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Abstract

The dopamine (DA) hypothesis of cognitive deficits suggests that too low or too high extracellular DA
concentration in the prefrontal cortex (PFC) can severely impair the working memory (WM) maintenance
during delay period. Thus, there exists only an optimal range of DA where the sustained-firing activity,
the neural correlate of WM maintenance, in the cortex possesses optimal firing frequency as well as
robustness against noisy distractions. Empirical evidences demonstrate changes even in the D1 receptor
(D1R)-sensitivity to extracellular DA, collectively manifested through D1R density and DA-binding affinity,
in the PFC under neuropsychiatric conditions such as ageing and schizophrenia. However, the impact
of alterations in the cortical D1R-sensitivity on WM maintenance has yet remained poorly addressed.
Using a quantitative neural mass model of the prefronto-mesoprefrontal system, the present study reveals
that higher D1R-sensitivity may not only effectuate shrunk optimal DA range but also shift of the range
to lower concentrations. Moreover, higher sensitivity may significantly reduce the WM-robustness even
within the optimal DA range and exacerbates the decline at abnormal DA levels. These findings project
important clinical implications, such as dosage precision and variability of DA-correcting drugs across
patients, and failure in acquiring healthy WM maintenance even under drug-controlled normal cortical
DA levels.

Introduction

Working memory (WM) is a crucial asset of cognitive facility during delayed-response tasks. It is comprised
of many subprocesses, namely, attentional control system, retention of cue-induced information over a
brief delay interval (WM maintenance), and other executive functions performing manipulation as well as
retrieval of cue-specific information at the end of the delay period. These processes concertedly guide the
goal-directed response. However, WM maintenance lies at the core of these various cognitive operations
(Miller 2013). Sustained/persistent-firing activity in the cortex of human as well as non-human primate
brain during delay is the neural correlate of WM maintenance. Although participation of various regions
in the cortex, including prefrontal cortex (PFC), posterior parietal cortex (PPC) and inferior temporal
cortex (ITC), has been observed in WM maintenance (Christophel et al. 2017), the PFC is known to play
a pivotal role.

The neurochemical dopamine (DA) exerts a strong modulating effect on WM. Although the effect of
DA is mediated through the activation of D1 receptors (D1Rs) as well as D2 receptors (D2Rs) present
locally in the cortical region, it is well established that the effect on WM maintenance is predominantly
mediated through the D1Rs activation whereas D2Rs are primarily involved in the WM updating and
executive functions (Wang et al. 2004;Floresco and Magyar 2006). The computational studies (Durstewitz
et al. 1999;Brunel and Wang 2001;Cohen et al. 2002;Deco and Rolls 2003;Loh et al. 2007) and experimental
studies (Murphy et al. 1996;Zahrt et al. 1997;Seamans and Yang 2004;Williams and Castner 2006;Arnsten
et al. 2017) have brought immense growth in our understanding of the dopaminergic modulation of WM
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maintenance. These attempts have led to the well-known DA hypothesis of cognitive deficit observed under
various neuropsychiatric conditions, such as ageing (de Keyser et al. 1990;Bäckman et al. 2011), stress
(Arnsten and Goldman-Rakic 1998;Qin et al. 2009), and schizophrenia (Goldman-Rakic et al. 2004;Arnsten
et al. 2017). According to this hypothesis, too low or too high extracellular DA concentration in the PFC
can severely impair the WM maintenance during delay period. Thus, there exists only an optimal range of
DA where the sustained-firing activity, the neural correlate of WM maintenance, in the cortex possesses
optimal firing frequency as well as robustness against noisy distractions.

However, several experimental studies (de Keyser et al. 1990;Suhara et al. 1991;Knable et al. 1996;Abi-
Dargham et al. 2002;Abi-Dargham and Moore 2003;Slifstein et al. 2008;Bäckman et al. 2011; Abi-Dargham
et al. 2012;Slifstein et al. 2015) have also reported alterations even in the cortical D1R density and
reactivity of DA-binding sites on individual D1Rs under various neuropsychiatric conditions. These
factors together critically regulate the efficiency of the local cortical network to detect changes in DA
content and defines the D1R-sensitivity of the cortical region. It is experimentally measured in terms of
binding potential (BP) of D1Rs in the PFC (Abi-Dargham et al. 2002;Bäckman et al. 2011;Abi-Dargham
et al. 2012). Accordingly, alterations in D1R-sensitivity appear as an additional important factor to be
considered in conjunction with the alteration in cortical DA content. However, the impact of alterations
in D1R-sensitivity on WM maintenance has still remained unaddressed.

The present study addresses this issue by employing a quantitative neural mass model of the prefronto-
mesoprefrontal system, which is comprised of the reciprocal interactions between the PFC and cortical-
projecting DA neurons residing in the ventral tegmental area (VTA) in the midbrain (Peters et al.
2004). Particularly, the impacts of D1R-sensitivity on the firing frequency and robustness of the cortical
persistent activity during delay are observed. Moreover, the mesocortical scale of the framework facilitates
quantitative observations of the variations in modulation-associated extracellular DA under different
conditions of the sensitivity. The findings suggest that cortical D1R-sensitivity critically governs the
range of cortical DA level through which modulation of WM maintenance occurs in the physiological
scenario. Interestingly, this regulation is a consequence of feedback control of cortical D1R-sensitivity
over the dynamics of DA release from VTA-residing DA neurons during delay. Accordingly, increase in
D1R-sensitivity engenders shrinking of the optimal DA range and shift of the range to lower concentrations.
This essentially curtails the safe range of efficient WM maintenance in the PFC in the presence of
physiological fluctuations in cortical DA. Furthermore, besides exacerbating the decline in WM-robustness
at abnormal DA levels, increased sensitivity is marked with lesser robustness of persistent cortical activity
even within the optimal DA range in comparison to lower D1R-sensitivity.

Methods

The particular subset of the larger prefronto-mesoprefrontal system modeled here includes interactions
between a local population of cortical neurons in the dorsolateral prefrontal cortex (DLPFC) extending
corticomesencephalic glutamatergic projections (Kornhuber et al. 1984;Sesack and Carr 2002) to a
subpopulation of DA neurons in the VTA, which in turn sends mesocortical dopaminergic projections
(Björklund and Lindvall 1984) to the cortical population. In this way, the reciprocal interaction (Fig
1a) gives rise to the mesocortical circuit. The DLPFC is a cortical region within the PFC and has
been observed to be actively involved in many visuospatial WM tasks (Williams and Goldman-Rakic
1995;Goldman-Rakic et al. 2000;Arnsten et al. 2012). The mathematical model Tanaka 2006 employed
here adopts a neural mass approach where the population-averaged activities of the different kinds of
neuronal populations constituting the circuit dynamics are considered. The present model provides
quantitative profiles of the various measurable entities of the mesocortical dynamics in close association
with their experimentally known estimates. Further, a stochastic formulation of the mass model Reneaux
et al. 2015 is utilized to gain features of robustness of the WM maintenance during delay under the
physiologically-relevant situation of noisy mesocortical dynamics.
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Modeling the dynamics of local cortical network

Glutamate-releasing excitatory pyramidal neurons and GABA-releasing inhibitory interneurons are the
most abundant neurons in the PFC. The layer V-VI (deep-layer) neurons are the subject of interest here
as they have been found, to be mainly associated with the recurrent sustained firing activity during
WM-tasks (Douglas and Martin 2004). The superficial layers are mainly involved in receiving afferent
stimuli from various parts of the brain, such as thalamus and intercortical regions, and transmit them
to the deep layers. Delayed-response tasks, such as spatial tasks, have demonstrated different cortical
neurons to be specifically tuned to firing in response to a characteristic stimuli presented (Goldman-Rakic
1988, 1996). Therefore, there exists local clusters of cortical neurons which fire maximally towards a
specific external stimuli, such as orientation in space in the spatial tasks, than the others.

