## 1 Assembly and validation of conserved long non-coding RNAs in the ruminant

- 2 transcriptome
- 3
- 4 Stephen J. Bush<sup>1, 2</sup>, Charity Muriuki<sup>1</sup>, Mary E. B. McCulloch<sup>1</sup>, Iseabail L. Farquhar<sup>3</sup>, Emily
- 5 L. Clark<sup>1\*</sup>, David A. Hume<sup>1, 4 \*  $\dagger$ </sup>
- 6
- <sup>1</sup> The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian,
  EH25 9RG
- <sup>9</sup> <sup>2</sup> Experimental Medicine Division, Nuffield Department of Clinical Medicine, University of
- 10 Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU
- <sup>3</sup> Centre for Synthetic and Systems Biology, CH Waddington Building, Max Borne Crescent,
- 12 King's Buildings, University of Edinburgh, EH9 3BF
- <sup>4</sup>Mater Research-University of Queensland, Translational Research Institute, 37 Kent Street,
- 14 Woolloongabba, Queensland 4102, Australia
- 15 \* These authors contributed equally to this work.
- <sup>†</sup>Corresponding author: david.hume@roslin.ed.ac.uk / david.hume@uq.edu.au
- 17
- 18 Email addresses:
- 19 Stephen J. Bush stephen.bush@ndm.ox.ac.uk / stephen.bush@roslin.ed.ac.uk
- 20 Charity Muriuki charity.muriuki@ed.ac.uk
- 21 Mary E. B. McCulloch mary.mcculloch@ed.ac.uk

| 22 | Iseabail L. Farquhar | iseabail.farquhar@ed.ac.uk                        |
|----|----------------------|---------------------------------------------------|
| 23 | Emily L. Clark       | emily.clark@roslin.ed.ac.uk                       |
| 24 | David A. Hume        | david.hume@uq.edu.au / david.hume@roslin.ed.ac.uk |

#### 26 Abstract

27

28 mRNA-like long non-coding RNAs (lncRNA) are a significant component of mammalian 29 transcriptomes, although most are expressed only at low levels, with high tissue-specificity 30 and/or at specific developmental stages. In many cases, therefore, lncRNA detection by 31 RNA-sequencing (RNA-seq) is compromised by stochastic sampling. To account for this and 32 create a catalogue of ruminant lncRNA, we compared *de novo* assembled lncRNA derived 33 from large RNA-seq datasets in transcriptional atlas projects for sheep and goats with 34 previous lncRNA assembled in cattle and human. Few lncRNA could be reproducibly 35 assembled from a single dataset, even with deep sequencing of the same tissues from multiple 36 animals. Furthermore, there was little sequence overlap between lncRNA assembled from 37 pooled RNA-seq data. We combined positional conservation (synteny) with cross-species 38 mapping of candidate lncRNA to identify a consensus set of ruminant lncRNA and then used 39 the RNA-seq data to demonstrate detectable and reproducible expression in each species. The 40 majority of lncRNA were encoded by single exons, and expressed at < 1 TPM. In sheep, 20-41 30% of lncRNA had expression profiles significantly correlated with neighbouring protein-42 coding genes, suggesting association with enhancers. Alongside substantially expanding the 43 ruminant lncRNA repertoire, the outcomes of our analysis demonstrate that stochastic 44 sampling can be partly overcome by combining RNA-seq datasets from related species. This 45 has practical implications for the future discovery of lncRNA in other species.

## 47 Introduction

| 49 | Mammalian transcriptomes include many long non-coding RNAs (lncRNAs), a collective              |
|----|-------------------------------------------------------------------------------------------------|
| 50 | term for transcripts of > 200 nucleotides that resemble mRNAs (many being 3'                    |
| 51 | polyadenylated, 5' capped and spliced) but do not encode a protein product [1]. Proposed        |
| 52 | functional roles of lncRNAs include transcriptional regulation, epigenetic regulation,          |
| 53 | intracellular trafficking and chromatin remodelling (see reviews [2-9]). Some view lncRNAs      |
| 54 | as transcriptional noise [10, 11]. Full length lncRNAs are difficult to assemble: many are      |
| 55 | expressed at low levels [12], with high tissue-specificity [13, 14], at specific developmental  |
| 56 | time points (e.g. [15-17]), and with few signs of selective constraint [18, 19]. Many are also  |
| 57 | expressed transiently, and so may be partly degraded by the exosome complex [20].               |
| 58 | The initial recognition of lncRNAs as widespread and bona fide outputs of mammalian             |
| 59 | transcription was based upon the isolation and sequencing of large numbers of mouse and         |
| 60 | human full-length cDNAs [21-23], many of which were experimentally validated [24] and           |
| 61 | shown to participate in sense-antisense pairs [25]. They were captured in significant numbers   |
| 62 | because the cDNA libraries were subtracted to remove abundant transcripts. More recent          |
| 63 | studies have used RNA-sequencing (RNA-seq) to assemble larger catalogues of lncRNAs             |
| 64 | [26]. Because of the power-law relationship of individual transcript abundance in mammalian     |
| 65 | transcriptomes [27], unless sequencing is carried out at massive depth, the exons of lowly-     |
| 66 | abundant transcripts (such as lncRNAs) are subject to stochastic sampling and are detected      |
| 67 | inconsistently between technical replicates of the same sample [28]. RNA-seq is also a          |
| 68 | relatively inaccurate means of reconstructing the 5' ends of transcripts [29]. To overcome this |
| 69 | constraint, the FANTOM Consortium supplemented RNA-seq with Cap Analysis of Gene                |
| 70 | Expression (CAGE) data, characterising – in humans – a 5'-complete lncRNA transcriptome         |
| 71 | [30].                                                                                           |

| 72 | RNA-seq libraries from multiple tissues, cell types and developmental stages are commonly         |
|----|---------------------------------------------------------------------------------------------------|
| 73 | pooled to maximise the number of lncRNA gene models assembled. Genome-wide surveys                |
| 74 | have expanded the lncRNA repertoire of livestock species such as cattle (18 tissues,              |
| 75 | sequenced at approx. 40-100 million reads each) [31], pig (10 tissues, sequenced at approx. 6-    |
| 76 | 40 million reads each) [32], and horse (8 tissues, sequenced at approx. 20-200 million reads      |
| 77 | each) [33], complementing tissue-specific lncRNA catalogues of, for example, cattle muscle        |
| 78 | [34, 35] and skin [36], and pig adipose [37, 38], liver [39] and testis [40].                     |
| 79 | The low level of lncRNA conservation (at some loci, it appears that only the act of               |
| 80 | transcription, rather than the transcript sequence itself, is functionally relevant [41]) reduces |
| 81 | the utility of comparative analysis of the large RNA-seq datasets available from human [30,       |
| 82 | 42] and mouse [43]. Amongst 200 human and mouse lncRNAs, each characteristic of specific          |
| 83 | immune cell types, there was <1% sequence conservation [44].                                      |
| 84 | Here we focus on more closely related species. We have generated atlases of gene expression       |
| 85 | for the domestic sheep, Ovis aries [45], and the goat, Capra hircus (manuscript in                |
| 86 | preparation). As the two species are closely related (sharing a common ancestor < 10mya           |
| 87 | [46]) and their respective RNA-seq datasets contain many of the same tissues, it is possible to   |
| 88 | use data from one species to infer the presence of lncRNAs in the other. Cattle and humans        |
| 89 | are more distantly related to small ruminants, but nevertheless are substantially more similar    |
| 90 | than mice. We extend our approach by utilising existing human and cattle lncRNA datasets to       |
| 91 | identify a consensus ruminant lncRNA transcriptome, and use the sheep transcriptional atlas       |
| 92 | to confirm that candidate lncRNA identified by cross-species inference are reproducibly           |
| 93 | expressed. The lncRNA catalogues we have generated in the sheep and goat are of interest in       |
| 94 | themselves [47] and contribute valuable information to the Functional Annotation of Animal        |
| 95 | Genomes (FAANG) project [48, 49].                                                                 |
|    |                                                                                                   |

#### 97 Results and Discussion

98

#### 99 *Identifying lncRNAs in the sheep and goat transcriptomes*

100 We have previously created an expression atlas for the domestic sheep [45], using both 101 polyadenylated and rRNA-depleted RNA-seq data collected primarily from three male and 102 three female adult Texel x Scottish Blackface (TxBF) sheep at two years of age: 441 RNA-103 seq libraries in total, comprising 5 cell types and multiple tissues spanning all major organ 104 systems and several developmental stages, from embryonic to adult. To complement this 105 dataset, we also created a smaller-scale expression atlas – of 54 mRNA-seq libraries – from 6 106 day old crossbred goats, which will be the subject of a dedicated analysis. For both species, 107 each RNA-seq library was aligned against its reference genome (Oar v3.1 and ARS1, for 108 sheep and goat, respectively) using HISAT2 [50], with transcripts assembled using StringTie 109 [51]. This pipeline produced a non-redundant set of *de novo* gene and transcript models, as 110 previously described [45], and expanded the set of transcripts in each reference genome to 111 include *ab initio* lncRNA predictions and novel protein-coding genes. As the primary purpose 112 of the sheep expression atlas was to improve the functional characterisation of the protein-113 coding transcriptome, the novel sheep protein-coding transcript models generated by this 114 pipeline have been previously discussed [45] (novel protein-coding transcripts for goats will be discussed in a dedicated analysis of the protein-coding goat transcriptome). 115 116 Using similar filter criteria to a previous study [52], the *de novo* gene models were parsed to 117 create longlists of 30,677 (sheep) and 7671 (goat) candidate lncRNAs, each of which was >= 118 200bp and was not associated, on the same strand, with a known protein-coding locus. The 4-119 fold difference in the length of each longlist can be attributed to the relative size of each 120 dataset. The sheep atlas contains 8 times as many RNA-seq libraries, spans multiple 121 developmental stages (from embryonic to adult), and has a subset of its samples specifically

|     | aCC-BY-NC-ND 4.0 International license.                                                         |
|-----|-------------------------------------------------------------------------------------------------|
| 122 | prepared to ensure the comprehensive capture of ncRNAs – unlike any sample in the goat          |
| 123 | dataset, this subset is sequenced at a 4-fold higher depth (>100 million reads, rather than >25 |
|     |                                                                                                 |
| 124 | million reads) using a total RNA-seq, rather than mRNA-seq, protocol.                           |
| 125 | Each model on both longlists was assessed for coding potential using the classification tools   |
| 126 | CPC [53], CPAT [54] and PLEK [55], alongside homology searches of its longest ORF -             |
| 127 | with blastp [56] and HMMER [57] – to known protein and domain sequences (within the             |
| 128 | Swiss-Prot [58, 59] and Pfam-A [60] databases, respectively). Those gene models classified      |
| 129 | as non-coding by CPC, CPAT and PLEK, and having no detectable blastp and HMMER hits,            |
| 130 | are considered novel lncRNAs.                                                                   |
| 131 | This pipeline creates shortlists of 12,296 (sheep) and 2657 (goat) lncRNAs (Tables S1 and       |
| 132 | S2, respectively), representing approximately 40% (sheep) and 35% (goat) of the gene            |
| 133 | models on each longlist. The mean gene length is similar in both shortlists – 6.7kb (sheep)     |
| 134 | and 8.8kb (goat) – as is summed exon length, averaging 1.2kb in each species.                   |
| 135 | Consistent with previous analysis in several other species [31, 61], 6956 (57%) of the sheep    |
| 136 | lncRNAs, and 1284 (48%) of the goat, were single-exonic. For sheep, the shortlist contains      |
| 137 | 11,646 previously unknown lncRNA models and provides additional evidence for 650                |
| 138 | existing Oar v3.1 lncRNA models (Table S1). A small proportion of longlisted gene models        |
| 139 | were considered non-coding by at least one of CPC, CPAT or PLEK, but nevertheless               |
| 140 | showed some degree of sequence homology to either a known protein or protein domain: for        |
| 141 | sheep, 226 (including 13 existing Oar v3.1 models) (Table S3), and for goats, 153 (Table S4).   |
| 142 | The number of novel lncRNAs identified is also given per chromosome (Tables S5 (sheep)          |
| 143 | and S6 (goat)) and per type (Tables S7 (sheep) and S8 (goat)), the majority of which – in both  |
|     |                                                                                                 |

- species are found in intergenic regions, 10-100kb from the nearest gene. Overall, these
- 145 lncRNA models increase the number of possible genes in the reference annotation by
- 146 approximately 30% (sheep) and 12% (goat).

