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Abstract 
Motivation: Several tools exist to count Mendelian violations in family trios by comparing variants at                             
the same genomic positions. This naive variant comparison however, fails to assess regions where                           
multiple variants need to be examined together, resulting in reduced accuracy of existing Mendelian                           
violation checking tools. 
 
Results: We introduce VBT, a trio concordance analysis tool, that identifies Mendelian violations by                           
approximately solving the 3-way variant matching problem to resolve variant representation                     
differences in family trios. We show that VBT outperforms previous trio comparison methods by                           
accuracy. 
 
Availability: VBT is implemented in C++ and source code is available under GNU GPLv3 license at                               
the following URL: https://github.com/sbg/VBT-TrioAnalysis.git 
Contact:  cagkantoptas@hotmail.com 
Supplementary information: Supplementary materials are available at Biorxiv. 

 
1. Introduction  

Recent technological advancements enabled a rapid progress in our         
understanding and characterization of the human genome, assessment of         
the scale and extent of genomic variation present in human genome (The            
1000 Genome Project Consortium et al., 2015) as well as creation of a             
vast body of knowledge related to the functioning of human body and            
rare diseases (Jamuar et al., 2015). Pedigree-based genetics plays a          
crucial role in uncovering the genetic origins of diseases, where family           
trios are analyzed and genomic variants that disagree with Mendel’s law           
of segregation are identified. 
 
A particularly important use case of trio analysis is the identification of            
de novo mutations which have repeatedly been implicated in rare and           
complex diseases (Hidalgo et al. , 2016; Deciphering Developmental        
Disorders Study, 2017). De novo mutations occur with relatively low          
frequencies (1.2x10-8) (Conrad et al. , 2011; Kong et al. , 2012) compared           
with average amount of variants a person has. Therefore, accurate          
strategies are essential for identification of such variants which typically          
starts with assessing Mendelian Inheritance rules of the calls from family           
trios followed by using sophisticated statistical models (DeNovoGear        
(Ramu et al. , 2013), PhaseByTransmission (Francioli et al. , 2016)). 
 
Such trio analysis can also be used for truth-free benchmarking of           
variant calling pipelines (Douglas et al. , 2002; Pilipenko et al. , 2014;           

Nutsua et al. , 2015; Kómár et al. , 2017). Due to the very small mutation              
rate in human genome, all Mendelian violations can be considered as           
sequencing/variant calling errors. Trio concordance analysis is useful        
where no truth-set exists and allows using variants from all regions of            
the genome as opposed to current whole genome truth-sets which are           
limited to a set of high confidence regions in a few samples, excluding             
many regions of the genome (Zook et al. , 2014). Improved truth-free           
benchmarking will also guide the development of future genome analysis          
pipelines such as graph genome pipeline (Rakocevic et al., 2017).  
 
Several tools exist (RTG-mendel, GATK-SelectVariants, Vcftools      
-mendel) that count Mendelian violations using naive loci-by-loci variant         
comparison. In this approach, each record in the merged trio vcf is            
processed independently, and only variants with coinciding reference        
positions are analyzed together. This method fails to provide an accurate           
analysis in cases where multiple records are affecting the same locus. 
 
Here we address a problem during the identification of Mendelian          
violations in the data from a family trio, one which arises from varying             
variant representations. Regions with several overlapping variants often        
have a number of different ways in which they can be represented, all of              
which conform to the widely accepted VCF standard (Danecek et al. ,           
2011); the same is true for most variants which are complex in nature,             
and even some simple indels (Figure 1a). The choice of which of the             
possible representations is produced often depends on the variant context          