Under the present neural mass framework, the excitatory and inhibitory neurons in a local cortical
network are pooled into distinct populations and the interactions among them are considered at the
population-level. Accordingly, DLPFC activity is comprised of the local population activity of excitatory
pyramidal neurons (xPN ). The pyramidal population self-excites itself with the synaptic efficacy WPP

(feed-forward excitation) and excites the population of local GABAergic interneurons with the synaptic
efficacy WPI . In turn, the activity of interneuron population (xIN ) exerts inhibition on xPN with the
synaptic efficacy WIP (feed-back inhibition) as well as suppresses itself with the synaptic efficacy WII .
This interplay between the feed-forward excitation and the feed-back inhibition leads to the establishment
of sustained-firing activity in the DLPFC, which represents the formation and maintenance of WM during
delay period.

dxPN (t)

dt
= −∆xPN (t)

τPN
+WPP f (a∆xPN )−WIP f (b∆xIN ) (1)

dxIN (t)

dt
= −∆xIN (t)

τIN
+WPIf (a∆xPN )−WIIf (b∆xIN ) (2)

where, ∆xPN (t) = xPN (t)− xbPN and ∆xIN (t) = xIN (t)− xbIN . The xbPN and xbIN corresponds to the
basal spontaneous activity level in the pyramidal and GABAergic interneuron populations, respectively,
in the local cortical network in the PFC.

The activation function, f (∆x) where ∆x (t) ∈ {∆xPN (t) ,∆xIN (t) ,∆xDN (t) ,∆yDA (t)} signifies
a biophysically-imposed finite saturating limit to which the different variables may rise during their
activation and is given by,

f (∆x) =

{
tanh (A∆x) ,∆x (t) ≥ 0
0,∆x (t) < 0

}
(3)

here, A denotes the constants a, b, c, d associated with the tanh function of ∆xPN (t) ,∆xIN (t) ,∆xDN (t) ,
∆yDA (t), respectively.

The first term on the right-hand side of equations 1 and 2 denotes the excitability of the population of
pyramidal neurons and interneurons characterized by the specific time constants τPN and τIN , respectively.
A large time constant implies a greater excitability of the neurons constituting a population. The second
term in equations 1 and 2 represents the recurrent excitation of the pyramidal neurons and excitation of
interneurons by the pyramidal activity, respectively, with the corresponding synaptic efficacies WPP and
WPI . The last term in these equations represents the inhibition of pyramidal population by interneuron
population and self-inhibition of interneuron population, respectively, with the corresponding synaptic
efficacies WIP and WII .

Modeling the dynamics of cortical DA regulation

According to the standing literature, there still exists numerous elements of confusion regarding the
regulation of cortical DA during WM maintenance. One of these elements is the role of tonic vs. phasic
release of DA in the cortex as well as the associated tonic and phasic activities of the cortical-projecting
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sub-population of DA neurons residing in the midbrain region. To a great extent, numerous experiments
performed in the subcortical region, such as striatum, have portrayed a clearer description of the mechanism
of DA regulation in these areas (Grace 2016). However, this clarity is still lacking in the context of
cortical areas, such as PFC, during WM tasks owing to a dearth of studies on these regions. Moreover, the
various intricate differences in the cytoarchitecture, DA-receptor abundance as well as spatial distribution,
DA-uptake transporters and DA synthesis etc. between the PFC and subcortical region (Sesack 2014)
raises doubt over the exact translation of the mechanism obtained for the latter to the WM functioning
in the PFC. An elaborate description of these factors are mentioned and argued in the Supplementary
Text. Based on the argument, it is concluded that the tonic activity of the DA sub-population strictly
involved in the closed-loop mesocortical circuit may increase due to the sustained-firing activity in the
PFC. Consequently, it leads to enhanced tonic DA release in the cortex and underlies WM maintenance
during delay period. This dynamics of cortical DA regulation is employed in the present model framework.

Accordingly, the variations in the population-averaged activity of mesocortical DA neurons, xDN , in the
VTA and the cortical bulk or volume-averaged extracellular DA content, yDA, under the mesoencephalic
excitation are modeled here as,

dxDN (t)

dt
= −∆xDN (t)

τDN
+WPDf (a∆xPN ) (4)

dyDA (t)

dt
= −∆yDA (t)

τDA
+WDyf (c∆xDN ) (5)

Where, ∆xDN (t) = xDN (t) − xbDN and ∆yDA (t) = yDA (t) − ybDA. The xbDN and ybDA corresponds to
the basal activity of mesocortical DA neurons and the basal extracellular DA concentration, respectively,
in the PFC under resting conditions.

The first term on the right-hand side of equation 4 denotes the excitability of the population of
DA neurons characterized by the specific time constant τDN . A large time constant implies a greater
excitability of the DA neurons. The second term in equation 4 represents the excitation of DA neurons
by the cortical pyramidal activity xPN with the glutamatergic synaptic efficacy WPD. Further, the first
term in Equation 5 represents the uptake and degradation of DA in the extracellular region in the PFC
with the characteristic time constant τDA whereas the second term signifies the release of DA by the
excited DA neuron population with the efficiency parameter, WDy. WDy denotes the DA-releasability of
the dopaminergic projections and critically relies on the intrinsic DA metabolism and release probability
of the DA-containing vesicles at the axonal terminals of mesocortical projections (Fig 1b).

Anatomical and electrophysiological studies have shown that there also exists a population of GABAer-
gic neurons in the VTA which receives glutamatergic inputs from the cortical areas and acts as a brake
system to suppress the excess activity of the DA neuron population (Bourdy and Barrot 2012). The
present model does not incorporate an explicit dynamics of GABA population in the VTA. Rather, the
magnitudes of the parameters WPD for excitation of DA neurons by cortical projections and τDN for
the self-decay of DA population activity have been adjusted in a manner so that the putative effects
of VTA-inhabiting GABA population could be accounted for. Somatodendritic D2 autoreceptors are
generally known to play a crucial role in lateral inhibition of DA neuron activity in the VTA. However, the
sub-population of DA neurons in the VTA extending mesocortical projections stands as an exception to
this phenomenon of somatodendritic lateral inhibition (Ford 2014). Furthermore, the cortical DA content
has been assumed here as a single entity or a pool which varies according to DA neuron’s activity. An
explicit consideration of synaptic release of DA and its volume diffusion in the cortical area is ignored to
satisfy the neural mass framework of the model.
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Modeling the effect of D1R activation on cortical excitability and synaptic
transmission

In the presence of extracellular DA in the PFC, D1R activation causes modulation of the activity of
several voltage-gated and ligand-gated ionotropic receptors (Lachowicz and Sibley 1997) located on the
cortical neurons. Consequently, this leads to the modulation of neuronal excitability of the pyramidal
neurons (Yang et al. 1999) and GABAergic interneurons (Gorelova et al. 2002) as well as the modulation
of the excitatory (Wang and O’Donnell 2001) and inhibitory (Seamans et al. 2001) synaptic efficacies in
the local cortical network (Fig 1c). However, the resultant level of cortical D1R stimulation in response
to cortical DA level further depends on the parameter, D1R-sensitivity (Abi-Dargham et al. 2012). It
signifies how efficiently the cortical network perceives any change in DA content and, hence, depends
collectively on the cortical D1R density and the reactivity of DA-binding sites on individual D1Rs (Fig
1b). Therefore, the resultant level of D1R stimulation, zDR, in the presence of cortical DA content yDA is
modeled here as,

zDR (t) = zsensDR f (d∆yDA) (6)

where, zsensDR signifies the D1R-sensitivity of the cortical neurons to cortical DA pool. Further, the
dopaminergic modulation of the neuronal excitability and the synaptic efficacies in the cortical neuronal
populations in response to D1R stimulation is given by,

τIN = τ∗IN (0.24zDR + 0.26) (7)

WPP = W ∗
PP (0.12zDR + 0.68) (8)

WPI = W ∗
PI (0.12zDR + 0.68) (9)

where, τ∗IN , W ∗
PP and W ∗

PI are the basal magnitudes of the respective parameters. Notably, the strengths
of the parameters WPP , WPI and τIN are modeled here to linearly increase with the increase in zDR.

