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Abstract  

Large-scale mass spectrometry-based metabolomics and proteomics study requires the long-

term analysis of multiple batches of biological samples, which often accompanied with 

significant signal drift and various inter- and intra- batch variations. The unwanted variations 

can lead to poor inter- and intra-day reproducibility, which is a hindrance to discover real 

significance. We developed a novel quality control-based random forest signal correction 

algorithm, being ensemble learning approach to remove inter- and intra- batches of unwanted 

variations at feature-level. Our evaluation based on real samples showed the developed 

algorithm improved the data precision and statistical accuracy for metabolomics and 

proteomics, which was superior to other common correction methods. We have been able to 

improve its performance for interpretations of large-scale metabolomics and proteomics data, 

and to allow the improvement of the data precision for uncovering the real biologically 

differences.  
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INTRODUCTION 

Mass spectrometry (MS)-based omics techniques, including metabolomics and proteomics, 

are rapidly growing fields in system biology combining both analytical and statistical 

methodologies for a high throughput analysis of multiplex molecule profiles. Large-scale 

experiments coupled with varieties of statistical tools have been used to identify specific 

biological changes, leading to the understanding of biomarkers and multi-biochemical 

pathways 1,2. However, the omics data obtained from MS-based experiments is subject to 

various forms of unwanted variations including both within-batch and between-batch 

variations introduced by signal drift/attenuation and multiplicative noise 3 (e.g., temperature 

changes within the instrument, accumulated contamination, or loss of instrument performance 

during a long run of samples). These inherent biases and variations in metabolomics and 

proteomics data were challenges for quantitative comparative analysis 3,4. 

Quality control (QC) has been considered as an essential step in the large-scale and long-

term biological study, allowing to evaluate the response signal drift, mass accuracy and 

retention time in intra- and inter-batch experiments 5. Based on a controlled experiment 

involved QC samples throughout the data collection process, the most advantageous uses of 

QC samples can be obtained, allowing the correction of signal drift and other systematic noise 

through mathematical algorithms in liquid or gas chromatography (LC or GC) hyphenated to 

MS-based metabolomics study 5,6. However, there is few such controlled experiment and 

algorithms for improving the data quality in label-free LC-MS based proteomics 4,7. Given that 

technological advances in QC-based experimental designs and the growth of large-scale 
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metabolomics and proteomics projects, as well as the requirement of the accuracy and 

efficiency for handling unwanted variations, the new computational algorithms support is 

highly demanded. Therefore, we developed a novel QC-based random forest signal correction 

(QC-RFSC) algorithm to remove unwanted variations at feature-level in large-scale 

metabolomics and proteomics data. 

 

MATERIALS and METHODS 

Feature-based signal drift correction 

In the following, for any feature j in any sample i, the intensity value in the preprocessed 

data is represented by xij and the corrected value by x’ij. Due to the different degree of drift in 

each feature j in a sample i, the correction factor Fij was assigned according to eq 1. 

x’𝑖𝑗	
   = 	
  
x𝑖𝑗
𝐹𝑖𝑗 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (1) 

The correction factor of each feature was obtained by learning an ensemble of regression 

trees each grown on a random sub - QC sample to infer a noisy variant during the experimental 

analysis, and calculated using the regression fit derived from the intensities of the QC injections. 

For a feature j in the QC-RFSC method, each sample i will have a different Fij according to its 

position kij in the injection order as defined by eq 2: 
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Φ represents random forests model with 500 regression trees. After QC-RFSC procedure 

and batches integration, the low quality of peaks could be filtered using quality assessment 

criteria 2. Two additional common signal drift correction methods, such as QC-RLSC 2 and 
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QC-SVR 8 were also tested in our study. The correction factors in QC-RLSC and QC-SVR 

methods were calculated using the nonlinear local polynomial regression (LOESS) and support 

vector regression (SVR) fit derived from the intensities of the QC injections, respectively. 