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 24, 2018. ; https://doi.org/10.1101/253492doi: bioRxiv preprint 

http://doi.org/10.1038/nature15393
http://doi.org/10.1038/nature15393
https://dx.doi.org/10.1186/s40246-015-0031-5
https://doi.org/10.1186/s13059-016-1110-1
https://doi.org/10.1186/s13059-016-1110-1
https://doi.org/10.1186/s13059-016-1110-1
http://doi.org/10.1038/nature21062
http://doi.org/10.1038/nature21062
http://dx.doi.org/10.1038/ng.862
http://dx.doi.org/10.1038/ng.862
http://dx.doi.org/10.1038/ng.862
http://dx.doi.org/10.1038/nature11396
http://dx.doi.org/10.1038/nature11396
http://dx.doi.org/10.1038/nature11396
http://doi.org/10.1038/nmeth.2611
http://doi.org/10.1038/nmeth.2611
http://doi.org/10.1038/nmeth.2611
https://dx.doi.org/10.1038%2Fejhg.2016.147
https://dx.doi.org/10.1038%2Fejhg.2016.147
https://dx.doi.org/10.1038%2Fejhg.2016.147
https://doi.org/10.1086/338919
https://doi.org/10.1086/338919
https://doi.org/10.1086/338919
https://dx.doi.org/10.1186%2F1753-6561-8-S1-S21
https://dx.doi.org/10.1186%2F1753-6561-8-S1-S21
https://dx.doi.org/10.1186%2F1753-6561-8-S1-S21
http://doi.org/10.1371/journal.pone.0133465
http://doi.org/10.1371/journal.pone.0133465
http://doi.org/10.1371/journal.pone.0133465
https://doi.org/10.1101/208116
https://doi.org/10.1101/208116
https://doi.org/10.1101/208116
https://doi.org/10.1101/208116
http://dx.doi.org/10.1038/nbt.2835
http://dx.doi.org/10.1038/nbt.2835
http://dx.doi.org/10.1038/nbt.2835
https://doi.org/10.1101/194530
https://dx.doi.org/10.1093%2Fbioinformatics%2Fbtr330
https://dx.doi.org/10.1093%2Fbioinformatics%2Fbtr330
https://dx.doi.org/10.1093%2Fbioinformatics%2Fbtr330
https://dx.doi.org/10.1093%2Fbioinformatics%2Fbtr330
https://doi.org/10.1101/253492
http://creativecommons.org/licenses/by-nc-nd/4.0/


Berke C. Toptas et al. 

(other nearby variants) and the set of sequencing reads used to identify            
the variant. If this choice happens to be different between different           
members of the pedigree, comparing the three sets of calls position by            
position will result in detection of Mendelian violations, even though the           
underlying haplotypes are Mendelian compliant (Figure 1b). 
 

 
Figure 1: (a) Representation difference in indels. Variant in position 103 is represented as a               
single indel in first vcf and 2 indels + 1 SNP in second vcf. After they are applied on the                    
reference sequence, it is seen that they are equivalent. (b) A toy example of variant representation                
difference in family trios. Naive trio comparison tools marks all 4 records as Mendelian              
violation. However a consistent combination can be found if they are processed together. 
 
Problems related to variant representation has been recognized in the          
context of benchmarking NGS data processing methods, and numerous         
approaches have been developed for comparing two sets of results for a            
single sample (SMaSH(Talwalker et al. , 2014), Vcfeval(Cleary et al. ,         
2015), VarMatch(Sun et al. , 2017)). However, none of these tools are           
capable of resolving the issue with data from a family trio. 
 
One way to unify variant representations across a family trio is to use a              
joint variant caller such as GATK GenotypeGVCFs. This tool aggregates          
variants of multiple samples by combining overlapping trio records and          
re-genotyping them. Although joint calling resolves many representation        
issues, it is still unable to merge complex overlapping indels affecting           
the same site. This method also requires GATK (McKenna et al. , 2010)            
HaplotypeCaller as variant caller which eliminates the benchmarking        
purpose of trio analysis. 
 
In this paper, we present VBT, a Mendelian violation detection tool that            
uses advanced variant comparison to deal with ambiguities arising from          
different variant representations. VBT extends the variant comparison        
algorithm of vcfeval (Cleary et al. , 2015) for trio concordance analysis.           
We show that VBT outperforms all previous trio comparison methods in           
terms of accuracy of detecting Mendelian violations. 