D1R stimulation leads to increase in the excitability of GABAergic interneurons by causing decrease
in the potassium channel conductance (Gorelova et al. 2002). Therefore, increase in τIN with the increase
in zDR leads to slower spontaneous decay of the activity of interneuron population and reflects increase
in the population excitability. Further, at excitatory synapses, D1R stimulation causes increase in the
conductance and decay time constant of the NMDA receptors whereas it leads to slight reduction in
the AMPA receptor-mediated postsynaptic currents (Wang and O’Donnell 2001). In fact, this effect on
NMDA receptors is pivotal to the robust sustained-firing activity in the cortical network (Durstewitz et al.
2000;Wang et al. 2013). As mentioned above, WPP and WPI , both are the strengths of excitatory synapses
involved in the recurrent excitation of pyramidal neurons and the excitation of inhibitory interneurons,
respectively. It is evident that these synaptic efficacies as such do not differentiate between the AMPA
and NMDA receptor-mediated synaptic currents. However, the increase in WPP and WPI with rising
zDR is meant to achieve the increase in excitatory synaptic transmission naturally occurring due to the
prolonged charge transfer under the increased NMDA receptor conductance as well as time constants of
the NMDA receptor-mediated currents. This efficiently leads to the enhancement of the self-excitation
of pyramidal population and the excitation of interneuron population, which engenders sustained-firing
activity in the present modeling framework. Accordingly, the increase in the synaptic efficacies with the
increase in D1R stimulation manifests into the form of synaptic plasticity (Seamans and Yang 2004).
Nonetheless, D1R stimulation also causes increase in the excitability of pyramidal neurons by decreasing
the threshold of depolarization by the persistent sodium current (INaP ) and simultaneously reduces
the inactivating potassium currents (IK+) (Seamans and Yang 2004). However, contrary to the case of
interneuron excitability, the parameter τPN , representing pyramidal population excitability, has not been
conceived here to increase with increase in zDR. Rather, this effect is compensated through an appropriate
magnification of WPP . Owing to the fact that the pyramidal population has a term of self-amplification
of their activity, decrease in spontaneous decay of its population activity under high excitability can be
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conceived through relatively stronger recurrent excitation and an additional term of zDR-dependence
could be dropped for the tractability of the model.

Therefore, the present model not only considers the direct modulation of pyramidal neurons through
D1Rs located on them but also indirect modulation through GABAergic transmission. The magnitudes of
the various parameters in the model are provided in the Supplementary Table. The parameters of the
cortical dynamics have been computed by establishing equivalence of the system of coupled differential
equations (equations 1-2) for cortical neuronal populations to the set of differential equations for population-
activities described in the mean-field approach by Brunel and Wang (2001). The remaining parameters of
the dynamics of DA neuron population, DA release and D1R stimulation are calibrated in a trial-based
manner to acquire the modulation output of the cortical activities known during delay (Brunel and Wang
2001) and of the associated empirical observations of cortical DA level (Watanabe et al. 1997). A glossary
of the key variables and parameters of the model is available in Table 1.

Table 1. The definitions of the key dynamical variables and parameters of the closed-loop
mesocortical model.

Variables\Parameters Definitions

xPN
Average activity (in Hz) of the population of excitatory pyramidal neurons in
the local cortical network in DLPFC during delay period. (Variable)

xIN
Average activity (in Hz) of the population of inhibitory GABAergic interneu-
rons in the local cortical network in DLPFC during delay period. (Variable)

xDN

Average activity (in Hz) of the population of DA neurons in the VTA extend-
ing mesocortical projections to the DLPFC. It maintains tonic release of DA
during delay period. (Variable)

yDA Delay-associated bulk DA content (in nM) of the DLPFC. (Variable)

zDR
Resultant level (in A.U.) of D1R stimulation in the local cortical network
during delay period. (Variable)

WDy

DA-releasability (in nM.ms−1) from the mesocortical afferents in the DLPFC.
It signifies the efficiency of tonic release of DA from the dopaminergic projec-
tions during delay period and depends on the DA metabolism as well as release
probability of DA-containing vesicles at the axonal terminals. (Parameter)

zsens
DR

D1R-sensitivity (in A.U.) of the local cortical network in the DLPFC. It sig-
nifies the efficiency of the cortical neurons to sense variation in cortical DA
content and depends on the D1R density as well as reactivity of DA-binding
sites. (Parameter)

Equilibrium analysis and WM-robustness

The delay-associated state of the mesocortical dynamics is characterized by its global steady or equilibrium
state, which is defined as

d~x (t)

dt
= 0 (10)

where ~x (t) = [xPN (t) , xIN (t) , xDN (t) , yDA (t)] and represents the set of state-variables. In this regard,
the nullcline plots of the state-variables xPN and zDR in the xPN -zDR state-space are obtained first
(Supplementary Figure). The intersection points of the xPN - and zDR-nullclines define the operational
points of mesocortical dynamics during the delay period for a given set of parameters WDy and zsensDR .
Accordingly, the nullcline analysis facilitates the obtainment of the bifurcation plots of the state-variables
by varying WDy under a fixed zsensDR (Fig 2).

Further, the mesocortical dynamics is constantly affected by the various natural sources of noise in
the neural system (Faisal et al. 2008). Therefore, the stochastic framework of the mesocortical dynamics
Reneaux et al. 2015 is given by,

dxPN = fPN (~x) + σ1dW1 (11)
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dxIN = fIN (~x) + σ2dW2 (12)

dxDN = fDN (~x) + σ3dW3 (13)

dyDA = fDA (~x) + σ4dW4 (14)

Here, fPN (~x) , fIN (~x) , fDN (~x) , fDA (~x) represent the right-hand sides of the equations (1,2,4 and 5),
respectively. {dWi (t) , t ≥ 0} , (i = 1, 2, 3, 4), denotes the Wiener process increment to each state-variable
during their noisy temporal-evolution and σi, (i = 1, 2, 3, 4), represents the corresponding noise-intensity.
The magnitudes of the noise-intensities applied here are provided in the Supplementary Table and are
kept conserved throughout the study. The noise causes the state of the system to diffuse around its
deterministic response and the state-variables are essentially characterized by their statistical distributions
in the state-space.

To gain insight into the WM-robustness during delay period, a global potential landscape of the stochas-
tic mesocortical dynamics is constructed. For this, the steady-state marginal probability distributions
of the state-variables Pst (x), where x ∈ {xPN , xIN , xDN , yDA, zDR}, are obtained from the numerical
simulation of the stochastic mesocortical dynamics using the Euler-Maruyama scheme (Kloeden and
Platen 1992) with a fixed time-step ∆t. Consequently, a joint probability distribution Pst (xPN , zDR) is
obtained over the state-space xPN -zDR and the global potential landscape, U (xPN , zDR), of the stochastic
mesocortical dynamics is constructed as (Reneaux et al. 2015),

U (xPN , zDR) ∼ − ln (Pst (xPN , zDR)) (15)

The landscape is comprised of two basins of attractions associated with the spontaneous-activity state
and the sustained-firing state of the mesocortical dynamics. The robustness of the WM-associated circuit
dynamics is analyzed based on the two physical measures, potential barrier (PB) and the signal-to-noise
ratio (SNR) of the pyramidal activity xPN , related with the geometry of the basin associated with the
sustained-firing state. PB signifies the depth of the basin from the crest potential separating the two
basins of attraction in the landscape and can be directly obtained from the U (xPN , zDR). However, the
SNR is affected by the girth of the basins and is given by,

SNR =
µ

σ
(16)

where, µ denotes the mean of the xPN distribution and corresponds to the deterministic equilibrium
magnitude of xPN associated with the sustained-firing state and σ denotes the standard deviation of the
noisy fluctuations around the mean xPN . The mathematical analysis and numerical simulations have
been performed in MATLAB (The MathWorks). The source code of the simulation programs used in this
study may be obtained on request from the authors.

