against 0, throughout the manuscript we 272 

refer to it as ΔPSE variance. 273 

Computational modeling 274 

To account for the retinotopic biases we simulated a population of neural units using 275 

the Compressive Spatial Summation model (Kay et al., 2013, 2015). This model was 276 

originally developed as an encoding model (Naselaris et al., 2011) to predict BOLD 277 

responses and estimate population receptive fields in visual areas and face-responsive 278 

areas such as OFA, pFus, and mFus (Kay et al., 2015). We refer to activations of neural 279 

units that can be thought as being voxels, small populations of neurons, or individual 280 

neurons. 281 

The CSS model posits that the response of a neural unit is equal to 282 
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 � ! " �� 

with � �  # $��, � |��, ��, '����, ��(� (�, and $��, �|��, ��, '� being a 2D gaussian 283 

centered at ��, ��, with covariance Σ �  '�, and ���, �� being the stimulus converted 284 

into contrast map. The term g represents the gain of the response, while the power 285 

exponent n accounts for subadditive responses (Kay et al., 2013). In our simulations 286 

we set n = 0.2 as in Kay et al. (2015) when the parameter was not explicitly optimized. 287 

Note that the median estimates of n in the three ROIs of interest (IOG, pFus, and 288 

mFus) reported by Kay et al. (2015) were 0.20, 0.16, and 0.23 respectively. 289 

We simulated a population of N = Na + Nb neural units, where Na indicates the number 290 

of units selective to identity a, and Nb indicates the number of units selective to 291 

identity b. For simplicity we set Nb = 1 and varied Na, effectively changing the ratio of 292 

units selective to one of the two identities. The stimuli consisted of contrast circles of 293 

diameter 4˚ centered at 7˚ from the center, and placed at an angle of 45˚, 135˚, 225˚, 294 

and 315˚, simulating Experiment 2. We simulated the activation of the units assuming 295 

i.i.d. random noise normally distributed with mean of 0 and standard deviation of 0.1. 296 

Each experiment consisted of a learning phase in which we simulated the (noisy) 297 

response to the full identities a and b in each of the four locations, with 10 trials for 298 

each identity and location. We used these responses to train a Support Vector 299 

Machine (Cortes and Vapnik, 1995) with linear kernel to differentiate between the two 300 

identities based on the pattern of population responses. Then, we simulated the 301 

actual experiment by generating responses to morphed faces. For simplicity, we 302 
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assumed a linear response between the amount of morphing and the population 303 

response. That is, we assumed that if a morph with m percentage morphing towards b 304 

was presented, the population response was a combination of the responses to a and 305 

b, weighted by (1-m, m). The amounts of morphing paralleled those used in the two 306 

experiments (0, 17, 33, 50, 67, 83, 100). We simulated 10 trials for each angular location 307 

and each amount of morphing, and recorded the responses of the trained decoder. 308 

These responses were used to fit a logit model similar to the model used in the main 309 

analyses (without random effects), and to estimate the Point of Subjective Equality 310 

for each angular location. The sum of these squared estimates around 50% was 311 

computed and stored. 312 

We varied systematically the ratio Na/Nb of units responsive to identity a, ranging from 313 

1 to 9, and repeated 500 experiments for each ratio. For each experiment, eccentricity 314 

and receptive field size of the units were randomly sampled from a normal bivariate 315 

distribution with mean �*
��, *��
� and covariance Σ. Once a given sample of 316 

eccentricity was drawn, it was converted to a random location lying on the circle of 317 

given eccentricity. We also simulated attentional modulations by modifying the gain 318 

for the units responsive to identity a between 1 and 4 in 0.5 steps, and fixing the gain 319 

for identity b to 1. We simulated receptive fields in this way from three face-320 

responsive ROIs (Inferior Occipital Gyrus, IOG—also termed OFA—mFus, and pFus). 321 

We obtained the parameter estimates for �*
��, *��
� from published results reported 322 

in Kay et al. (2015). In particular, we used the median estimates of eccentricity and 323 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/253468doi: bioRxiv preprint 

https://doi.org/10.1101/253468
http://creativecommons.org/licenses/by/4.0/


Visconti di Oleggio Castello et al.   Retinotopic bias in face identification  

17 

 

receptive field size from Kay et al. (2015) to estimate �*
��, *��
� (obtained from 324 

Figure S2 for the “face” task). For the three simulated ROIs (IOG, pFus, mFus) these 325 

values were (2.05˚, 2.75˚), (2.45˚, 3.68˚), and (1.86˚, 3.41˚) respectively. To estimate Σ, 326 

we assumed a standard deviation of 0.5˚ for both eccentricity and receptive field size, 327 

and we used the regression fit between eccentricity and receptive field size to 328 

estimate their covariance (see Figure S2 in Kay et al., 2015). Prior to estimation, the 329 

receptive field sizes were scaled back to pixel values by multiplying them by n, with n 330 