2. Methods 

2.1 Variant Comparison and Ideal Mendelian 
Equation 

For a diploid variant set V from a single sample VCF, we define the              
phasing vector, PV = {p1, p2, .. p|V|} ∈ {1,2}|V|, where the i-th value (1 or                
2) indicates whether the first or second allele (Figure 1b) of the i-th             
variant is selected for the maternal haplotype. Similarly PV’

denotes the           
opposite phasing vector {3-p1, 3-p2, .. , 3-p|V|}, which indicates the alleles            
on the paternal haplotype, not selected by PV. A haplotype function h(V,            
PV) is defined (Cleary et al. , 2015) to produce the haplotype sequence            
obtained by applying all variants of V to the reference sequence using            
the PV phasing vector. vcfeval defines the variant matching problem as           
finding the optimal sets of variants Xopt, Yopt, and their corresponding           
phasing vectors PX

opt, PY
opt, that solves the following optimization         

problem : 
 
Xopt, PX

opt =  arg max I[h(X, PX), h(Y, PY)] I[h(X, PX’), h(Y, PY’)] |X|    (1) 
Yopt, PY

opt          B, Y CX ⊆   ⊆   
                          PX  {1,2}|X| , PY  {1,2}|Y|∈ ∈  
 
where B and C denote baseline (gold standard) and called (test) variant            
sets, and Xopt and Yopt are the sets of variants which maximize the             
number of matching variants in baseline and called variant set. I[seq1,           
seq2] is the indicator function that is 1 if seq1 = seq2, and 0 otherwise. 
 
For VBT, we aim to extend the definition in eq. (1) for family trios to               
detect Mendelian violations. Let M, F and C represent the sets of            
variants of mother, father and child, respectively. We define the trio           
matching problem as finding the optimal sets Xopt, Yopt, Zopt and their            
corresponding phasing vectors PX

opt, PY
opt, PZopt, that solve the following          

optimization problem: 
 
Xopt, Yopt, Zopt =  arg max I[h(X,PX), h(Z,PZ)] I[h(Y,PY), h(Z,PZ’)] |Z|    (2) 
PX

opt, PY
opt, PZopt           M , Y F , Z C X ⊆   ⊆   ⊆    

                                   PX  {1,2}|X| , PY  {1,2}|Y| , PZ  {1,2}|Z|∈ ∈ ∈  
 
Eq. (2) maximizes the number of child variants that follow Mendelian           
Inheritance rules. Zopt denotes the set of Mendelian-consistent variants in          
the child, and the remaining child variants C \ Zopt are marked as             
Mendelian violations. 
 
During variant comparison in VBT and vcfeval, syncpoints (Cleary et          
al. , 2015) are calculated procedurally which are genomic positions that          
delimit regions where variants within the region can be processed          
independently. For the variants inside a single region (subset), there are           
3|subset| combinations where, for each family member and each variant r,           
there are three possibilities: excluding r, including r with pr = 1, or             
including r with pr = 2. Therefore the time and space complexity of the              
fundamental algorithm of vcfeval scales exponentially with the size of          
the typical subset. |subset| is mostly small (ie. < 5) when comparing two             
VCF files. For larger subsets, even though some pruning strategies are           
applied to keep the total variant combination low, vcfeval uses a cutoff            
strategy by skipping regions where the total combination count exceeds          
the predefined limit.  
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Figure 2: Number of total non-ref variants vs region size for Central European (CEU) Trio using                
HaplotypeCaller. Regions are obtained using intermediate results (syncpoints) of vcfeval in           
--squash-ploidy mode. Mother-child and father-child VCFs are compared separately and          
resulting two sync point sets are intersected.  
 