147 The sets of ab initio sheep and goat lncRNAs only minimally overlap at the sequence level 148 Even with full length cDNA sequences, comparative analysis revealed that only 27% of the 149 lncRNAs identified in human had mouse counterparts [23]. When comparing the sets of 150 sheep and goat lncRNAs, few predicted transcripts – in either species – show sequence-level 151 similarity either to each other or to other closely or distantly related species (cattle and 152 human, respectively, which shared a common ancestor with sheep and goats approx. 25 and 153 95mya [46]). Of the 12,296 shortlisted sheep lncRNAs, less than half (n = 5139, i.e. 42%) 154 had any detectable pairwise alignment - of any quality and of any length - to either the 155 shortlisted goat lncRNAs, a set of 9778 cattle lncRNAs from a previous study [31] or two 156 sets of human lncRNAs (Figure 1 and Table S9). In only a small proportion of these 157 alignments can there be high confidence: that is, the alignment has a % identity  $\geq 50\%$ 158 within an alignment  $\geq 50\%$  the length of the target sequence. Of the 5139 sheep lncRNAs 159 that could be aligned to any species, only 293 (5.7%) could be aligned with high confidence 160 to goat and 265 (5.2%) to cattle transcripts. Similarly, of the sheep lncRNAs that could be 161 aligned to either of two human lncRNA databases – NONCODE [62] and lncRNAdb [63] – 162 68 (1.6% of the total alignable lncRNAs) aligned with high confidence to the NONCODE 163 database, and none to the lncRNAdb. Similar findings are observed with the 2657 shortlisted 164 goat lncRNAs: 1343 (50.5%) had a detectable pairwise alignment, of any quality, to either set 165 of sheep, cattle or human lncRNAs. However, of these 1343 lncRNAs, only 113 (8.4%) 166 aligned with high confidence to sheep, 88 (6.6%) to cattle, 55 (4.1%) to the human 167 NONCODE database, and 1 (0.1%) to the human lncRNAdb database (Figure 1 and Table 168 S10). These observations allow for two possibilities. Firstly, lncRNAs may, in general, be 169 poorly conserved at the sequence level, consistent with previous findings [18, 19] and the 170 observation that only 6% of the sheep/goat alignments have >50% reciprocal identity.

- 171 However, an alternative is that despite the apparent depth of coverage, we have only
- assembled a subset of the total lncRNA transcriptome in each species.
- 173

#### 174 IncRNAs not captured by the RNA-seq libraries of one species can be found using data

175 *from a related species* 

176 A reasonable *a priori* prediction is that lncRNAs – if functionally relevant – are most likely 177 to share expression in a closely related species. Whereas human and mouse lncRNAs 178 identified as full length cDNAs were generally less conserved between species than the 5' 179 and 3'UTRs of protein-coding transcripts, their promoters were more highly conserved than 180 those of protein-coding transcripts, some extending as far as chicken [43, 64]. These findings 181 suggested that the large majority of lncRNAs that were analyzed displayed positional 182 conservation across species. Accordingly, rather than comparing the similarity of two sets of 183 lncRNA transcripts, we mapped the lncRNAs assembled in one species (e.g. sheep) to the 184 genome of another (e.g. goat), deriving confidence in the mapping location from synteny. 185 For each of the pairwise sheep/cattle, sheep/goat, cattle/goat, sheep/human, goat/human, and 186 cattle/human comparisons, we identified sets of syntenic blocks: regions in the genome where 187 gene order is conserved both up- and downstream of a focal gene (see Table 1 and Methods). 188 In the sheep/cattle comparison, approximately 5% of the syntenic blocks contain at least one 189 lncRNA with a relative position conserved in both species, either upstream (n=139 lncRNAs) 190 or downstream (n=141) of the central gene in each block (Table S11). In the sheep/goat and 191 cattle/goat comparisons, respectively, approximately 2 and 3% of the syntenic blocks contain 192 a lncRNA (for sheep/goat, n=42 upstream, 40 downstream; for cattle/goat, 86 upstream, 83 193 downstream) (Tables S12 and S13, respectively). With increased species divergence, far 194 fewer lncRNAs (<1%) have relative positions conserved in either the upstream or 195 downstream positions of the sheep/human, goat/human and cattle/human syntenic blocks

196 (Tables S14, S15 and S16, respectively). These comparatively small proportions highlight the 197 minimal overlap between each set of assembled transcripts, consistent with stochastic 198 assembly – lncRNAs expected to be present in a particular location are captured in only one 199 species, not both. As such, very few lncRNAs in either of the sheep, goat and cattle subsets 200 have evidence of both shared sequence homology and conserved syntemy. When comparing 201 sheep and cattle, 16 unique lncRNAs have high-confidence pairwise alignments within a 202 region of conserved synteny, and when comparing sheep and goat, 6 (Table S17). 203 In most of the syntenic blocks examined, if a lncRNA was detected in one location in one 204 species (either up- or downstream of a focal gene), no corresponding assembled lncRNA was 205 annotated in the comparison species, even though both species sequenced a similar range of 206 tissues. For example, of the 2927 syntenic blocks in the sheep/cattle comparison, 347 (12%) 207 of the sheep blocks, and 506 (17%) of the cattle blocks, contain a lncRNA in the 'upstream' 208 position (that is, between genes 1 and 2), with little overlap between the two species: in only 209 139 blocks (5%) is a lncRNA present in this position in both species (Table S11). Similar 210 results are found if considering the 'downstream' position, as well as the sheep/goat, 211 goat/cattle, sheep/human, goat/human and cattle/human comparisons: approximately 2-5 212 times as many lncRNAs are found in either of the two species than are found in both (Tables 213 S11, S12, S13, S14, S15 and S16). 214 Each set of syntenic blocks, by definition, represents a set of conserved intergenic regions. 215 Given that the majority of lncRNAs are intergenic (Tables S7 and S8), these regions are 216 reasonable locations for directly mapping candidate transcripts (strictly speaking, 217 concatenated exon sequences) to the genome. For the syntenic blocks in each species 218 comparison, we made global alignments of the lncRNAs in species x to the intergenic region 219 of species y, and vice versa (see Methods). Retaining only those alignments in which the

220 lncRNA can match the intergenic region with 20 or more consecutive residues (the majority

| 221                                                         | of these alignments in any case have $\geq 75\%$ identity across their entire length), we predicted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 222                                                         | 1077 additional lncRNAs in cattle, 1401 in sheep, and 1735 in goat, although only 44 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 223                                                         | human (Table 2 and Table S18). That comparatively few ruminant lncRNAs are recognisable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 224                                                         | at the sequence level in humans (and vice versa) is consistent with the rapid turnover of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 225                                                         | lncRNA repertoire between species [65]. In the case of the goat, the number of new lncRNAs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 226                                                         | predicted by this approach is > 50% the number captured (and shortlisted) using goat-specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 227                                                         | RNA-seq (Figure 2). This suggests that for the purposes of lncRNA detection, datasets from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 228                                                         | related species can help overcome limitations of sequencing breadth and depth. This is even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 229                                                         | apparent with comparatively large datasets – the sheep RNA-seq, for instance, spans more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 230                                                         | tissues and developmental stages than goat, but in absolute terms, it still fails to generate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 231                                                         | assemblies of many lncRNAs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 232                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 233                                                         | Many of the sheep lncRNAs inferred by synteny – which could not be fully assembled from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                             | Many of the sheep lncRNAs inferred by synteny – which could not be fully assembled from the RNA-seq reads – are nevertheless detectably expressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 233                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 233<br>234                                                  | the RNA-seq reads – are nevertheless detectably expressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 233<br>234<br>235                                           | the RNA-seq reads – are nevertheless detectably expressed<br>To determine the expression level of the sheep lncRNAs, we utilised a subset of 71 high-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 233<br>234<br>235<br>236                                    | <i>the RNA-seq reads – are nevertheless detectably expressed</i><br>To determine the expression level of the sheep lncRNAs, we utilised a subset of 71 high-<br>depth (>100 million reads) RNA-seq libraries from the sheep expression atlas [45]. This                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 233<br>234<br>235<br>236<br>237                             | <i>the RNA-seq reads – are nevertheless detectably expressed</i><br>To determine the expression level of the sheep lncRNAs, we utilised a subset of 71 high-<br>depth (>100 million reads) RNA-seq libraries from the sheep expression atlas [45]. This<br>subset constitutes a set of 11 transcriptionally rich tissues (bicep muscle, hippocampus,                                                                                                                                                                                                                                                                                                                                                         |
| 233<br>234<br>235<br>236<br>237<br>238                      | <i>the RNA-seq reads – are nevertheless detectably expressed</i><br>To determine the expression level of the sheep lncRNAs, we utilised a subset of 71 high-<br>depth (>100 million reads) RNA-seq libraries from the sheep expression atlas [45]. This<br>subset constitutes a set of 11 transcriptionally rich tissues (bicep muscle, hippocampus,<br>ileum, kidney medulla, left ventricle, liver, ovary, reticulum, spleen, testes, thymus), plus one                                                                                                                                                                                                                                                    |
| 233<br>234<br>235<br>236<br>237<br>238<br>239               | <i>the RNA-seq reads – are nevertheless detectably expressed</i><br>To determine the expression level of the sheep lncRNAs, we utilised a subset of 71 high-<br>depth (>100 million reads) RNA-seq libraries from the sheep expression atlas [45]. This<br>subset constitutes a set of 11 transcriptionally rich tissues (bicep muscle, hippocampus,<br>ileum, kidney medulla, left ventricle, liver, ovary, reticulum, spleen, testes, thymus), plus one<br>cell type in two conditions (bone marrow derived macrophages, unstimulated and 7 hours                                                                                                                                                          |
| 233<br>234<br>235<br>236<br>237<br>238<br>239<br>240        | <i>the RNA-seq reads – are nevertheless detectably expressed</i><br>To determine the expression level of the sheep lncRNAs, we utilised a subset of 71 high-<br>depth (>100 million reads) RNA-seq libraries from the sheep expression atlas [45]. This<br>subset constitutes a set of 11 transcriptionally rich tissues (bicep muscle, hippocampus,<br>ileum, kidney medulla, left ventricle, liver, ovary, reticulum, spleen, testes, thymus), plus one<br>cell type in two conditions (bone marrow derived macrophages, unstimulated and 7 hours<br>after simulation with lipopolysaccharide), each of which was sequenced in up to 6 individuals                                                         |
| 233<br>234<br>235<br>236<br>237<br>238<br>239<br>240<br>241 | <i>the RNA-seq reads – are nevertheless detectably expressed</i><br>To determine the expression level of the sheep lncRNAs, we utilised a subset of 71 high-<br>depth (>100 million reads) RNA-seq libraries from the sheep expression atlas [45]. This<br>subset constitutes a set of 11 transcriptionally rich tissues (bicep muscle, hippocampus,<br>ileum, kidney medulla, left ventricle, liver, ovary, reticulum, spleen, testes, thymus), plus one<br>cell type in two conditions (bone marrow derived macrophages, unstimulated and 7 hours<br>after simulation with lipopolysaccharide), each of which was sequenced in up to 6 individuals<br>(where possible, 3 adult males and 3 adult females). |

sheep, we supplemented the complete set of Oar v3.1 reference transcripts (n=28,828

| 246 | transcripts, representing 26,764 genes) both with the shortlist of 11,646 novel lncRNAs (each    |
|-----|--------------------------------------------------------------------------------------------------|
| 247 | of which is a single-transcript gene model) (Table S1), and those lncRNAs assembled from         |
| 248 | either human, goat and cattle (respectively, 18, 164 and 1219 lncRNAs), whose presence was       |
| 249 | predicted in sheep by mapping the transcript to a conserved genomic region (Table S18).          |
| 250 | Of these 13,047 novel lncRNAs, 8826 were detected at a level of TPM $> 1$ in at least one of     |
| 251 | the 71 adult samples, including 14 of the human transcripts (78%), 128 of the goat transcripts   |
| 252 | (78%), and 772 of the cattle transcripts (63%) (Table S19). At a depth of coverage of 100        |
| 253 | million reads, we would expect to detect transcripts reproducibly at between 0.01 and 0.1        |
| 254 | TPM if they are expressed in all libraries derived from the same tissue/cell type. Indeed, of    |
| 255 | the 13,047 total novel lncRNAs, 5353 (41%) were detected with at least one paired-end read       |
| 256 | in all 6 replicates of the tissue in which it is most highly expressed (Table S19). Those        |
| 257 | lncRNAs derived from goat and cattle transcripts are similarly reproducible: 83 (51%) of the     |
| 258 | goat transcripts were detected with at least one paired-end read in all 6 replicates of its most |
| 259 | expressed tissue, as were 570 (47%) of the cattle transcripts, and 7 (39%) of the human          |
| 260 | transcripts (Table S19).                                                                         |
| 261 | By extension, we can consider sheep, cattle and human lncRNA to be goat lncRNA, and              |
| 262 | create a Kallisto index containing candidate lncRNAs extracted from the goat genome after        |
| 263 | mapping sheep and cattle transcripts. Using such a Kallisto index (which contains the 2657       |
| 264 | shortlisted goat lncRNAs (Table S2), 507 sheep lncRNAs, 1213 cattle lncRNAs, and 15              |
| 265 | human lncRNAs), 1478 (34%) of a total set of 4392 candidate goat lncRNAs were                    |
| 266 | reproducibly detected (> 0.01 TPM) in all 4 of the goats sampled (Table S20). Hence, data        |
| 267 | from the sheep expression atlas can be used to provide additional functional annotation of the   |
| 268 | goat genome, despite the much lower number of tissue samples relative to sheep.                  |
| 269 | In general, lncRNA expression is low: 12,325 sheep lncRNAs (94% of the total) have a mean        |
| 270 | TPM, across all 71 samples, below 10. The mean and median maximum TPM for each                   |
|     |                                                                                                  |