= 0.2 in all simulations. The covariances thus estimated were 0.0546, 0.0541, and 331 

0.0768 for IOG, mFus, and pFus respectively. Data values were extracted from Figure 332 

S2 in Kay et al. ( 2015) using WebPlotDigitizer (https://automeris.io/WebPlotDigitizer). 333 

Code and data availability 334 

Code for the analyses, raw data for both experiments, single subject results, and 335 

simulations are available at [REDACTED] as well as Extended Data. 336 

Results 337 

Experiment 1 338 

In this experiment, participants performed a two-alternative forced-choice (AFC) task 339 

on identity discrimination. In each trial they saw a face presented for 50 ms, and were 340 

asked to indicate which of the two identities they just saw. Each face could appear in 341 

one of eight stimulus locations. Participants performed the same experiment with the 342 
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same task a second time, at least 33 days after the first session (average 35 days ± 4 343 

days standard deviation). 344 

Participants showed stable and idiosyncratic retinal heterogeneity for identification. 345 

The PSE estimates for the two sessions were significantly correlated (see Table 1 and 346 

Figure 2B), showing stable estimates, and the within-subject correlations of ΔPSEs 347 

(see Methods) was significantly higher than the between-subject correlation 348 

(correlation difference: 0.87 [0.64, 1.10], 95% BCa confidence intervals (Efron, 1987); 349 

see Table 2), showing that the biases were idiosyncratic (see Figure 2A for example 350 

fits for two different subjects). 351 

Table 1. 

Correlation of parameter estimates across sessions for the two experiments. 

Parameter r t df p 

Experiment 1   

PSE 0.89 [-0.23, 1] 4.86** 6 0.002831 

ΔPSE 0.71 [0.47, 0.84] 5.47*** 30 6.106e-06 

Experiment 2   

PSE 0.98 [0.93, 0.99] 15.22*** 10 3.042e-08 

ΔPSE 0.64 [0.5, 0.75] 9.02*** 118 3.997e-15 

Note: All confidence intervals are 95% BCa with 10,000 repetitions. 

* p < .05. ** p < .01. *** p < .001  

 352 

Table 2. 

Comparison of within-subjects correlations of parameter estimates across sessions with 

between-subjects correlations. 

Morph Within-subjects r Between-subjects r Difference 
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Experiment 1 

ab 0.65
†
 [0.57, 0.8] -0.22 [-0.41, -0.01] 0.87

†
 [0.63, 1.1] 

Experiment 2 

ab 0.32 [-0.10, 0.62] -0.02 [-0.15, 0.11] 0.34 [-0.07, 0.69] 

ac 0.62
†
 [0.35, 0.79] -0.07 [-0.21, 0.08] 0.68

†
 [0.41, 0.92] 

bc 0.85
†
 [0.61, 0.95] -0.08 [-0.27, 0.12] 0.92

†
 [0.68, 1.15] 

Note: All confidence intervals are 95% BCa with 10,000 repetitions. 

† indicates that the CIs do not contain 0. 

 353 

 

Figure 2. Stable and idiosyncratic biases in identification in Experiment 1. A) 
Psychometric fit for two subjects from both sessions. Colors indicate location (see 
colors in bottom left corner); actual data (points) are shown only for the extreme 
locations to avoid visual clutter. B) The parameter estimates across sessions (at 
least 33 days apart) were stable (r = 0.71 [0.47, 0.84], see Table 1). Dots represent 
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individual parameter estimates for each location, color coded according to each 
subject. Correlations were performed on the data shown in this panel. C) Example 
morphs used in the experiment. Note that the morphs depicted here are shown for 
illustration only, and participants saw morphs of identities that were personally 
familiar to them. 

 354 

  355 
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Experiment 2 356 

In Experiment 1 participants exhibited stable, retinotopic biases for face identification 357 

that were specific to each participant. Experiment 1, however, used only two target 358 

identities, thus it could not address the question of whether the biases were specific to 359 

target identities or to general variations in face recognition that would be the same 360 

for all target faces. For this reason we conducted a second experiment in which we 361 

increased the number of target identities. In Experiment 2, participants performed a 362 

similar task as in Experiment 1 with the following differences. First, each face was 363 

presented for 100 ms instead of 50 ms in order to make the task easier, since some 364 

participants could not perform the task in Experiment 1; second, each face could 365 

belong to one of three morphs, and participants were required to indicate which of 366 

three identities the face belonged to; third, each face could appear in four retinal 367 

locations instead of eight (see Figure 1) to maintain an appropriate duration of the 368 

experiment. Each participant performed another experimental session at least 28 369 