In trio comparison with eq. (2), subset sizes are increased since we have             
mother, father and child variants in subsets instead of variants from two            
VCFs. In addition, for trio comparison, region intervals tends to be larger            
due to less number of syncpoints . For these two reasons, a similar cutoff             
strategy (estimated as |subset| > 15 with pruning strategies) using eq. (2)            
would cause to skip more than 200,000 variants (out of ~18 million            
single sample variants combined) as seen in Figure 2. Instead of using            
eq. (2) directly in VBT, we use a heuristic, described below, that            
alleviates exponential scaling at the cost of a small chance of making            
mistakes. 

2.2 Search Space Reduction and Same Allele Match 
Elimination 

We aim to decrease the number of possible combinations by separating           
the two indicator functions in eq. (2) for mother-child and father-child           
variant sets, and optimize the maternal and paternal haplotype sequences          
of child separately using the following equation:  
 
V1opt, PV1

opt  =  arg max I[ h(V1, PV1 ), h(V2, PV2) ] |V2|                         (3) 
V2opt, PV2

opt          V1 ⊆ VPARENT, V2 ⊆ VCHILD  
            PV1  {1,2}|V1|, PV2  {1,2}|V2|∈ ∈   

 
Where V2opt is the set of child variants that shares an allele with parent              
VPARENT. After separate processing, we can mark the child variants that           
exists in both haplotype sequences, and the remaining child variants          
become Mendelian violations. Note that Eq. (3) is not the same as the             
duo comparison method of Eq. (1). The former requires matching both           
genotypes, while the latter  requires matching one only. 
 
When processing mother-child and father-child variants separately, we        
need to guarantee that the child’s haplotypes use opposite phases PZ and            
PZ’. For heterozygous child variants, if one of the two alleles is not             
present in either the mother-child or the father-child sequences, they          
should be reported as a Mendelian violation. For instance, if genotype of            
mother is A/A, father is C/A and child is A/G for a multi-allelic SNP              
variant at the same position, then the child’s variant matches with both            
parents’ variants with allele A. Allele G of child on the other hand is not               
present in any of the parents. Although pairwise comparisons with both           
parents indicate one matching allele of the child, this locus is a            
Mendelian violation because the same phase is used for both matches. In            

most cases, we can indeed mark it as such. We call this condition same              
allele matching . 
 
In a family trio, child variants often match to parent variants with both of              
their alleles. For these child variants, any of the two alleles can be             
present in the final haplotype sequence, and at this stage we select the             
phase arbitrarily. If, after pairwise comparison, the same allele of the           
child is matched with both parents, we would mark it as violation,            
following the rules of same allele matching condition, even though, in           
this case, we could flip the phasing with one parent without breaking the             
match and resolve the inconsistency. To identify these variants, we apply           
the duo comparison function (ie. Eq. (1)) to mother-child and father-           
child variants: 
 
Xopt, PX

opt   = arg max I[h(X, PX), h(Z, PZ)] I[h(X, PX’), h(Z, PZ’)] |Z|    (4) 
Z1opt, PZ1

op         M , Z CX ⊆   ⊆   
                         PX  {1,2}|X|, PZ  {1,2}|Z|∈ ∈  

 

Yopt, PY
opt  = arg max  I[h(Y, PY), h(Z, PZ)] I[h(Y, PY′), h(Z, PZ′)] |Z|     (5) 

Z2opt, PZ2
opt        F , Z CY ⊆   ⊆   

                          PY  {1,2}|Y|, PZ  {1,2}|Z|∈ ∈  
 
where Z1 and Z2 are child variants sharing both alleles with mother and             
father variants respectively. From the remaining variants M \ Xopt ( =:            
MM), F \ Yopt ( =: FF), C \ Z1opt ( =: CC1) and C \ Z2opt ( =: CC2); we                     
obtain all child variants sharing a single allele by maximizing the           
number of variants in constructing a single haplotype sequence, ignoring          
the alternative phases of variant sets: 
 