| 271 | lncRNA across the total sheep dataset was 18.4 and 2.2 TPM, respectively (Table S19). Other    |
|-----|------------------------------------------------------------------------------------------------|
| 272 | reports have described pervasive, but low-level, mammalian lncRNA transcription [12], and -    |
| 273 | given the mean TPM exceeds the median – a high degree of lncRNA tissue-specificity [67-        |
| 274 | 69]. Indeed, for those lncRNAs detected at > 1 TPM, the average value of $tau$ – a scalar      |
| 275 | measure of expression breadth bound between 0 (for housekeeping genes) and 1 (for genes        |
| 276 | expressed in one sample only) [70] (see Methods) – is 0.66. Although most of the lncRNAs       |
| 277 | (n = 4972, 64% of the 7809 lncRNAs with average TPM > 1 in at least one tissue) have           |
| 278 | idiosyncratic 'mixed expression' profiles (see Methods), 1339 lncRNAs (17%) are                |
| 279 | nevertheless detected at an average $TPM > 1$ in all 13 tissues (Table S19). Many are enriched |
| 280 | in specific tissues, with 904 (12%) lncRNAs exhibiting a testes-specific expression pattern,   |
| 281 | consistent with a previous study identifying numerous lncRNAs involved in ovine testicular     |
| 282 | development and spermatogenesis [71].                                                          |
| 283 |                                                                                                |
| 284 | Few IncRNAs are fully cantured by biological replicates of the same RNA-sea library            |

## 284 Few lncRNAs are fully captured by biological replicates of the same RNA-seq library

285 In the largest assembly of predicted lncRNAs, from humans, the transfrags (transcript 286 fragments) assembled from 7256 RNA-seq libraries were consolidated into 58,648 candidate 287 lncRNAs [72]. Before assembling transfrags, machine learning methods were employed to 288 filter, from each library, any library-specific background noise (genomic DNA contamination 289 and incompletely processed RNA). Filtered libraries were then merged before assembling the 290 final gene models, in effect pooling together transfrags (which may be partial or full-length 291 transcripts) from all possible libraries. Consequently, a given set of transfrags can be 292 assembled into a consensus transcript for a lncRNA, but that consensus transcript might not 293 actually exist in any one cellular source. The only unequivocal means to confirm the full 294 length expression would be to clone the full length cDNA. However, additional confidence 295 can be obtained by increasing the depth of coverage in the same tissue/cell type in a technical

| 296 | replicate. In the sheep expression atlas, 31 diverse tissues/cell types were sampled in each of      |
|-----|------------------------------------------------------------------------------------------------------|
| 297 | 6 individual adults (3 females, 3 males, all unrelated virgin animals approximately 2 years of       |
| 298 | age). By taking a subset of 31 common tissues per individual, each of the 6 adults was               |
| 299 | represented by ~0.75 billion reads.                                                                  |
| 300 | In a typical lncRNA assembly pipeline, read alignments from all individuals are merged, to           |
| 301 | maximise the number of candidate gene models (using, for instance, StringTiemerge; see               |
| 302 | Methods). With $n = 6$ adults (and ~0.75 billion reads per adult), there are $2^{n}-1 = 63$ possible |
| 303 | combinations of data for which GTFs can be made with StringTiemerge. The                             |
| 304 | reproducibility of each shortlisted lncRNA, in terms of the number of GTFs it is                     |
| 305 | reconstructed in, is shown in Table S21. The GTFs themselves are available as Dataset S1             |
| 306 | (available via the University of Edinburgh DataShare portal;                                         |
| 307 | http://dx.doi.org/10.7488/ds/2284).                                                                  |
| 308 | Only 812 of the 12,296 sheep lncRNRAs (6.6%) could be fully reconstructed by any of the              |
| 309 | 63 GTF combinations (Table S21). One caveat in this assessment is that these sheep libraries         |
| 310 | are exclusively from adults. Many of the 12,296 lncRNA models may instead be expressed               |
| 311 | during embryonic development. There is evidence of extensive embryonic lncRNA                        |
| 312 | expression in human [15, 73] and mouse [16, 74]. The lack of embryonic tissues could also            |
| 313 | explain why fewer lncRNAs were assembled in goat. Nevertheless, when considering all 429             |
| 314 | RNA-seq libraries in the sheep expression atlas (i.e. including non-adult samples), there are        |
| 315 | only, on average, 29 libraries (7%) in which any individual lncRNA can be fully                      |
| 316 | reconstructed (Figure 3 and Table S22).                                                              |
| 317 | In many cases, full-length sheep lncRNAs cannot be reconstructed using all reads sequenced           |
| 318 | from a given individual. For instance, the known lncRNA ENSOARG00000025201 is                        |
| 319 | reconstructed by 28 of the 63 possible GTFs, but none of these GTFs was built using reads            |

| 320 | from only one individual (Table S21). Only 189 lncRNAs (1.5%) were fully reconstructed in       |
|-----|-------------------------------------------------------------------------------------------------|
| 321 | all 63 possible GTFs. Notably, 154 of these are known Ensembl lncRNAs (Table S21).              |
| 322 |                                                                                                 |
| 323 | IncRNAs are enriched in the vicinity of co-expressed protein-coding genes                       |
| 324 | Enhancer sequences positively modulate the transcription of nearby genes (see reviews [75,      |
| 325 | 76]), and may be the evolutionary origin of a fraction of these lncRNAs (as suggested by [77,   |
| 326 | 78]), including a novel class of enhancer-transcribed ncRNAs, enhancer (eRNAs), which -         |
| 327 | although a distinct subset – are arbitrarily classified as lncRNAs [79]. eRNAs are likely to be |
| 328 | co-expressed with protein-coding genes in their immediate genomic vicinity.                     |

329 To identify co-regulated sets of protein-coding and non-coding loci, we performed network

cluster analysis of the sheep expression level dataset (Table S19) using the Markov clustering

331 (MCL) algorithm [80], as implemented by Graphia Professional (Kajeka Ltd., Edinburgh,

UK) (see Methods) [81, 82]. To reduce noise, only those novel lncRNAs with reproducible

expression (that is, having > 0.01 TPM in every replicate of the tissue in which it is most

highly expressed) are included in this analysis (n = 5353). The resulting graph contained only

genes with tightly correlated expression profiles (Pearson's  $r \ge 0.95$ ) (Figure 4) and was

highly structured, organised into clusters of genes with a tissue or cell-type specific

337 expression profile (Table S23).

We expect that for a given cluster of co-expressed genes (which contains *x* lncRNAs and *y* protein-coding genes, each on chromosome *z*), the distance between an enhancer-derived lncRNA and the nearest protein-coding gene should be significantly shorter than the distance between that lncRNA and a random subset of protein-coding genes. For the purposes of this test, each random subset, of size *y*, is drawn from the complete set of protein-coding genes on the same chromosome *z* (that is, the same chromosome as the lncRNA), irrespective of strand and their degree of co-expression with the lncRNA. The significance of any difference in

distance was then assessed using a randomisation test (see Methods).

Of the 5353 lncRNAs included in the analysis, 1351 (25%) were found on the same

chromosome as a highly co-expressed protein-coding gene (Table S24), with 252 of these

348 (19%) significantly closer to the co-expressed gene than to randomly selected genes from the

same chromosome (p < 0.05; Table S25).

Even where the lncRNA is reproducibly expressed in each of 6 animals, there is still

substantial noise in the expression estimates with compromises co-expression analysis. We

therefore calculated the Pearson's r between the expression profile of each reproducibly

spressed lncRNA and its nearest protein-coding gene (which may overlap it), located both

5' and 3' on the sheep genome (Table S26). The distance to the nearest gene correlates

negatively with the absolute value of Pearson's r, both for genes upstream (rho = -0.19, p <

356  $2.2 \times 10^{-16}$ ) and downstream (*rho* = -0.21, p <  $2.2 \times 10^{-16}$ ) of the lncRNA (Table S26). This

suggests that, in general, the expression profile of a lncRNA is more similar to nearer than

358 more distant protein-coding genes. Using a variant of the above randomisation test, we also

tested whether the absolute value of Pearson's r, when correlating the expression profiles of

360 the lncRNA and its nearest protein-coding gene, was significantly greater than the value of r

361 obtained when correlating the lncRNA with 1000 random protein-coding genes drawn from

the same chromosome. For this test, analysis was restricted to those lncRNAs on complete

363 chromosomes rather than the smaller unplaced scaffolds. 27% of lncRNA had a Pearson

364correlation of > 0.5 with either the nearest upstream or downstream gene, and in around 20%365of cases, correlation was significantly different (p < 0.05) from the average correlation with

the random set (Table S26).

367

368

## 369 Conclusion

370

| 371                             | Comparative analysis of lncRNAs assembled using RNA-seq data from several closely                                                                                                                                                                                                                                                                                                 |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 372                             | related species – sheep, goat and cattle – demonstrates that for the <i>de novo</i> assembly of                                                                                                                                                                                                                                                                                   |
| 373                             | lncRNAs requires very high-depth RNA-seq datasets with a large number of replicates (> 6                                                                                                                                                                                                                                                                                          |
| 374                             | replicates per sample, each sequencing >> 100 million reads). The transcription of many                                                                                                                                                                                                                                                                                           |
| 375                             | lncRNAs identified by this cross-species approach is conserved, effectively validating their                                                                                                                                                                                                                                                                                      |
| 376                             | existence. We identified a subset of lncRNAs in close proximity to protein-coding genes with                                                                                                                                                                                                                                                                                      |
| 377                             | which they are strongly co-expressed, consistent with the evolutionary origin of some                                                                                                                                                                                                                                                                                             |
| 378                             | ncRNAs in enhancer sequences. Conversely, the majority of lncRNA do not share                                                                                                                                                                                                                                                                                                     |
| 379                             | transcriptional regulation with neighbouring protein-coding genes. Overall, alongside                                                                                                                                                                                                                                                                                             |
| 380                             | substantially expanding the lncRNA repertoire for several livestock species, we demonstrate                                                                                                                                                                                                                                                                                       |
| 381                             | that the conventional approach to lncRNA detection – that is, species-specific de novo                                                                                                                                                                                                                                                                                            |
| 382                             | assembly – can be reliably supplemented by data from related species.                                                                                                                                                                                                                                                                                                             |
| 383                             |                                                                                                                                                                                                                                                                                                                                                                                   |
| 384                             | Materials and Methods                                                                                                                                                                                                                                                                                                                                                             |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                   |
| 385                             |                                                                                                                                                                                                                                                                                                                                                                                   |
| 385<br>386                      | Sheep RNA-sequencing data                                                                                                                                                                                                                                                                                                                                                         |
|                                 | <i>Sheep RNA-sequencing data</i><br>We have previously created an expression atlas for the domestic sheep [45], using RNA-seq                                                                                                                                                                                                                                                     |
| 386                             |                                                                                                                                                                                                                                                                                                                                                                                   |
| 386<br>387                      | We have previously created an expression atlas for the domestic sheep [45], using RNA-seq                                                                                                                                                                                                                                                                                         |
| 386<br>387<br>388               | We have previously created an expression atlas for the domestic sheep [45], using RNA-seq data largely collected from adult Texel x Scottish Blackface (TxBF) sheep. Experimental                                                                                                                                                                                                 |
| 386<br>387<br>388<br>389        | We have previously created an expression atlas for the domestic sheep [45], using RNA-seq<br>data largely collected from adult Texel x Scottish Blackface (TxBF) sheep. Experimental<br>protocols for tissue collection, cell isolation, RNA extraction, library preparation, RNA                                                                                                 |
| 386<br>387<br>388<br>389<br>390 | We have previously created an expression atlas for the domestic sheep [45], using RNA-seq<br>data largely collected from adult Texel x Scottish Blackface (TxBF) sheep. Experimental<br>protocols for tissue collection, cell isolation, RNA extraction, library preparation, RNA<br>sequencing and quality control are as previously described [45], and independently available |

| 394 | The majority of these | libraries were sequenced | I to a depth of $>25$ million | paired-end reads per |
|-----|-----------------------|--------------------------|-------------------------------|----------------------|
|     |                       |                          |                               |                      |