days after the first session (average 33 days ± 8 days SD).  370 

We found that participants exhibited stable biases across sessions for the three 371 

morphs (see Table 1 and Figure 3). Interestingly, within-subjects correlations were 372 

higher than between-subjects correlations for the two morphs that included the 373 

identity c (morphs ac and bc), but not for morph ab (see Table 2), suggesting stronger 374 

differences in spatial heterogeneity caused by identity c. To test this further, we 375 

performed a two-way ANOVA on the PSE estimates across sessions with participants 376 

and angular locations as factors. The ANOVA was run for each pair of morphs 377 
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containing the same identity (e.g., for identity a the ANOVA was run on data from 378 

morphs ab and ac), and the PSE estimates were transformed to be with respect to the 379 

same identity (e.g., for identity b we considered PSEbc and 100 - PSEab). We found 380 

significant interactions between participants and angular locations for identity b (F(27, 381 

120) = 1.77, p = 0.01947) and identity c (F(27, 120) = 3.34, p = 3.229e-06), but not 382 

identity a (F(27, 120) = 1.17, p = 0.2807), confirming that participants showed increased 383 

spatial heterogeneity for identities b and c. The increased spatial heterogeneity for 384 

identities b and c, but not a, can be appreciated by inspecting the ΔPSE estimates for 385 

each participant. Figure 4A shows lower bias across retinal locations for morph ab 386 

than the other two morphs, suggesting more similar performance across locations for 387 

morph ab. To investigate factors explaining the difference in performance across 388 

spatial locations between the three identities, we compared the ΔPSE estimates with 389 

the reported familiarity of the identities. 390 

The variance of the average ΔPSE estimates across sessions for each subject was 391 

significantly correlated with the reported familiarity of the identities  392 

(r = -0.56 [-0.71, -0.30], t(28) = -3.59, p = 0.001248), showing that the strength of the 393 

retinal bias for identities was inversely modulated by personal familiarity (see Figure 394 

4B). We estimated personal familiarity by averaging participants’ ratings of the 395 

identities on three scales (Inclusion of the Other in the Self, the We-Scale, and the 396 

Subjective Closeness Inventory, see Methods for details). The three scales were highly 397 

correlated (min correlation r = 0.89, max correlation r = 0.96).  398 
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Because the amount of personal familiarity was correlated with the amount of contact 399 

with a target identity (r = 0.45 [0.17, 0.68], t(28) = 2.65,  400 

p = 0.01304), we tested whether a linear model predicting ΔPSE with both contact and 401 

familiarity as predictors could fit the data better. Both models were significant, but 402 

the model with two predictors provided a significantly better fit (X2(1) = 6.30, p = 403 

0.0121, log-likelihood ratio test), and explained more variance as indicated by higher 404 

R2: R2 = 0.45, adjusted R2 = 0.40 for the model with both Familiarity and Contact 405 

scores (F(2, 27) = 10.82, p = 0.0003539), and R2 = 0.32, adjusted R2 = 0.29 for the model 406 

with the Familiarity score only (F(1, 28) = 12.88, p = 0.001248). Importantly, both 407 

predictors were significant (see Table 3), indicating that familiarity modulated the 408 

variance of the ΔPSE estimates in addition to modulation based on the amount of 409 

contact with a person. After adjusting for the contact score, the variance of the ΔPSE 410 

estimates and the familiarity score were still significantly correlated (rp = -0.42 [-0.61, -411 

0.16], t(28) = -2.42, p = 0.02235). 412 

Table 3. Models predicting variance of the ΔPSE estimates across locations in Experiment 2. 

Model R2 Score � �p

2 t p 

1 0.32 Familiarity -0.0574 0.32 -3.59 0.0013 

2 0.45 Familiarity -0.0390 0.17 -2.38 0.0249 

  Contact -0.0452 0.19 -2.512 0.0183 

 413 
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Figure 3. Stable and idiosyncratic biases in identification in Experiment 2. A) 
Psychometric fit for one subject from both sessions for each of the morphs. Colors 
indicate location (see colors in bottom left corner); actual data (points) are shown 
only for the extreme locations to avoid visual clutter. B) The parameter estimates 
across sessions (at least 28 days apart) were stable (r = 0.64 [0.5, 0.75], see Table 1). 
Dots represent individual parameter estimates for each location, color coded 
according to each participant. Correlations were performed on the data shown in 
this panel. C) Example morphs used in the experiment. Note that the morphs 
depicted here are shown only for illustration (participants saw morphs of identities 
who were personally familiar). 