Results

Features of mesocortical dynamics facilitating WM maintenance during delay

The parameters DA-releasability (WDy) and D1R-sensitivity (zsensDR ) of the model serve as the free
parameters or handles for realizing here the alterations in cortical DA content and sensitivity, respectively.
Notably, WDy signifies the volume-averaged rate or efficiency of DA influx from dopaminergic projections
into the cortical extracellular space. Although change in DA-releasability has indeed been observed to
affect cognitive performance in the earlier studies involving administration of psychostimulant drugs such
as amphetamine and phencyclidine (Murphy et al. 1996;Jedema et al. 2014), the exact quantification
of this rate of DA influx could not have been possible. Accordingly, WDy is varied within a range
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of 0.00 − 0.05nM.ms−1, which is found suitable to capture the experimentally-observed profile of DA-
dependent modulation of cortical persistent activity Brunel and Wang 2001 within the present model
framework.

Similarly, zsensDR regulates the sensing-end of the process of dopaminergic transmission. Although
D1R-sensitivity is experimentally measured in terms of BP (a dimensionless quantity), alteration in zsensDR

has been scaled here to an integer interval of 2− 10. It must be noted that alteration in D1R-sensitivity
does not generally imply alterations in the intracellular signalling of D1R activation. Therefore, the
parameters describing the changes in excitability of neuronal populations and excitatory or inhibitory
synaptic efficacies in response to D1R stimulation level (zDR) (equations 7-9) remain unaffected when
zsensDR is varied.

Fig 2a shows the firing frequencies of different neuronal populations (xPN for pyramidal neurons, xIN
for interneurons and xDN for DA neurons), extracellular cortical DA level (yDA) and level of cortical
D1R stimulation (zDR) during delay period at different values of WDy, for the zsensDR = 3. The profile of
each quantity exhibits a bifurcation behavior. The set of lower values provide the basal magnitude of
the quantity associated with spontaneous-activity state in the cortex whereas that of the higher values
provide the magnitude associated with sustained-firing activity. The monostable region is characterized
by a single stable equilibrium state associated with spontaneous-activity in the cortex. Hence, for the
values of WDy within the monostable region, sustained-firing in the cortex is biophysically not feasible.
Only in the bistable region, sufficiently strong cue stimulus can cause the switching of the mesocortical
dynamics to the sustained-firing state. Therefore, the initiation point of bifurcation signifies the critical
WDy, which marks the boundary of phase transition from a region devoid of sustained firing to that of
WM maintenance. Accordingly, yDA and zDR associated with the critical WDy indicate the critical DA
content and D1R stimulation level required to commence the regime of sustained firing. Notably, WDy

naturally comes forth as the bifurcation parameter because its variation, under a fixed zsensDR , leads to
change in yDA and associated zDR, which eventually causes modulation of the neuronal activities during
delay.

Remarkably, the increase in WDy does not lead to an unlimited increase in the sustained firing-
associated yDA and zDR during delay. The maximum level to which they may rise is marked by their
unique saturation levels (Fig 2a). This limitation is of purely functional nature imposed by the mesocortical
dynamics during steady-state of the sustained-firing activity in cortex. Together with the critical yDA

and zDR, the corresponding saturation levels define the spans or windows of cortical DA content and D1R
stimulation which underlie the entire dopaminergic modulation profiles of the neuronal activities in the
bistable region.

Nonetheless, in the bistable region, the modulation profile of sustained xDN activity remains in phase
with that of the xPN (Fig 2b) as it is the pyramidal activity which directly governs the excitation of DA
neuron subpopulation in the VTA within the present mesocortical framework (Fig 1c). However, there
exists a phase-lag between the modulation profiles of sustained xPN and xIN activities. In fact, this has
also been noted in the earlier studies (Muly et al. 1998;Goldman-Rakic et al. 2000) and the increase in
the interneuron excitability by D1R stimulation has been proposed to lag behind that of the pyramidal
neurons with respect to increase in cortical DA content and D1R stimulation level.

The levels of spontaneous and sustained activities of the various types of neuronal populations involved
here closely resemble their empirically-known estimates during delay. xPN and xIN display spontaneous
activities at 3Hz and 9Hz, respectively, during delay (Fig 2a), which are of the order of the average
spontaneous activities of pyramidal neurons and fast-spiking GABAergic interneurons observed in the
experiments carried out by Wilson et al. (1994) on monkeys performing oculomotor tasks. Similarly,
the modulation profiles of the sustained-firing activities (the higher stable states) in these neuronal
populations span the frequency ranges 13− 25Hz and 10− 13Hz, respectively, which are in concordance
with the earlier computational studies by Compte et al. (2000) and Brunel and Wang (2001) involving
detailed neural network simulations. Moreover, the experimental study by Tsujimoto and Sawaguchi
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(2004) involving delayed WM tasks also provides a similar range of these modulation profiles.
DA neurons in the VTA have been experimentally recorded to fire tonically at an approximate frequency

of 3− 4Hz under basal or resting condition in delayed-response tasks (Grace and Bunney 1984;Schultz
et al. 1993;Grace 2016). Accordingly, the firing rate of the spontaneous activity in DA population xDN

is obtained here at 3Hz. As argued above, the tonic firing activity in the VTA-residing DA neuron
subpopulation closely associated with a local cortical network may increase in response to the sustained
activity in the DLPFC during delay. However, it is also demanded that this increase should remain under
the bound of the maximum tonic frequency of 10Hz noted earlier (Grace and Bunney 1984). Therefore,
the modulation profile of the sustained tonic xDN is observed here to span a frequency range limited by
10Hz (Fig 2a).

The basal DA concentration in the spontaneous-activity state is obtained here as yDA = 0.2nM (Fig
2a), which is close to the basal DA concentrations observed in the micro-dialysis studies performed by
Watanabe et al. (1997) (0.098± 0.013nM) and Jedema et al. (2014) (0.31± 0.03nM) on primates during
resting conditions. yDA associated with sustained-firing activity in the cortex during delay (higher stable
state) is observed to increase with rise in WDy (Fig 2a). In this regard, Watanabe et al. (1997) reported
approximately 17% increase in the DA concentration in the DLPFC of healthy monkeys performing
more than 98% successful trials during delayed alternation tasks. This increase in DA characterizes an
optimum WM maintenance, which is also found to be associated with optimum strength or frequency of
sustained-firing activity in the cortex during delay interval (Watanabe and Funahashi 2014). Accordingly,
the peak xPN sustained-activity coincides here with yDA = 0.234nM (Fig 2a), equivalent to the DA
increase reported by Watanabe et al. (1997) under optimum performance, only for zsensDR = 3. Therefore,
the corresponding WDy = 0.0058nM.ms−1 and zsensDR = 3 together portray a normal healthy control in
terms of the free parameters of the present model framework. Any increase or decrease in these values of
WDy and zsensDR would represent an altered condition of DA-releasability and D1R-sensitivity, respectively.