- 395 sample using the Illumina TruSeq mRNA library preparation protocol (polyA-selected)
- 396 (Illumina; Part: 15031047, Revision E). A subset of 11 transcriptionally rich 'core' tissues
- 397 (bicep muscle, hippocampus, ileum, kidney medulla, left ventricle, liver, ovary, reticulum,
- spleen, testes, thymus), plus one cell type in two conditions (bone marrow derived
- 399 macrophages (BMDMs), unstimulated and 7 hours after simulation with lipopolysaccharide
- 400 (LPS)), were sequenced to a depth of >100 million paired-end reads per sample using the
- 401 Illumina TruSeq total RNA library preparation protocol (rRNA-depleted) (Illumina; Part:
- 402 15031048, Revision E).
- 403 Sample metadata for all tissue and cell samples are deposited in the EBI BioSamples database
- 404 under submission identifier GSB-718
- 405 (https://www.ebi.ac.uk/biosamples/groups/SAMEG317052). The raw read data, as .fastq
- 406 files, are deposited in the European Nucleotide Archive (ENA) under study accession
- 407 PRJEB19199 (http://www.ebi.ac.uk/ena/data/view/PRJEB19199).
- 408

#### 409 Goat RNA-sequencing data

- 410 All RNA-seq libraries for goat were prepared by Edinburgh Genomics (Edinburgh Genomics,
- 411 Edinburgh, UK) (as above) and sequenced using the Illumina HiSeq 4000 sequencing
- 412 platform (Illumina, San Diego, USA). These libraries were sequenced to a depth of >30
- 413 million paired-end reads per sample using the Illumina TruSeq mRNA library preparation
- 414 protocol (polyA-selected) (Illumina; Part: 15031047, Revision E). Sample metadata for all
- tissue and cell samples are deposited in the EBI BioSamples database under submission
- 416 identifier GSB-2131 (https://www.ebi.ac.uk/biosamples/groups/SAMEG330351). The raw
- 417 read data, as .fastq files, are deposited in the ENA under study accession PRJEB23196
- 418 (http://www.ebi.ac.uk/ena/data/view/PRJEB23196).

### 419 *Identifying candidate lncRNAs in sheep and goats*

420 We have previously described an RNA-seq processing pipeline for sheep [45] – using the 421 HISAT2 aligner [50] and StringTie assembler [51] – for generating a uniform, non-redundant 422 set of *de novo* assembled transcripts. The same pipeline is applied to the goat RNA-seq data. 423 This pipeline culminates in a single file per species, merged.gtf; that is, the output of 424 StringTie --merge, which collates every transcript model from the 54 goat assemblies (each 425 assembly being both individual- and tissue-specific), and 429 of the 441 assemblies within 426 the sheep expression atlas [45] (12 sheep libraries were not used for this purpose as they were 427 replicates of pre-existing bone marrow-derived macrophage libraries, prepared using an 428 mRNA-seq rather than a total RNA-seq protocol). Not all transcript models in either GTF 429 will be stranded. This is because HISAT2 infers the transcription strand of a given transcript 430 by reference to its splice sites; this is not possible for single exon transcripts, which are un-431 spliced. 432 The GTF was parsed to distinguish candidate lncRNAs from assembly artefacts, and from 433 other RNAs, by applying the filter criteria of llott, *et al.* [52], excluding gene models that (a) 434 were < 200 bp in length, (b) overlapped (by >= 1 bp on the same strand) any coordinates 435 annotated as 'protein-coding' or 'pseudogene' (this classifications are explicitly stated in the 436 Ensembl-hosted Oar v3.1 annotation and assumed true of all gene models in the ARS1 437 annotation), or (c) were associated with multiple transcript models (which are more likely to 438 be spurious). For single-exon gene models, we used a more conservative length threshold of 439 500 bp – the lower threshold of 200 bp could otherwise be met by a single pair of reads. We 440 further excluded any novel gene model that was previously considered protein-coding in each 441 species' expression atlas (as described in [45]); these models contain an ORF encoding a 442 peptide homologous to a ruminant protein in the NCBI nr database [45]. These criteria 443 establish longlists of 30,677 candidate sheep lncRNAs (14,862 of which are multi-exonic)

| 444 | and 7671 candidate goat lncRNAs (3289 of which are multi-exonic). The sheep genome, Oar            |
|-----|----------------------------------------------------------------------------------------------------|
| 445 | v3.1, already contains 1858 lncRNA models, of which the StringTie assembly precisely               |
| 446 | reconstructs 1402 (75%). Despite this pre-existing support, these models were included on          |
| 447 | the sheep longlist for independent verification. The goat genome, by contrast, was annotated       |
| 448 | with a focus on protein-coding gene models [83], by consolidating protein and cDNA                 |
| 449 | alignments – from exonerate [84] and tblastn [56] – with the annotation tool EVidence              |
| 450 | Modeller (EVM) [85]. Consequently, there are no unambiguous lncRNAs in the associated              |
| 451 | GTF                                                                                                |
| 452 | (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_0                 |
| 453 | 01704415.1_ARS1_genomic.gff.gz, accessed 23 <sup>rd</sup> October 2017) (unlike the Ensembl-hosted |
| 454 | sheep annotation, the goat annotation is currently only available via NCBI).                       |
| 455 | Each longlist of candidates was assessed for coding potential using three different tools:         |
| 456 | CPAT v1.2.3 [54], which assigns coding probabilities to a given sequence based on                  |
| 457 | differential hexamer usage [86] and Fickett TESTCODE score [87], PLEK v1.2, a support              |
| 458 | vector machine classifier utilising k-mer frequencies [55], and CPC v0.9-r2 [53], which was        |
| 459 | used in conjunction with the non-redundant sequence database, UniRef90 (the Uniref                 |
| 460 | Reference Cluster, a clustered set of sequences from the UniProt KnowledgeBase that                |
| 461 | constitutes comprehensive coverage of sequence space at a resolution of 90% identity) [88,         |
| 462 | 89] (ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/uniref90.fasta.gz, accessed       |
| 463 | 18 <sup>th</sup> August 2017). CPC scores putatively coding sequences positively and non-coding    |
| 464 | sequences negatively. We retained only those sequences with a CPC score $< -0.5$ (consistent       |
| 465 | with previous studies [31, 90]) and a CPAT probability $< 0.58$ (after creating sheep-specific     |
| 466 | coding and non-coding CPAT training data, from Oar v3.1 CDS and ncRNA, this cut-off is             |
| 467 | the intersection of two receiver operating characteristic curves, obtained using the R package     |
|     |                                                                                                    |

468 ROCR [91]; this cut-off is also used for the goat data, as there are insufficient non-coding

469 training data for this species).

| 470 | For each remaining gene model, we concatenated its exon sequence and identified the longest               |
|-----|-----------------------------------------------------------------------------------------------------------|
| 471 | ORF within it. Should CPC, CPAT or PLEK make a false positive classification of 'non-                     |
| 472 | coding', this translated ORF was considered the most likely peptide encoded by the gene.                  |
| 473 | Gene models were further excluded if the translated ORF (a) contained a protein domain,                   |
| 474 | based on a search by HMMER v3.1b2 [57] of the Pfam database of protein families, v31.0                    |
| 475 | [60], with a threshold E-value of $1 \times 10^{-5}$ , or (b) shared homology with a known peptide in the |
| 476 | Swiss-Prot March 2016 release [58, 59], based on a search with BLAST+ v2.3.0 [56]: blastp                 |
| 477 | with a threshold E-value of $1 \times 10^{-5}$ . Shortlists of 12,296 (sheep) and 2657 (goat) candidate   |
| 478 | lncRNAs - each with three independent 'non-coding' classifications and no detectable blastp               |
| 479 | and HMMER hits – are given in Tables S1 and S2, respectively.                                             |
| 480 |                                                                                                           |

#### 481 Classification of lncRNAs

- 482 Using the set of Oar v3.1 transcription start sites (TSS), obtained from Ensembl BioMart
- 483 [92], and the set of ARS1 gene start sites

484 (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF\_001704415.1\_ARS1/GCF\_0

485 01704415.1\_ARS1\_genomic.gff.gz, accessed 23<sup>rd</sup> October 2017), we classified novel

486 candidate lncRNAs for each species in the manner of [93], as either (a) sense or antisense (if

- the coordinates of the lncRNA overlap, or are encapsulated by, a known gene on the same, or
- 488 opposite, strand), (b) up- or downstream, and on the same or opposite strand (if < 5kb from
- the nearest TSS), or (c) intergenic (if  $\geq$  5kb, 10kb, 20kb, 50kb, 100kb, 500kb or 1 Mb from
- 490 the nearest TSS, irrespective of strand). The HISAT2/StringTie pipeline, used to generate
- 491 these transcript models, cannot infer the transcription strand in all cases, particularly for
- 492 single-exon transcripts. Accordingly, some lncRNAs will overlap the coordinates of a known

- 493 gene, but its strandedness with respect to that gene whether it is sense or antisense will be
- 494 unknown.
- 495

## 496 *Conservation of lncRNAs in terms of sequence*

- 497 To assess the sequence-level conservation of sheep and goat lncRNA transcripts, we obtained
- 498 human lncRNA sequences from two databases, NONCODE v5 [62]
- 499 (http://www.noncode.org/datadownload/NONCODEv5\_human.fa.gz, accessed 27<sup>th</sup>
- 500 September 2017) and lncRNAdb v2.0 [63]
- 501 (http://www.lncrnadb.com/media/cms\_page\_media/10651/Sequences\_lncrnadb\_27Jan2015.c
- 502 sv, accessed 27<sup>th</sup> September 2017) (which contain 172,216 and 152 lncRNAs, respectively).
- A previous study of lncRNAs in cattle [31] also generated a conservative set of 9778
- 504 lncRNAs, all of which were detectably expressed in at least one of 18 tissues (read count >
- 505 25 in each of three replicates per tissue). These sets of sequences constitute three independent
- 506 BLAST databases. For each sheep and goat lncRNA, blastn searches [56] were made against
- 507 each database using an arbitrarily high E-value of 10, as substantial sequence-level
- 508 conservation was not expected.
- 509

## 510 Conservation of lncRNAs in terms of synteny

- 511 For each of the human (GRCh38.p10), sheep (Oar v3.1), cattle (UMD3.1) and goat (ARS1)
- reference genomes, we established those regions in each pairwise comparison where gene
- order is conserved, obtaining reference annotations from Ensembl BioMart v90 [92] (sheep,
- 514 cattle and human) and NCBI (goat;
- 515 ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF\_001704415.1\_ARS1/GCF\_00
- 516 1704415.1\_ARS1\_genomic.gff.gz, accessed 27<sup>th</sup> September 2017). By advancing a sliding
- 517 window across each chromosome gene-by-gene from the 5' end, we identified the first

518 upstream and first downstream gene of each focal gene, irrespective of strand. For the 519 purpose of this analysis, the first and last genes on each chromosome are excluded, having no 520 upstream or downstream neighbour, respectively. For each pairwise species comparison, we 521 then determined which set of blocks were present in both – that is, where the HGNC symbols 522 for upstream gene/focal gene/downstream gene were identical. These syntenic blocks, of 523 three consecutive genes each, are regions in the genome where gene order is conserved both 524 up- and downstream of a focal gene: between sheep and cattle, there are 2927 regions 525 (comprising 5601 unique genes); sheep and goat, 2038 regions (3883 unique genes); cattle 526 and goat, 2982 regions (5258 unique genes); sheep and human, 380 regions (930 unique 527 genes); goat and human, 527 regions (1262 unique genes); cattle and human, 443 regions 528 (1063 unique genes). If in each syntenic block a lncRNA was found between the upstream 529 and focal gene, or the focal and downstream gene, in only one of the two species, a global 530 alignment was made between the transcript and the intergenic region of the corresponding 531 species. Alignments were made using the Needleman-Wunsch algorithm, as implemented by 532 the 'needle' module of EMBOSS v6.6.0 [94], with default parameters. By effectively treating 533 lncRNA transcripts as if they were CAGE tags (that is, short reads of 20-50 nucleotides [95]), 534 we considered successful alignments to be those containing one or more consecutive runs of 535 20 identical residues, without gaps (the majority of these alignments in any case have  $\geq$ = 536 75% identity across the entire length of the transcript (Table S18)). The probability that a 537 transcript randomly matches 20 consecutive residues, within a pre-defined region, is 538 extremely low. 539 For successful alignments, the target sequence (that is, an extract from the intergenic region) 540 was considered a novel lncRNA. For this analysis, the sheep and goat lncRNAs used are 541 those from their respective shortlists (Tables S1 and S2). lncRNA locations in other species 542 are obtained from previous studies applying similarly conservative classification criteria. For