XXopt, PXX

opt  =  arg max I[h(XX, PXX ),h(ZZ1, PZZ1)] |ZZ1|                  (6) 
ZZ1opt, PZZ1

opt          XX ⊆ MM, ZZ1 ⊆ CC1 

                PXX, PZZ1  
 

YYopt, PYY
opt  =  arg max I[h(YY, PYY ), h(ZZ2, PZZ2)] |ZZ2|                  (7) 

ZZ2opt, PZZ2
opt          YY ⊆ FF, ZZ2 ⊆ CC2 

                PYY, PZZ2 
 
where, during maximization, PXX, PYY, PZZ1 and PZZ2 are required to be            
such that the reference allele (‘0’) is never used in any comparison. I.e. if              
a variant has the genotype 1|0, the corresponding phasing is not allowed            
to take the value 2, because that would correspond to the ‘0’ allele. 
 
The reason for not allowing the reference allele to be used is the             
ambiguity caused by identical representation of excluded variant and         
included reference allele. If we allow reference alleles in the haplotype           
function for eq. (6) and (7), child variants having reference phasing           
would always be included regardless of the corresponding parent variant.          
For example, if genotype of mother is 0/2, father is 2/2 and child is 0/1               
for a variant, mother and child variants would be included in           
mother-child side because they share ‘0’ genotype. In father-child side,          
there is no shared allele but once the father variant is excluded, that             
position becomes reference and child variant alone could be included          
with ‘0’ genotype. At the end, child variant would be present on both             
mother and father final haplotypes and would be marked as Mendelian           
consistent, while it is a violation in reality. With the above restriction on             
the phasing vectors, we eliminate this mistake. 
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Figure 3: VBT pipeline using vcfeval best path algorithm and GA4GH benchmarking standard             
methods(Zook, 2015). Included variants are present in the best common path between parent and              
child while excluded variants are eliminated from that path. 
 
Using eq. (4), (5), (6) and (7), we construct the VBT pipeline as shown              
in Figure 3 to obtain our four child variant set Z1opt, Z2opt, ZZ1opt, ZZ2opt              
with their phasing information PZ1

opt, PZ2
opt, PZZ1

opt, PZZ2
opt

. Using these 4            
variant set, we check how many of them exist in both mother-child and             
father-child side to determine Mendelian violations with Algorithm 1: 

 
Algorithm 1: Same Allele Match Elimination  

  
procedure GETVIOLATIONS 
Input: Z1opt, PZ1

opt, Z2opt, PZ2
opt, ZZ1opt, PZZ1

opt, ZZ2opt, PZZ2
opt 

Output: ConsistentChildList , ViolationChildList  
1   CVars_MC =  Z1opt ∪  ZZ1opt, CVars_FC = Z2opt ∪ ZZ2opt 

2   CPhases_MC = PZ1
opt ∪ PZZ1

opt, CPhases_FC = PZ2
opt ∪ PZZ2

opt 

3   SortByIndex(CVars_MC, CPhases_MC)  
4   SortByIndex(CVars_FC, CPhases_FC)  
5   FOR  varM in CVars_MC, phaseM in CPhases_MC,  
     varF in CVars_FC, phaseF in CPhases_FC 
6              IF varM.Index  = varF.Index 
7                         IF IsHomozygous(varM) 
8                                    ADD varM to ConsistentChildList 
9                         ELSE IF phaseM ≠ phaseF 
10                     ADD varM to ConsistentChildList 
11                       ELSE IF varM ∈ Z1 OR varF ∈ Z2 
12                                  ADD varM to ConsistentChildList 
13                       ELSE 
14                     ADD varM to ViolationChildList 
15                       ENDIF 
16                        next(varM), next(varF), next(phaseM), next(phaseF) 
17            ELSE IF varM.Index  < varF.Index 
18                       ADD varM to ViolationChildList 
19                       next(varM), next(phaseM) 
20            ELSE  
21                       ADD varF to ViolationChildList 
22                       next(varF), next(phaseF) 
23            ENDIF 
24  ENDFOR 

 
 