Effects of variation in D1R-sensitivity on cortical DA level and modulation of
neuronal activities

Variation in zsensDR significantly affects the bifurcation plots (Fig 2b). Its increase causes leftward shift of
the profiles to lower DA-releasability (WDy). Interestingly, the amount of leftward shift in the bifurcation
profiles observed by increasing zsensDR from the normal control level of 3 to 10 is equivalent to that of
the rightward shift occurring through only a unit decrease in zsensDR from the control level. Consequently,
increase in zsensDR leads to a considerable decrease in the critical WDy and yDA (Fig 3a,b). This is due to
the enhanced sensitivity of D1Rs to respond even to a less amount of DA in the surrounding medium, a
consequence also hypothesized earlier for increased D1R density (Abi-Dargham et al. 2002;Abi-Dargham
and Moore 2003;Abi-Dargham et al. 2012). Notably, the variations in critical WDy and yDA follow a
strong positive correlation (Fig 3c) depicting a tight causality-relationship between them. For the control
zsensDR = 3, the critical yDA = 0.207nM . However, the critical yDA decreases by 30% when zsensDR is
increased to 10 whereas increases by 50% across unit reduction in the control zsensDR .

Further, increase in zsensDR significantly reduces the yDA saturation level (Fig 2b,3d). As a result, it is
observed that the DA window underlying the entire modulation phenomenon in the bistable region shifts
to lower values and also shrinks in its span (Fig 3e). With respect to the control zsensDR = 3, there occurs
almost 27% decrease in the size of modulation-associated yDA window when zsensDR is increased to 10. At
the same time, the amount of shift of the window to lower yDA is almost 30%, which is the percentage
decrease in the critical yDA mentioned above. Interestingly, the window size increases by almost 200%
(i.e. doubles in size) when zsensDR is reduced to 2.

These observations clearly describe the impact of cortical D1R density on the regulation of DA release
under the local administration of pyschostimulants in the cortical region studied by Tanaka and Okada
(1999). Their study shows that, when the cortical D1R density is upregulated, the DA release is significantly

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/253948doi: bioRxiv preprint 

https://doi.org/10.1101/253948


10

reduced owing to the declined pyramidal activity. As a result, this does not allow the psychostimulants to
cause any increase in the cortical DA content. Therefore, the cortical region intrinsically tends to attain a
hypodopaminergic situation, which is illustrated here as the shift of modulation profiles to lower WDy

and the shift of modulation-associated DA window to lower DA levels.
The critical zDR remains unaffected (Fig 3f) from changing zsensDR . Variation in zsensDR also does not

affect the saturation level of zDR (Fig 2b,3g). Therefore, the D1R stimulation window underlying the
entire modulation phenomenon in the bistable region remains completely unaffected (Fig 3h) from zsensDR

alterations. Instead, it only influences how sharply the zDR responds to the change in yDA associated with
variation in WDy and reaches its saturation level (Fig 2b). Owing to the invariant zDR, the respective
ranges of magnitude spanned by the modulation profiles of sustained activities xPN , xIN and xDN , viz.
13 − 25Hz, 10 − 13Hz and 6 − 10Hz, respectively, remain conserved with the variation in zsensDR (Fig
2b). In fact, D1R stimulation level is the immediate driver of the modulation of these neuronal activities.
However, besides the leftward shift of the profiles towards lesser WDy and yDA noted above, the sharpness
of the modulation profiles of sustained activities in response to change in WDy considerably increase at
higher zsensDR . Moreover, the phase-lag between the peak sustained xPN and xIN activities in terms of
yDA significantly decreases with increase in zsensDR (Fig 4a) and indicates lesser difference in the cortical
DA required for D1R-mediated enhancement of the pyramidal and interneuron excitability. This decrease
in phase-lag essentially emanates from the observed shrinkage in the DA span underlying modulation (Fig
3e) at higher zsensDR . However, the phase-lag with respect to zDR remains unaffected (Fig 4b), again due to
the absence of effect of zsensDR on modulation-associated zDR span.

In the earlier studies involving D1R agonists and antagonists, it has been noted that the strength
of sustained-firing activity (Williams and Goldman-Rakic 1995;Vijayraghavan et al. 2007) and WM
performance (Murphy et al. 1996;Zahrt et al. 1997) both exhibit inverted-U shaped profile with variation
in the level of D1R stimulation. Accordingly, both are highly correlated such that a poor performance is
often associated with poor persistent activity in the PFC (Goldman-Rakic et al. 2000). Recent studies
have provided strong evidences for a linear relationship between them (Wang et al. 2011; Watanabe and
Funahashi 2014;Wimmer et al. 2014). Accordingly, a symmetric span around the peak sustained xPN

activity in the modulation profile (Fig 4c) is chosen such that activity greater than or equal to 80% of the
peak activity is assumed to facilitate sound WM maintenance during delay. Hence, the range of cortical
DA facilitating this span of optimal sustained pyramidal activity signifies the “optimal DA window”. It is
observed that the optimal DA window substantially shrinks with rise in zsensDR (Fig 4d,e). In the present
study, this optimal DA window shrinks to 30% of the normal control with increase in zsensDR to 10.

Shrinking of optimal DA window demonstrates a smaller range of cortical DA content over which
optimal WM maintenance could be acquired. Therefore, even weak natural fluctuations in DA-releasability
and the resulting extracellular DA would be able to shift the dynamics to poor maintenance and may have
dramatic effects on the cognitive ability. This observation supports the earlier hypothesis (Abi-Dargham
et al. 2002;Abi-Dargham and Moore 2003;Abi-Dargham et al. 2012) that alteration in cortical D1R density
has been suggested as a potential factor affecting the optimal region of WM maintenance in schizophrenia.
Although the estimate (>= 80%) set here for the boundary of optimal sustained pyramidal activity is
merely for the purpose of demonstration, the observation regarding narrowing of the optimal DA window
with increase in D1R-sensitivity will remain unaffected regardless of the different estimates one may
choose.

Effects of variation in D1R-sensitivity on the robustness of WM maintenance

The global potential landscape (Fig 5a) is procured from the steady-state of the noisy mesocortical
dynamics (equations 11-14). The features of WM-robustness under different conditions of DA-releasability
(WDy) and D1R-sensitivity (zsensDR ) are derived simultaneously from two physical measures related with
the geometry of WM-associated basin of attraction. First, the potential barrier (PB) emanates from the
depth of the basin and restricts the noise-induced transition of circuit dynamics from the sustained-firing
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state to the spontaneous-activity state. Second, the signal-to-noise ratio (SNR) of sustained-firing activity
manifests from the girth of the basin and illustrates the strength of the sustained-firing activity relative
to its noise content. WM-robustness is directly proportional to both these measures.

We begin with exploring the features of WM-robustness which remain intact despite alterations in
zsensDR . This involves examining the effect of varying WDy on the WM-robustness and essentially projects
the impact of alteration in cortical DA content yDA on WM-robustness, mediated through change in the
underlying level of D1R stimulation zDR during delay. Variations in PB and SNR along the modulation
profile of sustained-firing activity xPN in the bistable region (Fig 2a) always depict a concave profile of
WM-robustness (Fig 5b,6a), similar to the shape of the modulation profile itself. Accordingly, it illustrates
a tight relationship between the firing frequency of sustained-firing activity and WM-robustness. Moreover,
if the xPN modulation profile is partitioned into two sections, the pre-peak set and the post-peak set
(including the peak sustained activity), the average PB and SNR of the post-peak set are substantially
higher than that of the pre-peak set (Fig 5c,6b). Notably, the post-peak set involves higher zDR as well
as an inhibition-dominated cortical dynamics whereas the pre-peak set involves relatively lesser zDR and
an excitation-dominated cortical dynamics (Fig 2a). These observations have a remarkable similarity with
that obtained in the earlier theoretical studies (Durstewitz et al. 1999;Brunel and Wang 2001;Deco and
Rolls 2003;Okimura et al. 2015;Reneaux et al. 2015) involving change in the D1R stimulation level assumed
to occur through alteration in cortical DA content during delay. However, the present investigation further
shows that these specific features also remain identically conserved across alterations in D1R-sensitivity.
Furthermore, sustained xPN activity more than or equal to 80% of the peak sustained activity in the
xPN modulation profile noticeably share high levels of WM-robustness (Fig 5d&e,6c&d). This suggests
that the optimal region in the xPN modulation profile associated with the optimal DA window is not only
defined by its optimal levels of sustained-firing activity but also by the optimal WM-robustness during
delay.