 414 
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Figure 4. The strength of idiosyncratic biases was modulated by personal 

familiarity. A) Individual subjects’ ΔPSE for each morph, averaged across sessions. 
Note the difference in variance across locations for the three different morphs (left 
to right)). B) The variance across locations of ΔPSE estimates was inversely 
correlated with the reported familiarity of the identities (left panel; r = -0.56 [-0.71, -
0.30]), even when adjusting for the Contact score (middle panel; rp = -0.42 [-0.61, -
0.16]). The right panel shows the scatterplot between the Contact score and the 
ΔPSE variance, adjusted for the Familiarity score, which were significantly 
correlated as well (rp = -0.44 [-0.62, -0.17]). See Methods for definition of the 
Familiarity score and the Contact score. Dots represent individual participant’s data, 
color coded according to morph type. Correlations were performed on the data 
shown in these panels. 

 415 

  416 
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Model simulation 417 

In two behavioral experiments we found a stable, idiosyncratic bias towards specific 418 

identities that varied according to the location in which the morphed face stimuli 419 

appeared. The bias was reduced with more familiar identities, showing effects of 420 

learning. To account for this effect, we hypothesized that small populations of 421 

neurons selective to specific identities sample a limited portion of the visual field 422 

(Afraz et al., 2010). We also hypothesized that with extended interactions with a 423 

person, more neural units become selective to the facial appearance of the identity. In 424 

turn, this increases the spatial extent of the field covered by the population and thus 425 

reduces the retinotopic bias.  426 

To quantitatively test this hypothesis, we simulated a population of neural units in 427 

IOG (OFA), pFus, and mFus using the Compressive Spatial Summation model (Kay et 428 

al., 2013, 2015). The parameters of this model were estimated from published results 429 

reported in Kay et al. (2015). We simulated learning effects by progressively increasing 430 

the number of units selective to one of the two identities, and measuring the response 431 

of a linear decoder trained to distinguish between the two identities. As can be seen in 432 

Figure 5A, increasing the number of units reduced the overall bias (expressed as 433 

variance against 0.5 of the PSE estimates, see Methods for details) by increasing the 434 

spatial coverage (see Figure 5B). Interestingly, the larger bias was found within the 435 

simulated IOG, because the stimuli shown at 7˚ of eccentricity were at the border of 436 

the receptive field coverage (Figure 5B). 437 
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As an alternative explanation, we tested whether differences in gain could reduce the 438 

bias to a similar extent as increasing the number of units. Figure 5C shows that 439 

modulating the gain failed to reduce the retinotopic bias in all simulated ROIs. 440 

 
Figure 5. Simulating retinotopic biases and learning effects in face-responsive 

ROIs. We hypothesized that neural units (voxels, small populations of neurons, or 
individual neurons) cover a limited portion of the visual field, and that learning 
increases the number of neural units selective to a particular identity. A) Increasing 
the number of units selective to one identity reduces the retinotopic bias. Results of 
simulating 500 experiments by varying the ratio of neural units selective to one of 
two identities and fixing the gain to 1 for both identities. Dots represent median 
values with 68% bootstrapped CIs (1,000 replicates; note that for some points the 
CIs are too small to be seen). In all simulated ROIs the variance of the PSE around 
50% decreases with increasing number of units selective to a, but remains larger in 
IOG because of its receptive field size. B) Example of increasing the number of units 
selective to one identity. Each colored circle represents the receptive field of a 
neural unit, color coded according to its preferential identity (green: identity a, red: 
identity b, yellow: overlap). Gray circles show location of the stimuli. Each column is 
normalized to the maximum number of units covering a portion of receptive field. 
Receptive field are shown as circles with radius 2', following the convention in Kay 
et al., (2015). In IOG, stimuli are at the border of the field covered by the simulated 
units, resulting in a larger bias across locations compared to pFus and mFus. C) 
Increasing the gain of the response to one identity fails to reduce the retinotopic 
bias. We repeated 500 simulated experiments as in A) and modulated the gain of 
the response of the units selective to identity a. Each dot represents median values 
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of PSE variance for 500 simulated experiments. CIs are not shown to reduce visual 
clutter. 

 441 

Discussion 442 

Afraz et al. (2010) reported spatial heterogeneity for recognition of facial attributes 443 

such as gender and age, suggesting that relatively independent neural populations 444 

tuned to facial features might sample different regions of the visual field. Prolonged 445 

social interactions with personally familiar faces lead to facilitated, prioritized 446 

processing of those faces. Here we wanted to investigate if this learning of face 447 

identity through repeated social interactions also affects these local visual processes, 448 

by measuring spatial heterogeneity of identity recognition. We measured whether 449 

face identification performance for personally familiar faces differed according to the 450 

location in the visual field where face images were presented. We found that 451 

participants exhibited idiosyncratic, retinotopic biases for different face identities that 452 

were stable across experimental sessions. Importantly, the variability of the 453 

retinotopic bias was reduced with increased familiarity with the target identities. 454 