In Algorithm 1, in order to identify child variants that share an allele             
with both parents, we first merge the shared genotype and shared allele            
child variant sets keeping the information of belonging sets for each           
variant at lines (1) and (2) of the pseudocode. Then we sort the merged              
child variant sets by variant indexes (order in VCF) at lines (3) and (4).              
At line (7), we check the condition where child variant is homozygous            
and same allele matching condition is ignored. At line (9) we check            

whether heterozygous child variants match with parents with different         
phasings. At line (11) we check if child variant matches to parent with             
both alleles so that alternative phasing can also be used to avoid same             
allele matching condition. We use next command to iterate to the           
following variant/phase at line (16), (19) and (22). At the end, we obtain             
the list of Mendelian violations and consistent child variants for the input            
sets Z1opt, Z2opt, ZZ1opt and ZZ2opt.  
 
In eq. (6) and (7), reference alleles of child variants are ignored during             
maximization calculation. As a result, child variants that are matching          
one parent with non-reference allele and other parent with reference          
allele are marked as Mendelian violation after processing variants with          
Algorithm 1. In order to identify and correct the decision of these child             
variants, we use the following equations:  
 
KMOTHER = { r ∈ Z2opt ∪ ZZ2opt : Ar(1) = aREF ∨ Ar(2) = aREF, 
            h(Xopt ∪ XXopt, PX

opt ∪ PXX
opt )[s r..er] = Ref [s r..er] }                (8) 

  

KFATHER = { r ∈ Z1opt ∪ ZZ1opt : Ar(1) = aREF ∨ Ar(2) = aREF, 
            h(Yopt ∪ YYopt, PY

opt ∪ PYY
opt )[s r..er] = Ref [s r..er] }               (9) 

 
Where s r and er denote the start and end position of variant r and Ref               
denotes the reference sequence string. Indexing of the haplotype         
sequence is inherited from the reference sequence. Ar(k) is the allele           
function that represents the allele of variant r with the phase selection of             
k ∈ {1,2} and aREF is the reference allele of variant. KMOTHER and KFATHER              
are the sets of consistent child variants that shares a reference allele with             
Mother and Father variants respectively and they are inserted to the set            
of consistent variants. The remaining unprocessed child variants (ie. C \           
(Z1opt ∪ Z2opt

 ∪ ZZ1opt ∪ ZZ2opt)) are inserted to the set of violations. 
 
Once we obtain decisions of all child variants, we merge mother, father            
and child VCF as a trio by merging variants at the same position. Then,              
we apply three post-processing steps on the merged VCF: 
 

(1) Assign Mendelian decision to sites where child has no variant          
(ie. homozygous ref child variants in merged trio). For each          
hom-ref child variant, final haplotype sequences of both mother         
and father are checked. If none of the parent haplotype          
sequences is equal to reference at the child variant’s location,          
then the variant is marked as violation. 

 
(2) Consolidate the decision for variants affecting the same position         

in the final haplotype sequence. Consistent VCF record        
decisions are changed to violation if there is at least one           
overlapping violation VCF record. 

 
(3) Exclude sites where nocall is reported by at least one family           

member. Nocall variants are sites where insufficient information        
is available to determine genotypes and they are usually         
represented as ‘./.’ at genotype column of VCF records.  

 
Finally, we solve the maximization problem given in eq (4), (5), (6) and             
(7) using dynamic programming solution of Cleary et al. , (2015) by           
slightly changing the algorithm for reference overlapping variants which         
is described in Supplementary text, Section 2. 
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2.3 Evaluation Methods and Data 

A truth set for trio analysis does not exist for direct result comparison.             
Instead, we use alternative testing methods to compare VBT and existing           
tools. For our experiments, we use high coverage alignments of Central           
European (CEU) individuals (NA12878, NA12891 and NA12892)       
available at 1000 genomes phase 3 ftp server (ftp://ftp.1000genomes.ebi. 
ac.uk/vol1/ftp/phase3/data/). 
 