Next, we examine the zsensDR -sensitive features of WM-robustness. The entire concave profile of
robustness, either in terms of PB (Fig 5b) or SNR (Fig 6a), exhibits a downward shift to lower levels
when the zsensDR is increased. This is also seen through a consistent decrease in PB (Fig 5d,e) and SNR
(Fig 6c,d) of the individual sustained-firing activities of different firing strengths sampled across the xPN

modulation profile. Consequently, the average PB and SNR of the pre-peak as well as the post-peak set
of sustained activities in the xPN modulation profile also decrease. Together, these observations illustrate
a concomitant rise in instability of the WM maintenance during delay with increase in zsensDR . Nonetheless,
the amount of decrease in the average PB and SNR (Fig 5f,6e) is higher for the pre-peak set in comparison
to the post-peak set. This differential response to increase in zsensDR immediately indicates that the
robustness of sustained-firing activities during delay resulting from lower zDR and excitation-dominated
cortical dynamics is more vulnerable to alteration in zsensDR . However, sustained activities associated with
higher zDR and inhibition-dominated cortical dynamics is more resistant to decrease in robustness inflicted
by increase in zsensDR .

As noted above, zsensDR does not affect the span of zDR which underlies the modulation of sustained
neuronal activities during delay (Fig 2a, 3h). Therefore, the observed effects of zsensDR on the WM-robustness
is certainly not mediated through the known conventional mechanisms involving the D1R stimulation
level (Durstewitz et al. 1999;Brunel and Wang 2001;Deco and Rolls 2003). However, what varies across
the zsensDR is the yDA underlying the conserved zDR. Therefore, the observed effects on the WM-robustness
appears to be essentially mediated through the impact of D1R-sensitivity on the modulation-associated DA
window (Fig 3e). More specifically, it appears to arise from the shift of modulation-associated DA window
to lower levels with rising sensitivity. Immediately, a completely new role of cortical DA content in shaping
the WM-robustness is realized under the conditions of varying D1R-sensitivity, where sustained-firing
activity acquired at a particular level of D1R stimulation but at lower cortical DA content would be lesser
robust than that acquired at the same D1R stimulation but at higher cortical DA content.
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Discussion

Using the neural mass model of the prefronto-mesoprefrontal system, the present study demonstrates in a
mechanistically-detailed manner how cortical D1R-sensitivity may critically influence WM maintenance
during delay and in what ways its altered conditions may harm the cognitive ability. The two striking
features of D1R-sensitivity are its tight control over the level as well as size of optimal DA span facilitating
optimum strength of sustained cortical activity during delay and the resulting impact on the robustness
of sustained-firing activity against annihilation due to noisy perturbations. An important point to be
noted is that only functional alterations at the level of dopaminergic synaptic transmission are considered
here while excluding the various possible anatomical alterations in the circuit’s connectome.

Significance and limitations of the neural mass model of the mesocortical
dynamics

Highly detailed cortical network models (Durstewitz et al. 1999;Durstewitz et al. 2000;Brunel and Wang
2001;Loh et al. 2007) are already available to elaborate the D1R-dependent dopaminergic modulation of
cortical persistent activity during WM maintenance. These studies investigate the role of every minute
components of the neuronal excitabilities as well as synaptic transmission in the network’s firing activity.
By taking into account the effects of D1R stimulation on these components observed in the experimental
studies (Lachowicz and Sibley 1997;Yang et al. 1999;Seamans et al. 2001;Gorelova et al. 2002), the
theoretical studies have laid down the fundamental picture of the biophysical driving forces behind the
dopaminergic modulation in the PFC. However, the present issue with D1R-sensitivity naturally demands
consideration of a more comprehensive prefronto-mesoprefrontal machinery, which comprises the additional
dynamics for regulating the cortical DA content in close association with the prefrontal activity. Contrary
to the demand, many quantitative intricacies of the dynamics within VTA, regulation of DA neurons
activity by prefrontal cortex, involvement of tonic versus phasic activity of DA neurons and local cortical
regulation of DA content are still sufficiently missing to construct an appreciable detailed network model
of the mesocortical circuitry. Moreover, a detailed network model for this large a system would not only
be cumbersome for computation but also be reasonably intractable for understanding its consequent
dynamics.

Under such circumstances, a neural mass model of the mesocortical circuit may prove an effective
framework. Such models conceptualize the bare essentials behind a system’s dynamics distilled out from its
natural complexity (Deco et al. 2008;Buice and Chow 2013)and the details may be carefully amalgamated
into minimal factors required for capturing the system’s original dynamics. Nonetheless, the physical
quantities of interest in the present enquiry, viz. intensity of sustained-firing activity during delay and
its robustness, are the functional features shaped at the population-level, instead of single independent
neurons of the local network. Therefore, the mass model approach fits in well for addressing these issues.
As a result, despite its simplicity and tractability, the model effectively captures salient attributes of the
phenomenon of dopaminergic modulation as observed in the earlier experimental and theoretical studies.

In reality, there exists multiple local populations of cortical neurons within a small region of the cortex
such that each population is tuned to exhibit persistent activity for a specific feature or information of the
stimulus presented in a WM task, such as spatial orientations in visuospatial WM tasks (Goldman-Rakic
1996). Therefore, there exists simultaneously multiple attractor states. However, while dealing with
a single local population of cortical neurons, the present model projects a single attractor state with
persistent activity. From the viewpoint of network’s dynamics, failures at the end of the delay period
recorded for the behavioral performance of a subject may occur either through the premature collapse
of the sustained-firing activity to the spontaneous-activity state or the transition of the firing state
to another attractor during delay (Wimmer et al. 2014;Constantinidis and Klingberg 2016;Riley and
Constantinidis 2016). As far as the former route is concerned, the present study directly elaborates the
ways in which the anomalies in dopaminergic modulation may affect WM-robustness and the behavioral
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performance. However, it also paves a way to explain the latter route to some extent. The observed
increase in the shallowness of the basin of attraction associated with the sustained-firing state causing
declined robustness under anomalous conditions of dopaminergic modulation is a biophysical property
of the local cortical dynamics. Therefore, the various attractor states relying on the similar dynamical
principles of sustained-firing activity would together get shallower and lesser robust under such conditions.
In a way, the entire global potential landscape of sustained-firing attractors becomes shallower. Although
the intensity of appearing instability may not be identical for all the attractor states, it would be reasonable
to envisage that transitions from one sustained-firing attractor to the other would become easier as well
as frequent. Accordingly, the WM-robustness shown here in terms of PB and SNR is merely indicative of
the WM performance.