| 543 | cattle, 9778 lncRNAs were obtained [31], each of which were >200bp, considered non-                   |
|-----|-------------------------------------------------------------------------------------------------------|
| 544 | coding by the classification tools CPC [53] and CNCI [96], lacked sequence similarity to the          |
| 545 | NCBI nr [45] and Pfam databases [60], and had a normalised read count > 25 in at least 2 of           |
| 546 | 3 replicates per tissue for 18 tissues. For human, 17,134 lncRNAs were obtained [72], each of         |
| 547 | which were assembled from >250bp transfrags, considered non-coding by the classification              |
| 548 | tool CPAT [54], lacked sequence similarity to the Pfam database [60], and had active                  |
| 549 | transcription confirmed by intersecting intervals surrounding the transcriptional start site with     |
| 550 | chromatin immunoprecipitation and sequencing (ChIP-seq) data from 13 cell lines.                      |
| 551 |                                                                                                       |
| 552 | Expression level quantification                                                                       |
| 553 | For the 11 'core' tissues of the sheep expression atlas, plus unstimulated and LPS-stimulated         |
| 554 | BMDMs (detailed in S2 Table of [45] and available under ENA accession PRJEB19199),                    |
| 555 | expression was quantified using Kallisto v0.43.0 [66] with a k-mer index (k=31) derived after         |
| 556 | supplementing the Oar v3.1 reference transcriptome with the shortlist of 11,646 novel sheep           |
| 557 | lncRNA models (Table S1) and those lncRNAs assembled in either human ( $n = 18$ ), goat               |
| 558 | (n=164), or cattle (n=1219), and which map to a conserved region of the sheep genome                  |
| 559 | (Table S15). Oar v3.1 transcripts were obtained from Ensembl v90 [92] in the form of                  |
| 560 | separate files for 22,823 CDS (ftp://ftp.ensembl.org/pub/release-                                     |
| 561 | 90/fasta/ovis_aries/cds/Ovis_aries.Oar_v3.1.cds.all.fa.gz, accessed 27th September 2017) and          |
| 562 | 6005 ncRNAs (ftp://ftp.ensembl.org/pub/release-                                                       |
| 563 | 90/fasta/ovis_aries/ncrna/Ovis_aries.Oar_v3.1.ncrna.fa.gz, accessed 27 <sup>th</sup> September 2017). |
| 564 | An equivalent set of expression estimates was made for goat, across the 21 tissues and cell           |
| 565 | types of the goat expression atlas (i.e., 54 RNA-seq libraries available under ENA accession          |
| 566 | PRJEB23196). 47,193 transcripts, from assembly ARS1, were obtained from NCBI                          |
| 567 | (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_0                    |
|     |                                                                                                       |

| 568 | 01704415.1_ARS1_rna.fna.gz, accessed 27 <sup>th</sup> September 2017), and supplemented both with |
|-----|---------------------------------------------------------------------------------------------------|
| 569 | the shortlist of 2657 novel goat lncRNA models (Table S2), and those lncRNAs assembled in         |
| 570 | human (n = 15), sheep (n = 507), or cattle (n = 1213) (Table S15). After quantification in each   |
| 571 | species, transcript-level abundances were summarised to the gene-level.                           |

### 573 Categorisation of expression profiles

574 Expression levels were categorised in the manner of the Human Protein Atlas [97], and as

575 previously employed in the Sheep Gene Expression Atlas [45]. Each gene is considered to

have either no expression (average TPM < 1, a threshold chosen to minimise the influence of

stochastic sampling), low expression (10 > average TPM >= 1), medium expression (50 >

average TPM > 10), or high expression (average TPM >= 50). Two sample specificity indices

were calculated for each gene, as in [45]: firstly, *tau*, a scalar measure of expression breadth

bound between 0 (for housekeeping genes) and 1 (for genes expressed in one sample only)

[70], and secondly, the mean TPM (across all samples) divided by the median TPM (across

all tissues). Genes with greater sample specificity will have a more strongly skewed

distribution (i.e. a higher mean and a lower median), and so the larger the ratio, the more

sample-specific the expression. To avoid undefined values, should median TPM be 0, it is

585 considered instead to be 0.01.

586 Each gene is also assigned one or more categories, to allow an at-a-glance overview of its

587 expression profile: (a) 'tissue enriched' (expression in one tissue at least five-fold higher than

all other tissues ['tissue specific' if all other tissues have 0 TPM]), (b) 'tissue enhanced'

- (five-fold higher average TPM in one or more tissues compared to the mean TPM of all
- tissues with detectable expression [this category is mutually exclusive with 'tissue enriched'),
- 591 (c) 'group enriched' (five-fold higher average TPM in a group of two or more tissues
- 592 compared to all other tissues ('groups' are analogous to organ systems, and are as described

| 593 | in the sheep expression atlas [45]), (d) mixed expression (detected in one or more tissues and                      |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 594 | neither of the previous categories), (e) 'expressed in all' (>= 1 TPM in all tissues), and (f)                      |
| 595 | 'not detected' (< 1 TPM in all tissues).                                                                            |
| 596 |                                                                                                                     |
| 597 | Network analysis                                                                                                    |
| 598 | Network analysis of the sheep expression level data was performed using Graphia Professional                        |
| 599 | (Kajeka Ltd, Edinburgh, UK), a commercial version of BioLayout <i>Express</i> <sup>3D</sup> [81, 82]. A correlation |
| 600 | matrix was built for each gene-to-gene comparison, which was then filtered by removing all                          |

601 correlations below a given threshold (Pearson's r < 0.95). A network graph was then constructed by

602 connecting nodes (genes) with edges (correlations above the threshold). The local structure of the

603 graph – that is, clusters of co-expressed genes (detailed in Table S23) – was interpreted by applying

the Markov clustering (MCL) algorithm [80] at an inflation value (which determines cluster

605 granularity) of 2.2.

606

#### 607 Enrichment of lncRNAs in the vicinity of protein-coding genes

608 To test whether lncRNAs co-expressed with protein-coding genes are more likely to be closer 609 to them (from which we can infer they are more likely to have been derived from an enhancer 610 sequence affecting that protein-coding gene), we employed a randomisation test in the 611 manner of [98]. We first obtained clusters of co-expressed genes from a network graph of the 612 sheep expression level dataset (see above). We then calculated q, the number of times the 613 distance between each lncRNA and the nearest protein-coding gene within the same cluster 614 was higher than the distance between each lncRNA and the nearest gene within s = 1000615 randomly selected, equally sized, subsets of protein-coding genes, drawn from the same 616 chromosome as each lncRNA. Letting  $r = s \cdot q$ , then the p-value of this test is r+1/s+1.

617

# 618 **Declarations**

619

## 620 Acknowledgements

| 621                      | The authors would like to thank the farm staff at Dryden farm and members of the sheep                                                                                                    |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 622                      | tissue collection team from The Roslin Institute and R(D)SVS who were involved in tissue                                                                                                  |
| 623                      | collections for the sheep gene expression atlas project. Rachel Young and Lucas Lefevre                                                                                                   |
| 624                      | isolated the bone marrow derived macrophages and Zofia Lisowski provided technical                                                                                                        |
| 625                      | assistance with collection and post mortem for the goat samples. Technical expertise for                                                                                                  |
| 626                      | dissection of the sheep brain samples was provided by Fiona Houston and heart samples by                                                                                                  |
| 627                      | Kim Summers and Hiu-Gwen Tsang. The authors are also grateful for the support of the                                                                                                      |
| 628                      | FAANG Data Coordination Centre in the upload and archiving of the sample data and                                                                                                         |
| 620                      |                                                                                                                                                                                           |
| 629                      | metadata.                                                                                                                                                                                 |
| 629                      | metadata.                                                                                                                                                                                 |
|                          | metadata. <i>Funding</i>                                                                                                                                                                  |
| 630                      |                                                                                                                                                                                           |
| 630<br>631               | Funding                                                                                                                                                                                   |
| 630<br>631<br>632        | <i>Funding</i><br>This work was supported by a Biotechnology and Biological Sciences Research Council                                                                                     |
| 630<br>631<br>632<br>633 | <i>Funding</i><br>This work was supported by a Biotechnology and Biological Sciences Research Council<br>(BBSRC; www.bbsrc.ac.uk) grant BB/L001209/1 ('Functional Annotation of the Sheep |

- funded by the Roslin Foundation (www.roslinfoundation.com) which also supported SJB.
- 638 CM was supported by a Newton Fund PhD studentship (www.newtonfund.ac.uk). Edinburgh
- 639 Genomics is partly supported through core grants from the BBSRC (BB/J004243/1), National
- 640 Research Council (NERC; www.nationalacademies.org.uk/nrc) (R8/H10/56), and Medical
- 641 Research Council (MRC; www.mrc.ac.uk) (MR/K001744/1). The funders had no role in

- 642 study design, data collection and analysis, decision to publish, or preparation of the
- 643 manuscript.
- 644
- 645 Ethics approval and consent to participate
- 646 Approval was obtained from The Roslin Institute's and the University of Edinburgh's Protocols and
- 647 Ethics Committees. All animal work was carried out under the regulations of the Animals (Scientific
- 648 Procedures) Act 1986.
- 649

```
650 Competing interests
```

- 651 The authors declare they have no competing interests.
- 652

## 653 Data availability

- The raw RNA-sequencing data are deposited in the European Nucleotide Archive (ENA)
- under study accessions PRJEB19199 (sheep) and PRJEB23196 (goat). Sample metadata for
- all tissue and cell samples, prepared in accordance with FAANG consortium metadata
- standards, are deposited in the EBI BioSamples database under group identifiers
- 658 SAMEG317052 (sheep) and SAMEG330351 (goat). All experimental protocols are available
- on the FAANG consortium website at http://ftp.faang.ebi.ac.uk/ftp/protocols.
- 660

| Species<br>1 | Species<br>2 | No. of syntenic<br>blocks (i.e. three<br>conserved<br>consecutive<br>genes) | No. of unique<br>protein-<br>coding genes<br>in the set of<br>syntenic<br>blocks | Total no. of positionally<br>conserved lncRNAs in<br>the set of syntenic<br>blocks (in either the<br>up- or downstream<br>position) | % of syntenic<br>blocks with at<br>least one<br>positionally<br>conserved<br>lncRNA |
|--------------|--------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| sheep        | cattle       | 2927                                                                        | 5601                                                                             | 280                                                                                                                                 | 9.57                                                                                |
| sheep        | goat         | 2038                                                                        | 3883                                                                             | 82                                                                                                                                  | 4.02                                                                                |
| sheep        | human        | 380                                                                         | 930                                                                              | 8                                                                                                                                   | 2.11                                                                                |
| goat         | cattle       | 2982                                                                        | 5258                                                                             | 169                                                                                                                                 | 5.67                                                                                |
| goat         | human        | 527                                                                         | 1262                                                                             | 2                                                                                                                                   | 0.38                                                                                |
| cattle       | human        | 443                                                                         | 1063                                                                             | 5                                                                                                                                   | 1.13                                                                                |

Table 1. Comparatively few lncRNAs appear positionally conserved, suggesting minimal overlap between each species' set of assembled
 transcripts. This suggests that those lncRNAs expected to be found at a given genomic location are captured in only one species, not both,
 consistent with the stochastic sampling of lncRNAs by RNA-seq libraries.

| Species 1 (in<br>which IncRNA<br>is captured by<br>RNA-seq<br>libraries) | Species 2<br>(in which<br>IncRNA can<br>be<br>inferred) | No. of IncRNA models<br>detected within a region<br>of conserved synteny<br>between species 1 and<br>2, but not captured by<br>the RNA-seq libraries of<br>species 2 | No. of IncRNA models<br>from species 1<br>mapped to the<br>genome of species 2 | % of IncRNA<br>models detected<br>by direct<br>genome<br>mapping | Number of<br>intergenic regions in<br>the syntenic blocks<br>conserved between<br>these two species | % of intergenic<br>regions in which a<br>IncRNA from<br>species 1 is<br>inferred in species<br>2 |
|--------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                                          | goat                                                    | 2593                                                                                                                                                                 | 1213                                                                           | 46.78                                                            | 5964                                                                                                | 20.34                                                                                            |
| cattle                                                                   | human                                                   | 163                                                                                                                                                                  | 20                                                                             | 12.27                                                            | 886                                                                                                 | 2.26                                                                                             |
|                                                                          | sheep                                                   | 2939                                                                                                                                                                 | 1219                                                                           | 41.48                                                            | 5854                                                                                                | 20.82                                                                                            |
| goat                                                                     | cattle                                                  | 2593                                                                                                                                                                 | 286                                                                            | 11.03                                                            | 5964                                                                                                | 4.8                                                                                              |

|       | human  | 76   | 9   | 11.84 | 1054 | 0.85  |
|-------|--------|------|-----|-------|------|-------|
|       | sheep  | 991  | 164 | 16.55 | 4076 | 4.02  |
|       | cattle | 163  | 16  | 9.82  | 886  | 1.81  |
| human | goat   | 76   | 15  | 19.74 | 1054 | 1.42  |
|       | sheep  | 93   | 18  | 19.35 | 760  | 2.37  |
|       | cattle | 2939 | 775 | 26.37 | 5854 | 13.24 |
| sheep | goat   | 991  | 507 | 51.16 | 4076 | 12.44 |
|       | human  | 93   | 15  | 16.13 | 760  | 1.97  |