Sample preparation and LC-MS analysis 

Urine preparation for metabolomics analysis was performed as previously reported9. A 

Dionex U3000 LC system coupled online to Q Exactive Focus instrument (Thermo Fisher 

Scientific, MA, USA) was employed to detected the urinary metabolic profile. On the other 

hand, serum preparation including protein denaturation, digestion, and alkylation in proteomics 

analysis were performed as previously reported 10. Total of 174 transitions response to 69 

proteins were monitored by using a Dionex U3000 LC system coupled online to TSQ Quantiva 

instrument (Thermo Fisher Scientific, MA, USA) with selected reaction monitoring (SRM) 

mode. The details of the analytical experiments were described in supplemental materials. 

Study designs 

In this work, two non-targeted metabolomics and one quantitative SRM-based proteomics 

studies were involved to evaluate the performance of QC-RFSC method and statTarget 2.0 

software. 

Firstly, we performed a MS-based metabolomics experiment for the investigation of the 

urinary metabolic profiles (Dataset 1). One pooled urine sample and another individual urine 

sample were used as the QC sample and real sample, respectively. The aliquoted QC samples 

were analyzed after every five aliquoted real samples in the entire batch. In total, we produced 

4549 metabolic features, which were consistently detected in 46 QC samples and 175 aliquoted 
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urine samples. Secondly, we collected a standard MS-based metabolomics data (Dataset 2) 

from GigaScience databases (ID: 100108) 11,12. A total of individual 180 pregnant women were 

recruited and divided into six groups (A-F) according to their gestational weeks. The aliquoted 

38 QC samples were analyzed after every six aliquoted real plasma samples in the two batches. 

The detailed description of Dataset 2 was provided in supplemental materials. Thirdly, we 

designed a SRM-based proteomics study for quantitative analysis of protein markers of 

Parkinson’s disease (PD). The study was approved by the ethics committee of Hong Kong 

Baptist University’s Institutional Review Board, and written informed consents were obtained 

in this study. A total of 34 PD patients together with 34 normal control subjects were recruited. 

Venous blood was collected with blood collection tubes in the morning before breakfast from 

all the participants, and then serum samples were separated at room temperature from vein 

blood and stored at −80 °C until use. The pooled QC samples were analyzed by LC-MS after 

every eight subject’s samples in the entire batch. The running order of subjects was also 

randomized. This study was used to evaluate the performance of the QC-RFSC method for 

removal of inter-batch variations in the proteomics data (Dataset 3). 

Data analysis 

MS raw data files were converted to mzXML format using ProteoWizard. The XCMS13 

and Skyline14 was used for the extraction of peak abundances of metabolites and tryptic 

peptides, respectively. The statTarget was employed for signal drift correction at feature-level 

and statistical analysis.  
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RESULTS and DISCUSSION 

Signal drift correction 

Supervised machine learning allows for systematic pattern identification from a high-

dimensional features in the training dataset and minimizes manual tuning for optimal model 

generalization. It is well-suited for an unbiased analysis of MS data, and have been used for 

identification of metabolite fingerprinting, biomarkers and protein sequences. Twelve well-

known supervised machine learning algorithms were evaluated by using the caret package with 

10-fold cross validation 15, such as random forest (RF), bayesian, eXtreme gradient boosting, 

support vector machines, LOESS, linear regression, etc. Our results showed the RF, QRF and 

Loess outperformed with high predictive accuracy or R-square at median and first quartile 

value for the dataset 1 (Fig. 1).  

Given that RF performed well in the real dataset and being one of the most accurate 

learning algorithms available for MS-based omics data, RF was therefore selected for QC-

based signal correction 16,17. QC-RFSC algorithm integrates the RF based ensemble learning 

approach to learn the unwanted variations from QC samples, and predict the correction factor 

in the neighboring real samples responses. To evaluate the performance of QC-RFSC 

algorithms, we compared available algorithms that were used for QC-based signal correction, 

including RF, SVR 8 and LOESS 2. We further calculated the cumulative frequency of RSD% 

of all features (Fig. 2). In the raw data, the proportion of peaks within 15 % RSDs was only 

1.97 % of the total peaks. After adjusted by QC-RFSC method, there were a 12.7-fold increase 

(25.1%) in the number of peaks within 15 % RSDs. Meanwhile, the proportion of peaks with 
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RSDs less than 30 % increased significantly from 43.9% to 86.2 % after QC-RFSC method. 