Nonetheless, the ongoing discourse regarding the exact role of the sustained-firing activity as a neural
correlate of WM maintenance in the PFC is worth considering. It is still under intense debate whether
the sustained-firing activity itself stores relevant information about a presented stimulus (Constantinidis
and Klingberg 2016;Riley and Constantinidis 2016) or it serves as a top-down biasing control over other
areas of the cortex, such as posterior parietal cortex (PPC) or inferior temporal cortex (ITC), to aid them
in encoding the salient features in their local persistent-activities (Lara and Wallis 2014;D’Esposito and
Postle 2015). To some extent, it is quite apparent that the spatial location of the cue presentation in
the visuospatial WM tasks is at least encoded by the PFC circuitry whereas other features of the visual
stimulus have been suggested to be represented in the PPC, which normally responds towards these specific
sensory stimulus besides WM tasks (Lara and Wallis 2014;Riley and Constantinidis 2016). Accordingly,
complex visuospatial WM demands may simultaneously involve both the roles of sustained-firing activity
in the PFC. However, the quality of sustained-firing activity in the PFC in terms of its mean firing
frequency and robustness against noisy fluctuations is essential for the eventual behavioral performance
of a subject undergoing WM task, regardless of which route it takes to shape the WM maintenance
during delay. In fact, some studies have shown that robustness is a unique feature of PFC microcircuitry
which avoids the loss of goal-directed memory in the presence of distractors and the other cortical areas
lack this attribute (Riley and Constantinidis 2016). Additionally, the robustness of persistent-activity
in the PFC has been observed as a requirement for the biasing control over the stable representations
in PPC. Therefore, the observations made here are equally applicable to both the ways through which
sustained-firing activity in the PFC may be involved in WM maintenance.

Another important fact is that, in the case of primates, DLPFC as well as medial prefrontal cortex
(mPFC) both have been observed to show sustained-firing activity in WM tasks (Christophel et al.
2017). In this regard, domain-specific hypothesis proposed by Goldman-Rakic (1988) suggests that
spatial WM features are dealt by DLPFC whereas non-spatial features are dealt by mPFC. Contrastingly,
a process-specific model by Petrides (1996) hypothesizes that mPFC retrieves information from PPC
and DLPFC does the job of monitoring the information. Although the present model involves only
DLPFC, it is recognized that the present study is not limited to DLPFC but can also be applied to WM
maintenance-associated persistent activity in mPFC. This is due to the fact that both these regions share
similar cortical microcircuitry to some extent (Douglas and Martin 2004) and, thus, involve a common
physical mechanism for the establishment of sustained-firing activity.

Clinical implications in ageing and schizophrenia

The observed dependence of the various essential features of dopaminergic modulation on DA-releasability
and D1R-sensitivity carries strong clinical implications. In the case of ageing, there occurs a substantial
decrease in the cortical D1R-sensitivity (de Keyser et al. 1990;Suhara et al. 1991;Bäckman et al. 2011).
Bäckman et al. (2011) using PET study estimated a 14% average age-related loss of D1Rs BP per decade
in DLPFC. In another PET study, Suhara et al. (1991) using [11C]-SCH23390, a highly selective ligand
for D1Rs, reported a 39% decrease in D1Rs BP in the frontal cortex with age. Keyser et al. (1990) also
observed a significant decrease in D1R density and reactivity of their high affinity sites in the frontal
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cortex with age. Interestingly, decrease in D1R-sensitivity is observed here to be associated with wider
range of optimal DA content and relatively higher robustness of WM maintenance. However, these
benefits are strongly counteracted by large shifts of the WM regime of cortical dynamics to higher DA
levels. Here, with decrease in D1R-sensitivity, the associated optimal range of DA appears more and more
unapproachable by the normal levels of DA-releasability of the mesocortical projections. The situation
becomes more severe as the DA-releasability also exhibits a decline in ageing (Goldman-Rakic and Brown
1981;de Keyser et al. 1990;Suhara et al. 1991;Reneaux et al. 2015). Therefore, ageing may end up either
in a complete loss of WM maintenance or a poor WM maintenance depending on the severity of D1Rs
depletion as well as decline in the DA-releasability.

A contrary situation is witnessed in the case of schizophrenia where a chronic hypodopaminergic state
of DLPFC leads to a substantial upregulation of cortical D1R density. PET studies by Abi-Dargham et al.
(2002,2003,2012) observed that [11C]NNC112 BP was significantly elevated in the DLPFC of unmedicated
schizophrenic patients. A postmortem study performed by Knable et al. (1996) also reported a significant
increase in the BP of [3H]-SCH23390 in the prefrontal cortex of schizophrenic patients as compared to
normal controls. Accordingly, it demonstrates the situation of elevated cortical D1R-sensitivity. It is
observed here that high D1R-sensitivity causes the WM regime of cortical dynamics to shift to very
low levels of DA. At first, it seems a homeostatic mechanism so that WM could be formed even under
hypodopaminergic state, as has also been suggested earlier (Abi-Dargham et al. 2002;Abi-Dargham and
Moore 2003;Abi-Dargham et al. 2012). But this rescue doesn’t seem to be eventually much useful as the
schizophrenic patients indeed show impairment of WM maintenance. The present observations suggest
that too much responsiveness of cortical dynamics to even a slight change in cortical DA content makes
it difficult to stay within the optimal range of DA under the conditions of natural fluctuations in the
cortical DA content. This is aided by the fact that the optimal DA window also considerably shrinks with
increase in D1R-sensitivity. Moreover, the associated WM-robustness also decreases under such conditions.
Further, if there occurs an uncontrolled increase in DA content due to the administration of DA elevating
drugs (Murphy et al. 1996) or due to the heavy demand of a WM task (Abi-Dargham et al. 2012), the
cortical dynamics would easily shift to the very far sections of the post-peak region in the bifurcation
profile, which may again lead to poor WM maintenance.

Currently, no well-defined protocol of medication exists for the cognitive deficit associated with
DA-dysfunction (Lett et al. 2014;Arnsten et al. 2017), owing to the limited knowledge of the several
factors involved in the dopaminergic modulation of cortical activity. Yet, two genres of drugs are being
examined for their medicinal potency: (a) drugs which are pharmacologically D1R agonists and antagonists
(Goldman-Rakic et al. 2004;Arnsten et al. 2017) (b) drugs which modulate the DA-releasability of afferent
dopaminergic projections to cortex (Slifstein et al. 2008;Schacht 2016). The former has a direct role in
regulating the cortical D1R stimulation whereas the latter does it indirectly via regulating the dopaminergic
condition of cortex. Moreover, an efficient use of these drugs requires a trial-based estimation of the
appropriate drug-combination and drug-dosage, which exhibit a huge unpredictable variability across the
patients suffering from an identical pathological condition (Arnsten and Wang 2016).

It is shown here that one of the neglected aspects in the current medication technique, i.e. alteration
in D1R-sensitivity, has a strong deterministic contribution to the otherwise unpredictable variability in
response to DA-correcting drugs across patients. Features such as critical DA-releasability and cortical
DA content required to capacitate cortical circuitry for WM function, modulation-associated DA window,
the sharpness of the modulation profiles of neuronal activities, the optimal region of modulation and
the associated optimal DA window, are significantly affected by alterations in D1R-sensitivity. This
suggests that the drug-mediated tuning of cortical DA content to improve the cortical D1R stimulation
based only on the knowledge of dopaminergic condition of the cortex is not sufficient. It should also be
accompanied by the diagnosis of the intensity of alteration in D1R-sensitivity inflicted by the pathological
condition. In fact, the precision of DA-tuning substantially varies according to the intensity of alteration
in D1R-sensitivity and so is the effective drug-dosage (Arnsten and Wang 2016).
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Other clinically important aspects demonstrated here stem from the features of WM-robustness. It
is shown that the optimal region of the modulation does not manifest only from the optimal levels of
frontality but also from the optimal levels of robustness. Moreover, the effect of alteration in D1R-
sensitivity on the robustness suggests that even if an optimal frontality is achieved by retrieving an optimal
cortical DA content, the associated robustness cannot be identically gained if the alteration in cortical
D1R-sensitivity is not equally improved. This further indicates that there is no substitute of a remedy for
altered D1R-sensitivity condition, which may possibly involve drugs selectively suppressing cortical D1R
expression and genetic treatments to rectify D1R mutations. The manner in which antipsychotics impact
D1R-sensitivity (Lidow et al. 1997) is unclear and therefore, its effect is not under appropriate clinical
control. A perfect medication of cognitive deficits emanating from DA-dysfunction would necessarily
require an amalgam of strategies which can together alleviate the anomalies in cortical DA content as well
as D1R-sensitivity.