These data support the hypothesis that familiarity modulates processes in visual areas 455 

with limited position invariance (Visconti di Oleggio Castello et al., 2017a).  456 

These results extend the reports of spatial heterogeneity in visual processing to face 457 

identification. Similar biases exist for high-level judgments such as face gender and 458 

age (Afraz et al., 2010), as well as shape discrimination (Afraz et al., 2010), crowding, 459 

and saccadic precision (Greenwood et al., 2017). Afraz et al.  (2010) suggested that 460 
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neurons in IT exhibit biases that are dependent on retinal location because their 461 

receptive field sizes are not large enough to provide complete translational invariance, 462 

and stimuli in different locations will activate a limited group of neurons. In this work, 463 

we show that these perceptual biases for face processing not only exist for gender and 464 

age judgments (Afraz et al., 2010), but also for face identification and that these 465 

biases are affected by learning.  466 

Location-dependent coding in face-responsive areas 467 

Neurons in temporal cortex involved in object recognition are widely thought to be 468 

invariant to object translation, that is their response to an object will not be 469 

modulated by the location of the object in the visual field (Riesenhuber and Poggio, 470 

1999; Hung et al., 2005). However, evidence suggests that location information is 471 

preserved in activity of neurons throughout temporal cortex (Kravitz et al., 2008; 472 

Hong et al., 2016). Location information can be encoded as a retinotopic map, such as 473 

in early visual cortex, where neighboring neurons are selective to locations that are 474 

neighboring in the visual field. In the absence of a clear cortical retinotopic map, 475 

location information can still be preserved at the level of population responses 476 

(Schwarzlose et al., 2008; Rajimehr et al., 2014; Henriksson et al., 2015; Kay et al., 477 

2015).  478 

Areas of occipital and temporal cortices show responses to objects that are 479 

modulated by position (Kravitz et al., 2008, 2010; Sayres and Grill-Spector, 2008). In 480 

particular, also face-responsive areas of the ventral core system (Haxby et al., 2000; 481 
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Visconti di Oleggio Castello et al., 2017a) such as OFA, pFus, and mFus show 482 

responses that are modulated by the position in which a face appears. Responses to a 483 

face are stronger in these areas when faces are presented foveally rather than 484 

peripherally (Levy et al., 2001; Hasson et al., 2002; Malach et al., 2002). In addition, 485 

early face processing areas such as PL in monkeys or OFA in humans code specific 486 

features of faces in typical locations. Neurons in PL are tuned to eyes in the 487 

contralateral hemifield, with receptive fields covering the typical location of the eyes 488 

at fixation (Issa and DiCarlo, 2012). Similarly, OFA responses to face parts are stronger 489 

when they are presented in typical locations (de Haas et al., 2016), and OFA activity 490 

codes the position and relationship between face parts (Henriksson et al., 2015).  491 

The modulation of responses by object location in these areas seems to be driven by 492 

differences in receptive field sizes. In humans, population receptive fields (pRF) can be 493 

estimated with fMRI by modeling voxel-wise BOLD responses (Dumoulin and 494 

Wandell, 2008; Wandell and Winawer, 2011, 2015; Kay et al., 2013). These studies 495 

have shown that pRF centers are mostly located in the contralateral hemifield (Kay et 496 

al., 2015; Grill-Spector et al., 2017b), corresponding to the reported preference of 497 

these areas for faces presented contralaterally (Hemond et al., 2007). In addition, pRF 498 

sizes increase the higher in the face processing hierarchy, favoring perifoveal regions 499 

(Kay et al., 2015; Silson et al., 2016). The location-dependent coding of faces in these 500 

face-processing areas might be based on population activity, since these areas do not 501 

overlap with retinotopic maps in humans (for example, OFA does not seem to overlap 502 

with estimated retinotopic maps, Silson et al., 2016, but see Janssens et al., 2014; 503 
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Rajimehr et al., 2014; Arcaro and Livingstone, 2017; Arcaro et al., 2017 for work in 504 

monkeys showing partial overlap between retinotopic maps and face patches). 505 

Cortical origin of idiosyncratic biases and effects of familiarity 506 

Populations of neurons in visual areas and in temporal cortex cover limited portions of 507 

the visual field, with progressively larger receptive fields centered around perifoveal 508 

regions (Grill-Spector et al., 2017b). This property suggests that biases in high-level 509 

judgments of gender, age, and identity may be due to the variability of feature 510 

detectors that cover limited portions of the visual field (Afraz et al., 2010). While the 511 

results from our behavioral study cannot point to a precise location of the cortical 512 

origin of these biases, our computational simulation suggests that a larger bias could 513 

arise from responses in the OFA, given the estimates of receptive field size and 514 

eccentricity in this area (Kay et al., 2015; Grill-Spector et al., 2017b). We cannot 515 

exclude that this bias might originate in earlier areas of the visual processing stream. 516 