669

**Table 2.** lncRNA transcripts assembled using the RNA-seq libraries of only one species can in many cases be directly mapped to the genome of

another species, assuming the lncRNA is located within a region of conserved syntemy.

| 672 | Refe | rences                                                                              |
|-----|------|-------------------------------------------------------------------------------------|
| 673 |      |                                                                                     |
| 674 | 1.   | Ponting CP, Oliver PL, Reik W: Evolution and functions of long noncoding RNAs.      |
| 675 |      | <i>Cell</i> 2009, <b>136:</b> 629-641.                                              |
| 676 | 2.   | Engreitz JM, Ollikainen N, Guttman M: Long non-coding RNAs: spatial amplifiers      |
| 677 |      | that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 2016,     |
| 678 |      | <b>17:</b> 756-770.                                                                 |
| 679 | 3.   | Rinn JL, Chang HY: Genome regulation by long noncoding RNAs. Annu Rev               |
| 680 | 5.   | Biochem 2012, <b>81:</b> 145-166.                                                   |
| 681 | 4.   | Chen J, Xue Y: Emerging roles of non-coding RNAs in epigenetic regulation. Sci      |
| 682 | т.   | China Life Sci 2016, <b>59:</b> 227-235.                                            |
| 683 | 5.   | Kung JT, Colognori D, Lee JT: Long noncoding RNAs: past, present, and future.       |
| 684 | 5.   | Genetics 2013, <b>193:</b> 651-669.                                                 |
| 685 | 6    | Quinn JJ, Chang HY: Unique features of long non-coding RNA biogenesis and           |
| 686 | 6.   | function. Nat Rev Genet 2016, <b>17:</b> 47-62.                                     |
|     | 7    |                                                                                     |
| 687 | 7.   | Villegas VE, Zaphiropoulos PG: <b>Neighboring Gene Regulation by Antisense Long</b> |
| 688 |      | Non-Coding RNAs. International Journal of Molecular Sciences 2015, 16:3251-         |
| 689 | 0    | 3266.                                                                               |
| 690 | 8.   | Goff LA, Rinn JL: Linking RNA biology to lncRNAs. Genome Research 2015,             |
| 691 | 0    | <b>25:</b> 1456-1465.                                                               |
| 692 | 9.   | Cech TR, Steitz JA: The noncoding RNA revolution-trashing old rules to forge        |
| 693 | 10   | new ones. Cell 2014, <b>157</b> :77-94.                                             |
| 694 | 10.  | Kapranov P, St Laurent G, Raz T, Ozsolak F, Reynolds CP, Sorensen PHB, Reaman       |
| 695 |      | G, Milos P, Arceci RJ, Thompson JF, Triche TJ: The majority of total nuclear-       |
| 696 |      | encoded non-ribosomal RNA in a human cell is 'dark matter' un-annotated             |
| 697 |      | <b>RNA.</b> <i>BMC Biology</i> 2010, <b>8:</b> 149.                                 |
| 698 | 11.  | van Bakel H, Nislow C, Blencowe BJ, Hughes TR: Most "Dark Matter"                   |
| 699 |      | Transcripts Are Associated With Known Genes. PLOS Biology 2010, 8:e1000371.         |
| 700 | 12.  | Kornienko AE, Dotter CP, Guenzl PM, Gisslinger H, Gisslinger B, Cleary C,           |
| 701 |      | Kralovics R, Pauler FM, Barlow DP: Long non-coding RNAs display higher              |
| 702 |      | natural expression variation than protein-coding genes in healthy humans.           |
| 703 |      | Genome Biology 2016, <b>17:</b> 14.                                                 |
| 704 | 13.  | Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS: Specific expression of      |
| 705 |      | long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2008,              |
| 706 |      | <b>105:</b> 716-721.                                                                |
| 707 | 14.  | Gloss BS, Dinger ME: The specificity of long noncoding RNA expression.              |
| 708 |      | Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2016, 1859:16-     |
| 709 |      | 22.                                                                                 |
| 710 | 15.  | Qiu JJ, Ren ZR, Yan JB: Identification and functional analysis of long non-coding   |
| 711 |      | RNAs in human and mouse early embryos based on single-cell transcriptome            |
| 712 |      | data. Oncotarget 2016, 7:61215-61228.                                               |
| 713 | 16.  | Zhang K, Huang K, Luo Y, Li S: Identification and functional analysis of long       |
| 714 |      | non-coding RNAs in mouse cleavage stage embryonic development based on              |
| 715 |      | single cell transcriptome data. BMC Genomics 2014, 15:845.                          |
| 716 | 17.  | Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A,     |
| 717 |      | Rinn JL, Regev A, Schier AF: Systematic identification of long noncoding RNAs       |
| 718 |      | expressed during zebrafish embryogenesis. Genome Res 2012, 22:577-591.              |
| 719 | 18.  | Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL:            |
| 720 | -0.  | Integrative annotation of human large intergenic noncoding RNAs reveals global      |
| 721 |      | properties and specific subclasses. Genes Dev 2011, 25:1915-1927.                   |
|     |      |                                                                                     |

| 722<br>723 | 19. | Johnsson P, Lipovich L, Grander D, Morris KV: <b>Evolutionary conservation of long</b><br><b>non-coding RNAs; sequence, structure, function.</b> <i>Biochim Biophys Acta</i> 2014, |
|------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 724        |     | <b>1840:</b> 1063-1071.                                                                                                                                                            |
| 725        | 20. | Andersson R, Refsing Andersen P, Valen E, Core LJ, Bornholdt J, Boyd M, Heick                                                                                                      |
| 726        |     | Jensen T, Sandelin A: Nuclear stability and transcriptional directionality separate                                                                                                |
| 727        |     | functionally distinct RNA species. Nat Commun 2014, 5:5336.                                                                                                                        |
| 728        | 21. | Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L: Genome-wide                                                                                                             |
| 729        |     | computational identification and manual annotation of human long noncoding                                                                                                         |
| 730        |     | <b>RNA genes.</b> <i>RNA</i> 2010, <b>16:</b> 1478-1487.                                                                                                                           |
| 731        | 22. | Maeda N, Kasukawa T, Oyama R, Gough J, Frith M, Engstrom PG, Lenhard B,                                                                                                            |
| 732        |     | Aturaliya RN, Batalov S, Beisel KW, et al: Transcript annotation in FANTOM3:                                                                                                       |
| 733        |     | mouse gene catalog based on physical cDNAs. PLoS Genet 2006, 2:e62.                                                                                                                |
| 734        | 23. | Sasaki YT, Sano M, Ideue T, Kin T, Asai K, Hirose T: Identification and                                                                                                            |
| 735        |     | characterization of human non-coding RNAs with tissue-specific expression.                                                                                                         |
| 736        |     | Biochem Biophys Res Commun 2007, 357:991-996.                                                                                                                                      |
| 737        | 24. | Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, Fukuda S, Ru K,                                                                                                     |
| 738        |     | Frith MC, Gongora MM, et al: Experimental validation of the regulated expression                                                                                                   |
| 739        |     | of large numbers of non-coding RNAs from the mouse genome. Genome Res                                                                                                              |
| 740        | ~ - | 2006, <b>16:</b> 11-19.                                                                                                                                                            |
| 741        | 25. | Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida                                                                                                         |
| 742        |     | H, Yap CC, Suzuki M, Kawai J, et al: Antisense transcription in the mammalian                                                                                                      |
| 743        | 0.6 | transcriptome. Science 2005, <b>309:</b> 1564-1566.                                                                                                                                |
| 744        | 26. | Mattick JS, Rinn JL: Discovery and annotation of long noncoding RNAs. <i>Nat</i>                                                                                                   |
| 745        | 27  | <i>Struct Mol Biol</i> 2015, <b>22:</b> 5-7.                                                                                                                                       |
| 746        | 27. | Balwierz PJ, Carninci P, Daub CO, Kawai J, Hayashizaki Y, Van Belle W, Beisel C,                                                                                                   |
| 747        |     | van Nimwegen E: Methods for analyzing deep sequencing expression data:                                                                                                             |
| 748        |     | constructing the human and mouse promoterome with deepCAGE data. Genome                                                                                                            |
| 749        | 20  | Biol 2009, <b>10:</b> R79.                                                                                                                                                         |
| 750<br>751 | 28. | McIntyre LM, Lopiano KK, Morse AM, Amin V, Oberg AL, Young LJ, Nuzhdin SV:                                                                                                         |
| 751        | 29. | <b>RNA-seq: technical variability and sampling.</b> <i>BMC Genomics</i> 2011, <b>12:</b> 1-13. Steijger T, Abril JF, Engstrom PG, Kokocinski F, Hubbard TJ, Guigo R, Harrow J,     |
| 752<br>753 | 29. | Bertone P: Assessment of transcript reconstruction methods for RNA-seq. Nat                                                                                                        |
| 754        |     | Methods 2013, <b>10:</b> 1177-1184.                                                                                                                                                |
| 755        | 30. | Hon C-C, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJL, Gough J,                                                                                                             |
| 756        | 50. | Denisenko E, Schmeier S, Poulsen TM, Severin J, et al: An atlas of human long                                                                                                      |
| 757        |     | non-coding RNAs with accurate 5' ends. <i>Nature</i> 2017, <b>543</b> :199-204.                                                                                                    |
| 758        | 31. | Koufariotis LT, Chen YP, Chamberlain A, Vander Jagt C, Hayes BJ: A catalogue of                                                                                                    |
| 759        | 51. | novel bovine long noncoding RNA across 18 tissues. <i>PLoS One</i> 2015,                                                                                                           |
| 760        |     | <b>10:</b> e0141225.                                                                                                                                                               |
| 761        | 32. | Zhou ZY, Li AM, Adeola AC, Liu YH, Irwin DM, Xie HB, Zhang YP: Genome-                                                                                                             |
| 762        | 52. | wide identification of long intergenic noncoding RNA genes and their potential                                                                                                     |
| 763        |     | association with domestication in pigs. Genome Biol Evol 2014, 6:1387-1392.                                                                                                        |
| 764        | 33. | Scott EY, Mansour T, Bellone RR, Brown CT, Mienaltowski MJ, Penedo MC, Ross                                                                                                        |
| 765        |     | PJ, Valberg SJ, Murray JD, Finno CJ: <b>Identification of long non-coding RNA in the</b>                                                                                           |
| 766        |     | horse transcriptome. BMC Genomics 2017, <b>18:</b> 511.                                                                                                                            |
| 767        | 34. | Billerey C, Boussaha M, Esquerré D, Rebours E, Djari A, Meersseman C, Klopp C,                                                                                                     |
| 768        |     | Gautheret D, Rocha D: Identification of large intergenic non-coding RNAs in                                                                                                        |
| 769        |     | bovine muscle using next-generation transcriptomic sequencing. BMC Genomics                                                                                                        |
| 770        |     | 2014, <b>15:</b> 499.                                                                                                                                                              |
|            |     |                                                                                                                                                                                    |