Supplementary Information

Supplementary Figure The nullclines of the excitatory population activity, xPN , and the
cortical D1R stimulation, zDR. (a) For a given zsensDR , the solid black curve is the xPN -nullcline and
the grey lines are the zDR-nullclines for the different % values of DA-releasability, WDy, relative to
WDy = 0.0058nM.ms−1 . As evident, increase in WDy causes a rightward shift in the zDR-nullcline. The
point(s) at which a zDR-nullcline for a given value of WDy intersects the xPN -nullcline together defines
the corresponding operating point(s) of the mesocortical system, where a point marked with solid circle
represents the stable state and that marked with open circle represents the unstable state of the system.
(b-c) As zsensDR is increased, the rate of rightward shift in the zDR-nullcline in response to variation in WDy

considerably increases, which illustrates a heightened response of the mesocortical system to variation in
the cortical DA content.

Supplementary Text Critical issues regarding regulation of cortical dopamine content dur-
ing working memory maintenance.

Supplementary Table List of parameters present in the mathematical model and its s-
tochastic framework along with their values. The parameters with values in bold font are the free
parameters varied in the present study.
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Figure legends

Figure 1. Model of the closed-loop mesocortical circuit. (a) A three-dimensional minimal
rendering of the human brain essentially featuring the anatomical localization of the two brain regions,
DLPFC and VTA, whose reciprocal interaction constitutes the mesocortical circuit. (b) A simplified
illustration of the synaptic contact made by a terminal of the dopaminergic afferent projections onto a
pyramidal neuron or GABAergic interneuron in the cortex. The DA-releasability (WDy) and
D1R-sensitivity (zsensDR ) are the presynaptic and postsynaptic factors, respectively, which crucially regulate
the transmission at dopaminergic synapses. (c) In the neural mass model of the mesocortical circuit, the
cortical neurons are broadly categorized into the populations of excitatory pyramidal neurons and
inhibitory GABAergic interneurons. The excitatory population, on receiving cue input, self excites itself
(with the synaptic efficacy WPP ) and also excites the population of inhibitory neurons in the cortex
(WPI) as well as DA neurons in midbrain (WPD). On excitation, the inhibitory population inhibits
excitatory population (WIP ) as well as itself (WII) whereas the DA neuron population releases DA in the
cortex (WDy) through dopaminergic projections and causes accumulation of the cortical DA pool, yDA.
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Figure 2. The delay-associated state of the mesocortical dynamics is characterized by the
global equilibrium state of its various dynamical elements. (a) Given a fixed value of
D1R-sensitivity zsensDR (here zsensDR =3, normal control), the bifurcation profiles of the dynamical elements
are shown with DA releasability WDy as the bifurcation parameter. Critical WDy, and the corresponding
critical cortical dopamine content yDA and D1R stimulation level zDR, mark the beginning of bistable
regime favoring the working memory maintenance during delay period. The higher stable states of the
bifurcation profiles are together associated with the sustained-firing state of the cortical dynamics
whereas the lower stable states together signify the basal spontaneous-activity state. The ranges of yDA

and zDR spanned by their higher stable states represent the spans or windows of cortical DA content and
D1R stimulation, respectively, underlying the entire modulation profile of the cortical dynamics. The
maximum limit to which yDA or zDR may increase with increase in WDy marks the saturation level. The
cue-threshold in the xPN bifurcation profile signifies the minimum excitation of the pyramidal population
by cue input, which causes switching to the sustained-firing state. (b) Alteration in zsensDR further affects
the bifurcation profiles. Most prominently, increase in zsensDR causes leftward shift of the bifurcation region.

Figure 3. Effects of variation in D1R-sensitivity on the critical DA releasability, on the
critical as well as saturations levels of cortical DA content and D1R stimulation, and on
the modulation-associated windows of DA and D1R stimulation. Increase in zsensDR causes
significant decrease in the critical WDy (a) and yDA (b) marking an early beginning of the bifurcation
regime. The variations in critical WDy and yDA (c) exhibit a strong positive correlation. Moreover, the
saturation level of yDA (d) significantly decreases with increase in zsensDR , causing the
modulation-associated window of DA (e) to shift to lower values as well as shrinks in its span. However,
the critical (f) as well as saturation levels (g) of zDR does not show any change with the variation in zsensDR .
As a result, the modulation-associated window of D1R stimulation (h) does not vary with change in zsensDR .

Figure 4. Effects of variation in D1R-sensitivity on the phase-lag between the
dopaminergic modulation profiles of sustained pyramidal and interneuron activities as
well as on the window of optimal DA. (a) The phase-lag between the peak xPN and the peak xIN
activities with respect to the associated yDA levels is seen to considerably decrease with increase in zsensDR

signifying a steeper modulation of the neuronal activities with unit change in yDA. (b) However, the
phase-lag with respect to the associated zDR levels does not vary. (c) An illustration for the concept of
optimal DA window associated with the region of optimal sustained xPN activity. It is assumed here that
the sustained pyramidal activity above 80% of the peak activity in the modulation profile facilitates
efficient WM maintenance. (d) The optimal DA window is seen to considerably shrink and shift to lower
values as the zsensDR is increased. (e) Accordingly, the overall size of the optimal DA window also decreases.
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Figure 5. WM-robustness during delay period in terms of potential barrier (PB). (a) The
global potential landscape of the noisy mesocortical dynamics is shown over the xPN -zDR plane, along
with its contour projection onto the plane. The system in sustained-firing state is depicted by a ball
sitting in the corresponding basin of attraction whose depth provides the PB which restricts the
noise-induced transition of the system to spontaneous-activity state. The contour projection illustrates
the fluctuation size in the systems state around its mean point which governs the SNR of the cortical
sustained activity facilitating WM maintenance. (b) For the different zsensDR , PBs for the sampled levels of
sustained pyramidal activities along the xPN -modulation profile always follow a concave profile. The
percentage activities are with respect to the peak (100%) sustained activity. (c) The average PB of the
post-peak set of sustained activities (including the peak activity) in the xPN -modulation profile is always
higher than that of the pre-peak set for every zsensDR . (d-e) Increase in zsensDR causes a consistent decrease in
the PB of any individual level of sustained activity either associated with the pre-peak or post-peak set of
the modulation profile. (f) The percent decrease in the average PB of pre-peak and post-peak sets across
increase in zsensDR shows the higher vulnerability of pre-peak set to D1R-sensitivity.

Figure 6. WM-robustness during delay period in terms of SNR of the cortical sustained
activity. (a) Similar to the PB, SNRs of the selected levels of cortical sustained activity along the
xPN -modulation profile always exhibit a concave profile under the different conditions of zsensDR . The
percentage activities are with respect to the peak (100%) sustained activity. (b) The average SNR of the
post-peak set of sustained activities (including the peak activity) in the xPN -modulation profile is always
higher than that of the pre-peak set for every zsensDR . (c-d) Increase in zsensDR causes decrease in the SNR of
any individual level of sustained activity either associated with the pre-peak or post-peak set. (e) The
percent decrease in the average SNR of the pre-peak and post-peak sets across increase in zsensDR shows the
higher vulnerability of pre-peak set to change in D1R-sensitivity.
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