In this work, we showed that the extent of variation in biases across retinal locations 517 

was inversely correlated with the reported familiarity with individuals, suggesting that 518 

a history of repeated interaction with a person may tune the responses of neurons to 519 

that individual in different retinal locations, generating more homogeneous 520 

responses. Repeated exposure to the faces of familiar individuals during real-life social 521 

interactions results in a detailed representation of the visual appearance of a 522 

personally familiar face. Our computational simulation suggests a simple process for 523 

augmenting and strengthening the representation of a face. Learning through social 524 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/253468doi: bioRxiv preprint 

https://doi.org/10.1101/253468
http://creativecommons.org/licenses/by/4.0/


Visconti di Oleggio Castello et al.   Retinotopic bias in face identification  

32 

 

interactions might cause a greater number of neural units to become responsive to a 525 

specific identity, thus covering a larger area of the visual field and reducing the 526 

retinotopic biases. Our results showed that both ratings of familiarity and ratings of 527 

amount of contact were strong predictors for reduced retinotopic bias; however, 528 

familiarity still predicted the reduced bias when accounting for amount of contact. 529 

While additional experiments are needed to test whether pure perceptual learning is 530 

sufficient to reduce the retinotopic biases to the same extent as personal familiarity, 531 

these results suggest that repeated personal interactions can strengthen neural 532 

representations to a larger extent than mere increased frequency of exposure to a 533 

face. This idea is consistent with neuroimaging studies showing a stronger and more 534 

widespread activation for personally familiar faces compared to unfamiliar or 535 

experimentally learned faces (Gobbini and Haxby, 2006; Cloutier et al., 2011; Natu and 536 

O’Toole, 2011; Leibenluft et al., 2004; Gobbini and Haxby, 2007; Bobes et al., 2013; 537 

Ramon and Gobbini, 2017; Visconti di Oleggio Castello et al., 2017a) . 538 

Effects of attention 539 

Could differences in attention explain the modulation of retinotopic biases reported 540 

here? Faces, and personally familiar faces in particular, are important social stimuli 541 

whose correct detection and processing affects social behavior (Brothers, 2002; 542 

Gobbini and Haxby, 2007). Behavioral experiments from our lab have shown that 543 

personally familiar faces break through faster in a continuous flash suppression 544 

paradigm (Gobbini et al., 2013), and hold attention more strongly than unfamiliar 545 

faces do in a Posner cueing paradigm (Chauhan et al., 2017). These results show that 546 
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familiar faces differ not only at the level of representations, but also in allocation of 547 

attention. At the neural level, changes in attention might be implemented as 548 

increased gain for salient stimuli or increased receptive field size (Kay et al., 2015). In 549 

an fMRI experiment Kay et al. (2015) reported that population receptive field (pRF) 550 

estimates were modulated by the type of task. Gain, eccentricity, and size of the pRFs 551 

increased during a 1-back repetition detection task on facial identity as compared to a 552 

1-back task on digits presented foveally. 553 

To address differences in gain in our computational simulation, we modified the 554 

relative gain of units responsive to one of the two identities and found that it did not 555 

influence the PSE bias across locations. This bias was more strongly modulated by the 556 

number of units responsive to one of the identities. On the other hand, increases in 557 

receptive field size and eccentricity could reduce the bias, as shown by differences 558 

between the simulated ROIs. However, while the bias was reduced in pFus compared 559 

to IOG, for example, the difference in receptive field size (3.68˚ vs 2.75˚) was not 560 

sufficient to eliminate the bias with a limited number of neural units. While this result 561 

cannot rule out attentional effects completely, it suggests that the retinotopic biases 562 

for identification are more strongly modulated by the uneven coverage of the visual 563 

field by a limited number of neural units. Additional experiments are needed to 564 

further characterize the differences in attention and representations that contribute 565 

to the facilitated processing of personally familiar faces. 566 

Implications for computational models of vision 567 
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Many computational models of biological vision posit translational invariance: 568 

neurons in IT are assumed to respond to the same extent, regardless of the object 569 

position (Riesenhuber and Poggio, 1999; Serre et al., 2007; Kravitz et al., 2008). Even 570 

the models that currently provide better fits to neural activity in IT such as 571 

hierarchical, convolutional neural networks (Yamins et al., 2014; Kriegeskorte, 2015; 572 

Yamins and DiCarlo, 2016) use weight sharing in convolutional layers to achieve 573 

position invariance (LeCun et al., 2015; Schmidhuber, 2015; Goodfellow et al., 2016). 574 

While this reduces complexity by limiting the number of parameters to be fitted, 575 

neuroimaging and behavioral experiments have shown that translational invariance in 576 