For our first testing experiment, we construct trios from single individual           
samples by changing their variant representations. We use FreeBayes         
(Garrison et al. , 2012) to generate unnormalized VCF files. Then we use            
Vt norm (Tan et al. , 2015) to alter variant representations of VCF. By             
using vcftools merge, we merge two identical unnormalized VCFs         
(playing the roles of mother and father samples) and one normalized           
VCF (playing the role of child sample). Since all trio samples belongs to             
the same individual, we expect to see zero Mendelian violations by all            
Mendelian violation checking tools. 
 
For the second testing experiment, we implement a Mendelian violation          
validator that checks all possible combinations of variant phasings in a           
given set of small regions. We obtain the regions by merging syncpoints            
yielded by mother-child and father-child variant comparisons. Our        
validation pipeline performs a comparative analysis of unique Mendelian         
violations between two Mendelian violation checking tools. That is         
why, we first select the regions where either VBT or naive tools find a              
Mendelian Violation. We ignore the regions in which both tools found           
no Mendelian violations. 
 
For each selected region, we discard the variants that are marked as            
Mendelian violation and, using the remaining variants, we seek for a           
Mendelian consistent combination. If no consistent combination can be         
found, the region is marked as missing MV for that tool. If a consistent              
combination can be found for both VBT and the naive method for a             
region, then we compare the reported violation counts for that region in            
order to check whether there are extra Mendelian violations reported. We           
accept the decision of tool with less Mendelian violation as correct and            
mark that region for the other tool as extra MV . A more detailed             
overview of our validation pipeline can be found in Supplementary Text,           
Section 3. 

3. Results 

VBT resolves variant representation differences in family trios        
efficiently by maximizing matching child variants with mother and         
father separately instead of using the ideal trio comparison function (eq           
2). This enables covering nearly all regions in datasets and provide VBT            
a reasonable running time, which varies between 6 and 8 minutes on            
Amazon c4.4xlarge instance (Intel Xeon E5 2.9 Ghz, 16 vCPU, 30 GiB            
Memory) depending on complex region count for whole human genome          
that contains 6.1 million vcf record. 
 
In our first test scenario, we use the trios we generated from a single              
CEU sample to show that naive trio comparison tools produce wrong           
Mendelian decisions due to variant representations. We compared VBT,         
naive (line-by-line) Mendelian error checking tools (RTG -mendel,        
GATK -SelectVariants, Vcftools -mendel) and PhaseByTransmission      
(PBT). For PBT, we used both 2x10-2 and 10-8 as mutation rates, and             
obtained the same number of corrections plus mutations . As seen in           

Table 1, VBT correctly outputs no violations for all three test data while             
the other tools output more than seventy thousand violations. 

Table 1. Violation counts of different tools where the input trio is 
constructed from a single sample with different variant representations 

Input Sample VBT Naive PBT 

 NA12878 as trio 0 76,867 72,111 
 NA12891 as trio 0 78,854 73,396 
 NA12892 as trio 0 76,176 72,674 

Naive check tools include RTG -mendel, GATK -SelectVariants and Vcftools -mendel. For            
PhaseByTransmission(PBT), sum of violation count and corrected genotype count is used in this             
table. 
 
In the second experiment, we used CEU samples to compare trio           
concordance rate of different variant callers, FreeBayes (fb),        
UnifiedGenotyper (ug) and HaplotypeCaller (hc). In addition, we apply         
normalization (vt norm) on FreeBayes outputs and add it as a fourth            
testing set to see if normalization can reduce errors of naive comparison            
tools. As a final testing trio, we produce gVCFs using HaplotypeCaller           
and jointly call them using GATK GenotypeGVCFs. We used vcftools          
(v0.1.14) to merge VCF files of individual samples except the jointly           
called HaplotypeCaller trio VCF. 

Table 2. Violation validation results of different variant calling 
pipelines using CEU trio bam files aligned with BWA-MEM. 