The QC-RLSC and QC-SVR algorithms also increased the proportion of peaks with 30% RSDs 

to 65.5% and 61.9 %, respectively (Fig. 2). Our results demonstrated that the QC-RFSC 

robustly increased precision of metabolomics data and statistical accuracy through removal of 

unwanted variations, which had better performance than the other two methods. 

Precision improvement for metabolomics and proteomics data 

Precision is one of the most important criteria in the assessment of an analytical method, 

and achieved by monitoring quality control samples during analysis5. The percentage RSD% 

of each peak in QC samples was usually used for precision evaluation. To evaluate the 

precision improvement that can be achieved by our software, we evaluated the cumulative RSD 

distribution of all features in metabolomics data (dataset 2) and proteomics data (dataset 3) 

with pre- and post- QC-RFSC, QC-RLSC and QC-SVR (Fig. 3-4). As a comparison, the RSDs 

of peaks in metabolomics data were significantly decreased across the entire range using the 

QC-RFSC, QC-RLSC and QC-SVR methods (Fig. 3A). The proportion of peaks with RSDs 

less than 30 % increased significantly to 90.9% after QC-RFSC compared with the raw data 

(52.1%). The QC-RLSC and QC-SVR also increased the proportion of peaks within 30% RSDs 

to 80.1% and 72.3%, respectively. The PCA score plots showed the QC samples were tightly 

clustered due to QC-RFSC correction (Fig. 3B, C).  

Beside metabolomics data analysis, the QC-RFSC could also significantly improve the 

data quality for the proteomics. The proportion of peaks within 30 % RSDs increased 

significantly to 87.9% after QC-RFSC compared with the QC-RLSC (68.4%) and QC-SVR 
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(47.7%) (Fig. 4A). The clustered QC samples in PCA score plots indicated the data precision 

was significant improved. (Fig. 4B, C). The results demonstrated that the QC-RFSC 

significantly increased precision of metabolomics and proteomics data and had better 

performance than the two other methods.  

It is noted that label-free proteomics experiments were much more complex than 

metabolomics experiments 18. The complicated sample preparation procedures (i.e. pre-

fraction, digestion, desalting) may produce additional variations caused by systematic or 

random errors 4,18. Our results showed that the QC-RFSC is an efficient method to remove 

inter- and intra- batch of unwanted variations at feature-level, and improve the data precision 

and statistical accuracy for metabolomics and targeted proteomics. 

CONCLUSION 

The developed QC-RFSC algorithm is a highly efficient approach to remove unwanted 

variations, to improve the data quality of metabolomics and proteomics data, and to further 

enlarge the number of differentially expressed features. Due to the substantial similarities 

among different types of expression data from system biology analysis (e.g., high dimension, 

analytical bias, significance analysis and so on), it was also feasible to extend the application 

of QC-RFSC algorithm from quantitative metabolomics data to other system biology data such 

as protein or peptide expression data. 
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Figure 1. Comparison of the performance of machine learning models. Violin plot of the predictive accuracy of twelve 

machine learning models on dataset 1. Two grey dots denotes the first and third quantile, respectively; Blue dot, median value; 
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Figure 2. Comparison of the cumulative frequency of RSD% of all features with three correction methods 
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Figure 3. The performance of QC-RFSC method for metabolomics data. A, comparison of the cumulative frequency of RSD% 

of features in metabolomics data (dataset 2). B and C, PCA score plots of the metabolomics data with pre- (B) and post- (C) 

correction. Red dots denote the QC samples; Black dot, real samples. 
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Figure 4. The performance of QC-RFSC method for proteomics data. A, comparison of the cumulative frequency of RSD% 

of features in proteomics data (dataset 2). B and C, PCA score plots of the proteomics data with pre- (B) and post- (C) 

correction. Red dots denote the QC samples; Black dot, real samples. 
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