IT is preserved only for small displacements (DiCarlo and Maunsell, 2003; Kay et al., 577 

2015; Silson et al., 2016; for a review see Kravitz et al., 2008), with varying receptive 578 

field sizes and eccentricities (Grill-Spector et al., 2017a). Our results highlight the 579 

limited position invariance for high-level judgments such as identity, and add to the 580 

known spatial heterogeneity for gender and age judgments (Afraz et al., 2010). Our 581 

results also show that a higher degree of invariance can be achieved through learning, 582 

as shown by the reduced bias for highly familiar faces. This finding highlights that to 583 

increase biological plausibility of models of vision, differences in eccentricity and 584 

receptive field size should be taken into account (Poggio et al., 2014), as well as more 585 

dynamic effects such as changes induced by learning and attention (Grill-Spector et 586 

al., 2017a). 587 

Conclusions 588 
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Taken together, the results reported here support our hypothesis that facilitated 589 

processing for personally familiar faces might be mediated by the development or 590 

tuning of detectors for personally familiar faces in the visual pathway in areas that still 591 

have localized analyses (Gobbini et al., 2013; Visconti di Oleggio Castello et al., 2014, 592 

2017b; Visconti di Oleggio Castello and Ida Gobbini, 2015). The OFA might be a 593 

candidate for the cortical origin of these biases as well as for the development of 594 

detectors for diagnostic fragments. Patterns of responses in OFA (and neurons in the 595 

monkey putative homologue PL, Issa and DiCarlo, 2012) are tuned to typical locations 596 

of face fragments (Henriksson et al., 2015; de Haas et al., 2016). Population receptive 597 

fields of voxels in this region cover an area of the visual field that is large enough to 598 

integrate features of intermediate complexity at an average conversational distance 599 

(Kay et al., 2015; Grill-Spector et al., 2017b), such as combinations of eyes and 600 

eyebrows, which have been shown to be theoretically optimal and highly informative 601 

for object classification (Ullman et al., 2001, 2002; Ullman, 2007). 602 

Future research is needed to further disambiguate differences in representations or 603 

attention that generate these biases and how learning reduces them. Nonetheless, 604 

our results suggest that prioritized processing for personally familiar faces may exist 605 

at relatively early stages of the face processing hierarchy, as shown by the local biases 606 

reported here. Learning associated with repeated personal interactions modifies the 607 

representation of these faces, suggesting that personal familiarity affects face-608 

processing areas well after developmental critical periods (Arcaro et al., 2017; 609 

Livingstone et al., 2017). We hypothesize that these differences may be one of the 610 
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mechanisms that underlies the known behavioral advantages for perception of 611 

personally familiar faces (Burton et al., 1999; Gobbini and Haxby, 2007; Gobbini, 2010; 612 

Gobbini et al., 2013; Visconti di Oleggio Castello et al., 2014, 2017b; Ramon et al., 613 

2015; Visconti di Oleggio Castello and Gobbini, 2015; Chauhan et al., 2017; Ramon and 614 

Gobbini, 2017). 615 

  616 
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Legends 799 

Figure 1. Experimental paradigm. The left panel shows the experimental paradigm, 800 

while the right panel shows the locations used in Experiment 1 (eight locations, top 801 

panel) and in Experiment 2 (four locations, bottom panel). 802 

Figure 2. Stable and idiosyncratic biases in identification in Experiment 1. A) 803 

Psychometric fit for two subjects from both sessions. Colors indicate location (see 804 

colors in bottom left corner); actual data (points) are shown only for the extreme 805 

locations to avoid visual clutter. B) The parameter estimates across sessions (at least 806 

33 days apart) were stable (r = 0.71 [0.47, 0.84], see Table 1). Dots represent individual 807 

parameter estimates for each location, color coded according to each subject. 808 

Correlations were performed on the data shown in this panel. C) Example morphs 809 

used in the experiment. Note that the morphs depicted here are shown for illustration 810 

only, and participants saw morphs of identities that were personally familiar to them. 811 

Figure 3. Stable and idiosyncratic biases in identification in Experiment 2. A) 812 

Psychometric fit for one subject from both sessions for each of the morphs. Colors 813 

indicate location (see colors in bottom left corner); actual data (points) are shown only 814 

for the extreme locations to avoid visual clutter. B) The parameter estimates across 815 

sessions (at least 28 days apart) were stable (r = 0.64 [0.5, 0.75], see Table 1). Dots 816 

represent individual parameter estimates for each location, color coded according to 817 

each participant. Correlations were performed on the data shown in this panel. C) 818 

Example morphs used in the experiment. Note that the morphs depicted here are 819 

shown only for illustration (participants saw morphs of identities who were personally 820 

familiar). 821 

Figure 4. The strength of idiosyncratic biases was modulated by personal 822 

familiarity. A) Individual subjects’ ΔPSE for each morph, averaged across sessions. 823 