 VBT Naive  

Total MV 
Regions 

Extra MV 
Regions 

Missing MV 
Regions 

Extra MV 
Regions 

Missing MV 
Regions 

fb 163,094 446 876 21,313 18,656 
ug 120,709 383 905 6,475 17,475 
hc 73,501 634 353 32 6,560
fb+norm 163,606 407 1,244 23,341 15,859 
hc joint 39.488 334 84 226 1,643

Comparison results of FreeBayes (fb), HaplotypeCaller (hc) and UnifiedGenotyper (ug).          
Autosomes only. No filtration is applied to the data. Regions may contain zero or multiple               
Mendelian violations. 
 

 
Figure 4: Violation Precision vs Recall plot of VBT and Naive tools for 5 different variant                
calling pipelines. Recall is defined as (Total MV Region - Extra MV - Missing MV) / (Total MV                  
Region - Extra MV) and precision is defined as (Total MV Region - Extra MV - Missing MV) /                   
(Total MV Region - Missing MV) according to Table 2. 
 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 24, 2018. ; https://doi.org/10.1101/253492doi: bioRxiv preprint 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data
https://arxiv.org/abs/1207.3907v2
https://arxiv.org/abs/1207.3907v2
https://arxiv.org/abs/1207.3907v2
http://dx.doi.org/10.1093/bioinformatics/btv112
http://dx.doi.org/10.1093/bioinformatics/btv112
http://dx.doi.org/10.1093/bioinformatics/btv112
https://doi.org/10.1101/253492
http://creativecommons.org/licenses/by-nc-nd/4.0/


Berke C. Toptas et al. 

After we generate 5 trio VCFs using different variant calling pipelines,           
we ran VBT and naive checking tool for each trio and compare their             
result using our Mendelian violation pipeline. Table 2 shows the          
numbers of total violations, falsely identified violations and missed         
violations for the two methods, and for the 5 different variant calling            
pipelines. For all 5 testing pipeline, VBT has over 99% precision and            
recall values (Figure 4). The precision of naive tools and VBT is closer             
for HaplotypeCaller and jointly-called HaplotypeCaller because the       
representations of called variants are more similar across the samples          
compared to other variant callers. 

4. Discussion 
In this work, we presented VBT, a mendelian violation detection tool           
that is capable of comparing complex indels in family trios. We showed            
with our test scenarios that, VBT has better accuracy than the existing            
tools. 
 
With our method, we process mother-child and father-child haplotype         
chains separately. However obtained local best paths from mother-child         
and father-child duos are not always identical to the global optimum of            
the trio. This introduces a small error rate visible on Table 2. With our              
proposed method, we accept a small loss in accuracy in exchange for            
being able to analyze whole genome data with minimum number of           
skipped regions plus we gain a significant performance by reducing the           
search space.  
 
Instead of our method, ideal Mendelian function (eq. 2) could be           
implemented to minimize error rate by skipping variants in more          
complex regions (~1% of all records). Then, skipped variants could          
either be ignored, be processed using naive variant comparison or be           
processed using the current VBT strategy. 
 
VBT’s accuracy can further be improved by correcting wrong/missed         
decisions by comparing vcf output with naive comparison as a          
post-processing step. In regions where the naive method and VBT          
disagrees, a nonlinear violation check can be performed by generating all           
possible subsequences for that region, similarly to our violation         
validation pipeline. This would not increase overall running time         
considerably because the slow nonlinear checking method would be         
invoked only for regions where the naive method disagrees with VBT.           
As a result, VBT would serve as a cost-efficient detector informing us            
whenever the naive comparison  methods are not enough. 
 
VBT does not alter variant representations during or after variant          
comparison. Instead, we keep the original variant representations and         
add additional info tag that whether a variant is Mendelian violation or            
not. The advantage of this is the ability of tracking variants for            
benchmarking purposes. The disadvantage is that existing tools which         
require trio analysis such as PhaseByTransmission are not able to use           
VBT output directly and need to read Mendelian decision annotation          
from output vcf records.  
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