| 771        | 35. | Liu XF, Ding XB, Li X, Jin CF, Yue YW, Li GP, Guo H: An atlas and analysis of                                                                                          |
|------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 772        |     | bovine skeletal muscle long noncoding RNAs. Anim Genet 2017, 48:278-286.                                                                                               |
| 773        | 36. | Weikard R, Hadlich F, Kuehn C: Identification of novel transcripts and noncoding                                                                                       |
| 774        |     | <b>RNAs in bovine skin by deep next generation sequencing.</b> <i>BMC Genomics</i> 2013,                                                                               |
| 775        |     | <b>14:</b> 789.                                                                                                                                                        |
| 776        | 37. | Yu L, Tai L, Zhang L, Chu Y, Li Y, Zhou L: Comparative analyses of long non-                                                                                           |
| 777        |     | coding RNA in lean and obese pig. Oncotarget 2017, 8:41440-41450.                                                                                                      |
| 778        | 38. | Wang J, Hua L, Chen J, Zhang J, Bai X, Gao B, Li C, Shi Z, Sheng W, Gao Y, Xing                                                                                        |
| 779        |     | <b>B:</b> Identification and characterization of long non-coding RNAs in subcutaneous                                                                                  |
| 780        |     | adipose tissue from castrated and intact full-sib pair Huainan male pigs. BMC                                                                                          |
| 781        |     | Genomics 2017, <b>18:</b> 542.                                                                                                                                         |
| 782        | 39. | Xia J, Xin L, Zhu W, Li L, Li C, Wang Y, Mu Y, Yang S, Li K: Characterization of                                                                                       |
| 783        |     | long non-coding RNA transcriptome in high-energy diet induced nonalcoholic                                                                                             |
| 784        |     | steatohepatitis minipigs. Scientific Reports 2016, 6:30709.                                                                                                            |
| 785        | 40. | Esteve-Codina A, Kofler R, Palmieri N, Bussotti G, Notredame C, Pérez-Enciso M:                                                                                        |
| 786        |     | Exploring the gonad transcriptome of two extreme male pigs with RNA-seq.                                                                                               |
| 787        |     | BMC Genomics 2011, <b>12:</b> 552.                                                                                                                                     |
| 788        | 41. | Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, McDonel PE,                                                                                                |
| 789        |     | Guttman M, Lander ES: Local regulation of gene expression by lncRNA                                                                                                    |
| 790        |     | promoters, transcription and splicing. <i>Nature</i> 2016, <b>539</b> :452-455.                                                                                        |
| 791        | 42. | Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin                                                                                    |
| 792        |     | D, Merkel A, Knowles DG, et al: The GENCODE v7 catalog of human long                                                                                                   |
| 793        |     | noncoding RNAs: Analysis of their gene structure, evolution, and expression.                                                                                           |
| 794        |     | Genome Research 2012, 22:1775-1789.                                                                                                                                    |
| 795        | 43. | Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R,                                                                                               |
| 796        |     | Ravasi T, Lenhard B, Wells C, et al: The transcriptional landscape of the                                                                                              |
| 797        |     | mammalian genome. Science 2005, <b>309:</b> 1559-1563.                                                                                                                 |
| 798        | 44. | Roux BT, Heward JA, Donnelly LE, Jones SW, Lindsay MA: Catalog of                                                                                                      |
| 799        |     | Differentially Expressed Long Non-Coding RNA following Activation of Human                                                                                             |
| 800        | 45  | and Mouse Innate Immune Response. Frontiers in Immunology 2017, 8:1038.                                                                                                |
| 801        | 45. | Clark EL, Bush SJ, McCulloch MEB, Farquhar IL, Young R, Lefevre L, Pridans C,                                                                                          |
| 802        |     | Tsang H, Wu C, Afrasiabi C, et al: A high resolution atlas of gene expression in the                                                                                   |
| 803        | 10  | domestic sheep (Ovis aries). <i>PLoS Genet</i> 2017, <b>13</b> :e1006997.                                                                                              |
| 804        | 46. | Kumar S, Stecher G, Suleski M, Hedges SB: <b>TimeTree: A Resource for Timelines</b> ,                                                                                  |
| 805        | 17  | <b>Timetrees, and Divergence Times.</b> <i>Mol Biol Evol</i> 2017, <b>34:</b> 1812-1819.                                                                               |
| 806        | 47. | Weikard R, Demasius W, Kuehn C: Mining long noncoding RNA in livestock. Anim                                                                                           |
| 807        | 10  | Genet 2017, <b>48:3</b> -18.                                                                                                                                           |
| 808        | 48. | Andersson L, Archibald AL, Bottema CD, Brauning R, Burgess SC, Burt DW, Casas                                                                                          |
| 809        |     | E, Cheng HH, Clarke L, Couldrey C, et al: <b>Coordinated international action to</b>                                                                                   |
| 810<br>811 |     | accelerate genome-to-phenome with FAANG, the Functional Annotation of                                                                                                  |
| 811<br>812 | 49. | Animal Genomes project. <i>Genome Biology</i> 2015, <b>16:57</b> .<br>Tuggle CK, Giuffra E, White SN, Clarke L, Zhou H, Ross PJ, Acloque H, Reecy JM,                  |
| 812        | 49. |                                                                                                                                                                        |
| 813<br>814 |     | Archibald A, Bellone RR, et al: <b>GO-FAANG meeting: a Gathering On Functional</b>                                                                                     |
| 814<br>815 | 50. | Annotation of Animal Genomes. <i>Animal Genetics</i> 2016, <b>47:5</b> 28-533.<br>Kim D, Langmead B, Salzberg SL: <b>HISAT: a fast spliced aligner with low memory</b> |
| 815<br>816 | 50. | requirements. <i>Nat Meth</i> 2015, <b>12:</b> 357-360.                                                                                                                |
| 817        | 51. | Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL:                                                                                                 |
| 818        | 51. | StringTie enables improved reconstruction of a transcriptome from RNA-seq                                                                                              |
| 819        |     | reads. Nat Biotech 2015, <b>33:</b> 290-295.                                                                                                                           |
| 013        |     | <b>1 Caus.</b> 1101 DIVICUI 2013, <b>33.</b> 270-273.                                                                                                                  |

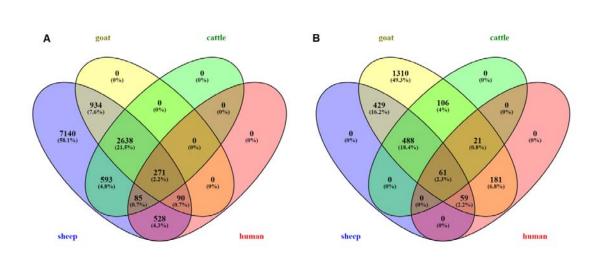
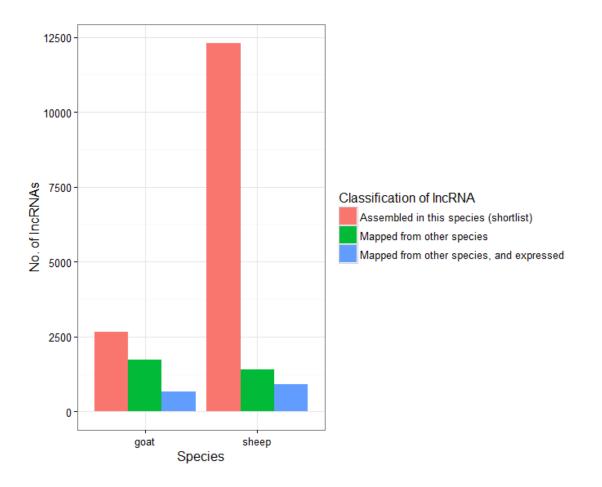
| 820        | 52.      | Ilott NE, Ponting CP: Predicting long non-coding RNAs using RNA sequencing.                                   |
|------------|----------|---------------------------------------------------------------------------------------------------------------|
| 821        | 50       | Methods 2013, <b>63:</b> 50-59.                                                                               |
| 822        | 53.      | Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, Gao G: <b>CPC: assess the</b>                              |
| 823        |          | protein-coding potential of transcripts using sequence features and support                                   |
| 824        | 51       | vector machine. Nucleic Acids Research 2007, 35:W345-W349.                                                    |
| 825        | 54.      | Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W: <b>CPAT: Coding-Potential</b>                            |
| 826        |          | <b>Assessment Tool using an alignment-free logistic regression model.</b> <i>Nucleic Acids Research</i> 2013. |
| 827<br>828 | 55       | Li A, Zhang J, Zhou Z: <b>PLEK: a tool for predicting long non-coding RNAs and</b>                            |
| 828<br>829 | 55.      | messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics 2014,                                    |
| 830        |          | <b>15:</b> 311.                                                                                               |
| 830<br>831 | 56.      | Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL:                                 |
| 832        | 50.      | BLAST+: architecture and applications. <i>BMC Bioinformatics</i> 2009, <b>10:</b> 421.                        |
| 833        | 57.      | Mistry J, Finn RD, Eddy SR, Bateman A, Punta M: Challenges in homology search:                                |
| 834        | 57.      | HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research                                |
| 835        |          | 2013, <b>41:</b> e121.                                                                                        |
| 836        | 58.      | Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A: UniProtKB/Swiss-                                  |
| 837        | 50.      | Prot. Methods Mol Biol 2007, 406:89-112.                                                                      |
| 838        | 59.      | The UniProt Consortium: UniProt: a hub for protein information. Nucleic Acids                                 |
| 839        | 57.      | <i>Res</i> 2015, <b>43:</b> D204-212.                                                                         |
| 840        | 60.      | Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta                            |
| 841        | 00.      | M, Qureshi M, Sangrador-Vegas A, et al: <b>The Pfam protein families database:</b>                            |
| 842        |          | towards a more sustainable future. Nucleic Acids Research 2016, 44:D279-D285.                                 |
| 843        | 61.      | Liu SJ, Nowakowski TJ, Pollen AA, Lui JH, Horlbeck MA, Attenello FJ, He D,                                    |
| 844        | 011      | Weissman JS, Kriegstein AR, Diaz AA, Lim DA: Single-cell analysis of long non-                                |
| 845        |          | coding RNAs in the developing human neocortex. Genome Biology 2016, 17:67.                                    |
| 846        | 62.      | Zhao Y, Li H, Fang S, Kang Y, wu W, Hao Y, Li Z, Bu D, Sun N, Zhang MQ, Chen                                  |
| 847        |          | R: NONCODE 2016: an informative and valuable data source of long non-coding                                   |
| 848        |          | RNAs. Nucleic Acids Research 2016, 44:D203-D208.                                                              |
| 849        | 63.      | Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB, Gloss BS,                                     |
| 850        |          | Dinger ME: IncRNAdb v2.0: expanding the reference database for functional                                     |
| 851        |          | long noncoding RNAs. Nucleic Acids Res 2015, 43:D168-173.                                                     |
| 852        | 64.      | Bajic VB, Tan SL, Christoffels A, Schonbach C, Lipovich L, Yang L, Hofmann O,                                 |
| 853        |          | Kruger A, Hide W, Kai C, et al: Mice and men: their promoter properties. PLoS                                 |
| 854        |          | <i>Genet</i> 2006, <b>2:</b> e54.                                                                             |
| 855        | 65.      | Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC,                                 |
| 856        |          | Grützner F, Kaessmann H: The evolution of IncRNA repertoires and expression                                   |
| 857        |          | patterns in tetrapods. Nature 2014, 505:635.                                                                  |
| 858        | 66.      | Bray NL, Pimentel H, Melsted P, Pachter L: Near-optimal probabilistic RNA-seq                                 |
| 859        |          | quantification. Nat Biotech 2016, 34:525-527.                                                                 |
| 860        | 67.      | Tsoi LC, Iyer MK, Stuart PE, Swindell WR, Gudjonsson JE, Tejasvi T, Sarkar MK,                                |
| 861        |          | Li B, Ding J, Voorhees JJ, et al: Analysis of long non-coding RNAs highlights                                 |
| 862        |          | tissue-specific expression patterns and epigenetic profiles in normal and psoriatic                           |
| 863        |          | skin. Genome Biol 2015, 16:24.                                                                                |
| 864        | 68.      | Jiang C, Li Y, Zhao Z, Lu J, Chen H, Ding N, Wang G, Xu J, Li X: Identifying and                              |
| 865        |          | functionally characterizing tissue-specific and ubiquitously expressed human                                  |
| 866        | <u> </u> | <b>IncRNAs.</b> Oncotarget 2016, <b>7:</b> 7120-7133.                                                         |
| 867        | 69.      | Wu W, Wagner EK, Hao Y, Rao X, Dai H, Han J, Chen J, Storniolo AM, Liu Y, He                                  |
| 868        |          | C: Tissue-specific Co-expression of Long Non-coding and Coding RNAs                                           |
| 869        |          | Associated with Breast Cancer. Sci Rep 2016, 6:32731.                                                         |