Note the difference in variance across locations for the three different morphs (left to 824 

right)). B) The variance across locations of ΔPSE estimates was inversely correlated 825 

with the reported familiarity of the identities (left panel; r = -0.56 [-0.71, -0.30]), even 826 

when adjusting for the Contact score (middle panel; rp = -0.42 [-0.61, -0.16]). The right 827 

panel shows the scatterplot between the Contact score and the ΔPSE variance, 828 

adjusted for the Familiarity score, which were significantly correlated as well (rp = -829 

0.44 [-0.62, -0.17]). See Methods for definition of the Familiarity score and the 830 

Contact score. Dots represent individual participant’s data, color coded according to 831 

morph type. Correlations were performed on the data shown in these panels. 832 

Figure 5. Simulating retinotopic biases and learning effects in face-responsive 833 

ROIs. We hypothesized that neural units (voxels, small populations of neurons, or 834 

individual neurons) cover a limited portion of the visual field, and that learning 835 

increases the number of neural units selective to a particular identity. A) Increasing 836 

the number of units selective to one identity reduces the retinotopic bias. Results of 837 

simulating 500 experiments by varying the ratio of neural units selective to one of two 838 
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identities and fixing the gain to 1 for both identities. Dots represent median values 839 

with 68% bootstrapped CIs (1,000 replicates; note that for some points the CIs are too 840 

small to be seen). In all simulated ROIs the variance of the PSE around 50% decreases 841 

with increasing number of units selective to a, but remains larger in IOG because of its 842 

receptive field size. B) Example of increasing the number of units selective to one 843 

identity. Each colored circle represents the receptive field of a neural unit, color coded 844 

according to its preferential identity (green: identity a, red: identity b, yellow: 845 

overlap). Gray circles show location of the stimuli. Each column is normalized to the 846 

maximum number of units covering a portion of receptive field. Receptive field are 847 

shown as circles with radius 2σ, following the convention in Kay et al., (2015). In IOG, 848 

stimuli are at the border of the field covered by the simulated units, resulting in a 849 

larger bias across locations compared to pFus and mFus.C) Increasing the gain of the 850 

response to one identity fails to reduce the retinotopic bias. We repeated 500 851 

simulated experiments as in A) and modulated the gain of the response of the units 852 

selective to identity a. Each dot represents median values of PSE variance for 500 853 

simulated experiments. CIs are not shown to reduce visual clutter. 854 

Table 1. Correlation of parameter estimates across sessions for the two experiments. 855 

Table 2. Comparison of within-subjects correlations of parameter estimates across 856 

sessions with between-subjects correlations. 857 

Table 3. Models predicting variance of the ΔPSE estimates across angular locations in 858 

Experiment 2. 859 

Extended Data. The archive contains data from both experiments, as well as the 860 

analysis scripts. 861 

  862 
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Tables 863 

Table 1. 
Correlation of parameter estimates across sessions for the two experiments. 

Parameter r t df 

Experiment 1  

PSE 0.89 [-0.23, 1] 4.86** 6 

ΔPSE 0.71 [0.47, 0.84] 5.47*** 30 

Experiment 2  

PSE 0.98 [0.93, 0.99] 15.22*** 10 

ΔPSE 0.64 [0.5, 0.75] 9.02*** 118 

Note: All confidence intervals are 95% BCa with 10,000 repetitions. 

* p < .05. ** p < .01. *** p < .001  

 864 

Table 2. 
Comparison of within-subjects correlations of parameter estimates across sessions 
with between-subjects correlations. 

Morph Within-subjects r Between-subjects r Difference 

Experiment 1 

ab 0.65† [0.57, 0.8] -0.22 [-0.41, -0.01] 0.87† [0.63, 1.1] 

Experiment 2 

ab 0.32 [-0.10, 0.62] -0.02 [-0.15, 0.11] 0.34 [-0.07, 0.69] 

ac 0.62† [0.35, 0.79] -0.07 [-0.21, 0.08] 0.68† [0.41, 0.92] 

bc 0.85† [0.61, 0.95] -0.08 [-0.27, 0.12] 0.92† [0.68, 1.15] 

Note: All confidence intervals are 95% BCa with 10,000 repetitions. 

† indicates that the CIs do not contain 0. 
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Table 3. Models predicting variance of the ΔPSE estimates across angular locations in 

Experiment 2. 

Model R2 Score � �p

2 t p 

1 0.32 Familiarity -0.0574 0.32 -3.59 0.0013 

2 0.45 Familiarity -0.0390 0.17 -2.38 0.0249 

  Contact -0.0452 0.19 -2.512 0.0183 
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