| 870 | 70. | Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, Bar-Even A,    |
|-----|-----|------------------------------------------------------------------------------------|
| 871 |     | Horn-Saban S, Safran M, Domany E, et al: Genome-wide midrange transcription        |
| 872 |     | profiles reveal expression level relationships in human tissue specification.      |
| 873 |     | <i>Bioinformatics</i> 2005, <b>21:</b> 650-659.                                    |
| 874 | 71. | Zhang Y, Yang H, Han L, Li F, Zhang T, Pang J, Feng X, Ren C, Mao S, Wang F:       |
| 875 |     | Long noncoding RNA expression profile changes associated with dietary energy       |
| 876 |     | in the sheep testis during sexual maturation. Sci Rep 2017, 7:5180.                |
| 877 | 72. | Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner   |
| 878 |     | JR, Evans JR, Zhao S, et al: The Landscape of Long Noncoding RNAs in the           |
| 879 |     | Human Transcriptome. Nature genetics 2015, 47:199-208.                             |
| 880 | 73. | Bouckenheimer J, Assou S, Riquier S, Hou C, Philippe N, Sansac C, Lavabre-         |
| 881 |     | Bertrand T, Commes T, Lemaitre JM, Boureux A, De Vos J: Long non-coding RNAs       |
| 882 |     | in human early embryonic development and their potential in ART. Hum Reprod        |
| 883 |     | <i>Update</i> 2016, <b>23:</b> 19-40.                                              |
| 884 | 74. | Karlic R, Ganesh S, Franke V, Svobodova E, Urbanova J, Suzuki Y, Aoki F,           |
| 885 |     | Vlahovicek K, Svoboda P: Long non-coding RNA exchange during the oocyte-to-        |
| 886 |     | embryo transition in mice. DNA Res 2017, 24:129-141.                               |
| 887 | 75. | Li W, Notani D, Rosenfeld MG: Enhancers as non-coding RNA transcription            |
| 888 |     | units: recent insights and future perspectives. Nat Rev Genet 2016, 17:207-223.    |
| 889 | 76. | Chen H, Du G, Song X, Li L: Non-coding Transcripts from Enhancers: New             |
| 890 |     | Insights into Enhancer Activity and Gene Expression Regulation. Genomics,          |
| 891 |     | Proteomics & Bioinformatics 2017, 15:201-207.                                      |
| 892 | 77. | De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H,      |
| 893 |     | Ragoussis J, Wei C-L, Natoli G: A Large Fraction of Extragenic RNA Pol II          |
| 894 |     | Transcription Sites Overlap Enhancers. PLOS Biology 2010, 8:e1000384.              |
| 895 | 78. | Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz          |
| 896 |     | M, Barbara-Haley K, Kuersten S, et al: Widespread transcription at neuronal        |
| 897 |     | activity-regulated enhancers. Nature 2010, 465:182-187.                            |
| 898 | 79. | Natoli G, Andrau JC: Noncoding transcription at enhancers: general principles      |
| 899 |     | and functional models. Annu Rev Genet 2012, 46:1-19.                               |
| 900 | 80. | van Dongen S, Abreu-Goodger C: Using MCL to extract clusters from networks.        |
| 901 |     | Methods Mol Biol 2012, <b>804:</b> 281-295.                                        |
| 902 | 81. | Freeman TC, Goldovsky L, Brosch M, van Dongen S, Maziere P, Grocock RJ,            |
| 903 |     | Freilich S, Thornton J, Enright AJ: Construction, visualisation, and clustering of |
| 904 |     | transcription networks from microarray expression data. PLoS Comput Biol           |
| 905 |     | 2007, <b>3:</b> 2032-2042.                                                         |
| 906 | 82. | Theocharidis A, van Dongen S, Enright AJ, Freeman TC: Network visualization and    |
| 907 |     | analysis of gene expression data using BioLayout Express(3D). Nat Protoc 2009,     |
| 908 |     | <b>4:</b> 1535-1550.                                                               |
| 909 | 83. | Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, Lee J, Lam ET,        |
| 910 |     | Liachko I, Sullivan ST, et al: Single-molecule sequencing and chromatin            |
| 911 |     | conformation capture enable de novo reference assembly of the domestic goat        |
| 912 |     | genome. Nat Genet 2017, <b>49:</b> 643-650.                                        |
| 913 | 84. | Slater GSC, Birney E: Automated generation of heuristics for biological sequence   |
| 914 |     | comparison. BMC Bioinformatics 2005, 6:31.                                         |
| 915 | 85. | Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR,       |
| 916 |     | Wortman JR: Automated eukaryotic gene structure annotation using                   |
| 917 |     | EVidenceModeler and the Program to Assemble Spliced Alignments. Genome             |
| 918 |     | <i>Biol</i> 2008, <b>9:</b> R7.                                                    |
|     |     |                                                                                    |

| 919 | 86. | Fickett JW: Recognition of protein coding regions in DNA sequences. Nucleic      |
|-----|-----|----------------------------------------------------------------------------------|
| 920 |     | Acids Research 1982, 10:5303-5318.                                               |
| 921 | 87. | Fickett JW, Tung C-S: Assessment of protein coding measures. Nucleic Acids       |
| 922 |     | <i>Research</i> 1992, <b>20:</b> 6441-6450.                                      |
| 923 | 88. | Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH: UniRef: comprehensive          |
| 924 |     | and non-redundant UniProt reference clusters. Bioinformatics 2007, 23:1282-      |
| 925 |     | 1288.                                                                            |
| 926 | 89. | Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH: UniRef clusters: a                |
| 927 |     | comprehensive and scalable alternative for improving sequence similarity         |
| 928 |     | searches. Bioinformatics 2015, 31:926-932.                                       |
| 929 | 90. | Weikard R, Hadlich F, Kuehn C: Identification of novel transcripts and noncoding |
| 930 |     | RNAs in bovine skin by deep next generation sequencing. BMC Genomics 2013,       |
| 931 |     | <b>14:</b> 789.                                                                  |
| 932 | 91. | Sing T, Sander O, Beerenwinkel N, Lengauer T: ROCR: visualizing classifier       |
| 933 |     | performance in R. Bioinformatics 2005, 21:3940-3941.                             |
| 934 | 92. | Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, Almeida-King J, |
| 935 |     | Staines D, Derwent P, Kerhornou A, et al: Ensembl BioMarts: a hub for data       |
| 936 |     | retrieval across taxonomic space. Database (Oxford) 2011, 2011:bar030.           |
| 937 | 93. | Ma L, Bajic VB, Zhang Z: On the classification of long non-coding RNAs. RNA      |
| 938 |     | <i>Biology</i> 2013, <b>10</b> :924-933.                                         |
| 939 | 94. | Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open        |
| 940 |     | Software Suite. Trends Genet 2000, 16:276-277.                                   |
| 941 | 95. | Takahashi H, Kato S, Murata M, Carninci P: CAGE (cap analysis of gene            |
| 942 |     | expression): a protocol for the detection of promoter and transcriptional        |
| 943 |     | networks. Methods Mol Biol 2012, 786:181-200.                                    |
| 944 | 96. | Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y: Utilizing      |
| 945 |     | sequence intrinsic composition to classify protein-coding and long non-coding    |
| 946 |     | transcripts. Nucleic Acids Research 2013, 41:e166-e166.                          |
| 947 | 97. | Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M,  |
| 948 |     | Kampf C, Wester K, Hober S, et al: Towards a knowledge-based Human Protein       |
| 949 |     | Atlas. Nat Biotechnol 2010, 28:1248-1250.                                        |
| 950 | 98. | Bush SJ, Castillo-Morales A, Tovar-Corona JM, Chen L, Kover PX, Urrutia AO:      |
| 951 |     | Presence–Absence Variation in A. thaliana Is Primarily Associated with           |
| 952 |     | Genomic Signatures Consistent with Relaxed Selective Constraints. Molecular      |
| 953 |     | Biology and Evolution 2014, <b>31:</b> 59-69.                                    |
| 954 |     |                                                                                  |





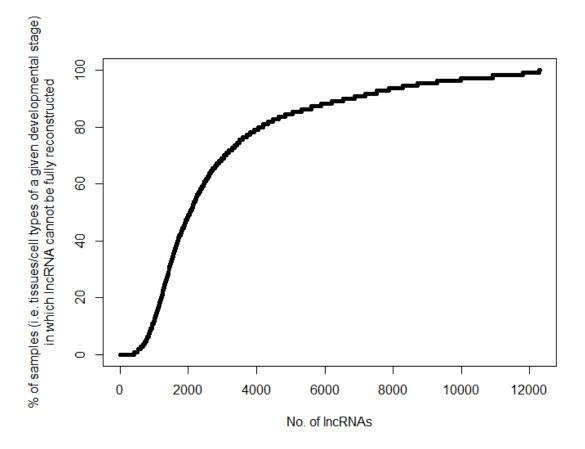




Figure 1. Minimal overlap of lncRNAs at the sequence level. Venn diagrams show the
number of sheep (A) or goat (B) lncRNAs that can be aligned – with an alignment of any
length or quality – to either shortlist of goat (A) or sheep (B) lncRNAs, and to sets of cattle
and human lncRNAs from previous studies. The majority (58% of sheep lncRNAs, and 49%
of goat lncRNAs) have no associated alignment. Alignments are detailed in Tables S9 (sheep)
and S10 (goat).



967 Figure 2. The stochastic detection and assembly of lncRNAs by RNA-seq libraries – a 968 consequence of limitations in sequencing breadth and depth – suggests that for a given 969 species, only a subset of the total lncRNRA transcriptome is likely to be captured. 970 Nevertheless, the number of candidate lncRNAs for that species can be increased if directly 971 mapping, to a positionally conserved region of the genome, the lncRNAs from either a related 972 (sheep, goat, cattle) or more distant (human) species. Many of these mapped lncRNAs (which 973 could not be completely reconstructed with the RNA-seq libraries of that species) are 974 nevertheless detectably expressed.

975



976

Figure 3. Proportion of samples in the sheep expression atlas for which a candidate lncRNA
(n = 12,296) cannot be fully reconstructed. The atlas comprises 429 RNA-seq libraries,
representing 110 distinct samples; that is, each sample is a tissue/cell type at a given
developmental stage, with up to 6 replicates per sample. 22 candidate lncRNAs cannot be
reconstructed in any given sample (i.e., the proportion of samples is 100%). These lncRNAs
could only be assembled after pooling data from multiple samples. Data for this figure is
given in Table S22.

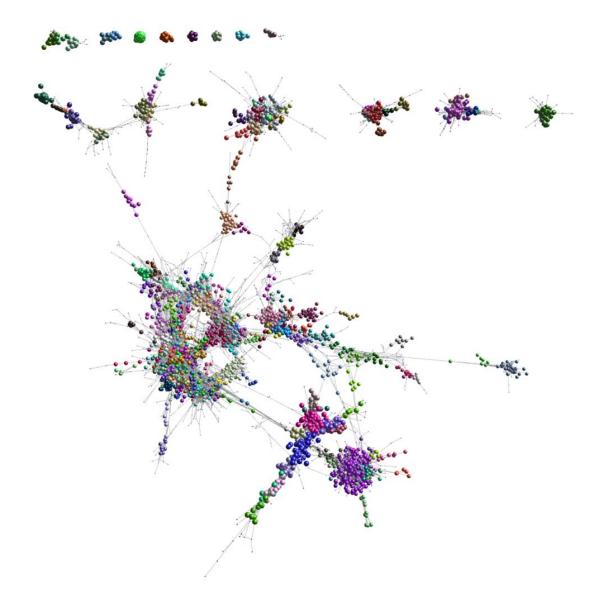



Figure 4. 3D visualisation of a gene-to-gene correlation graph. Each node (sphere) represents a gene. Nodes are connected by edges (lines) that represent Pearson's correlations between the two sets of expression level estimates, at a threshold greater than or equal to 0.95. The graph comprises 11,841 nodes and 2,214,099 edges. Genes cluster together according to the similarity of their expression profiles (i.e. their degree of co-expression), with clusters (coloured sets of nodes) determined using the MCL algorithm. Expression level estimates for the lncRNAs in this graph are given in Table S19. The genes comprising each co-expression

| 993 | cluster are given in | Table S23. | Those lncRNAs | co-regulated | with protein | -coding genes | will |
|-----|----------------------|------------|---------------|--------------|--------------|---------------|------|
|-----|----------------------|------------|---------------|--------------|--------------|---------------|------|

- be found within the same co-expression cluster.
- 995

## 996 Supplementary Material

- 997
- **Dataset S1.** 63 sequence assemblies (as GTFs): all possible combinations when merging 6
- 999 different sets of RNA-seq reads (available via the University of Edinburgh DataShare portal;

1000 http://dx.doi.org/10.7488/ds/2284).

1001

1002 **Table S1.** Candidate sheep lncRNAs: a shortlist of novel gene models (plus independently

1003 confirmed known gene models) assessed for coding potential using CPC, CPAT, PLEK,

1004 blastp vs. Swiss-Prot, and HMMER vs. Pfam.

1005

1006 **Table S2.** Candidate goat lncRNAs: a shortlist of novel gene models assessed for coding

1007 potential using CPC, CPAT, PLEK, blastp vs. Swiss-Prot, and HMMER vs. Pfam.

1008

1009 Table S3. Sheep gene models considered non-coding by either CPC, CPAT or PLEK but

1010 showing sequence homology to either a known protein (in Swiss-Prot) or protein domain (in

1011 Pfam-A).

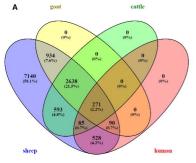
1012

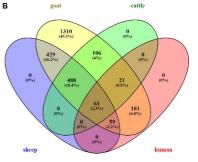
1013 Table S4. Goat gene models considered non-coding by either CPC, CPAT or PLEK but

1014 showing sequence homology to either a known protein (in Swiss-Prot) or protein domain (in

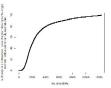
1015 Pfam-A).

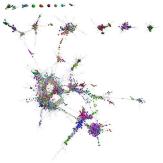
1016


**Table S5.** Number of novel sheep lncRNA gene models identified per chromosome.


| 1018 |                                                                                             |
|------|---------------------------------------------------------------------------------------------|
| 1019 | Table S6. Number of novel goat lncRNA gene models identified per chromosome.                |
| 1020 |                                                                                             |
| 1021 | <b>Table S7.</b> Number of novel sheep lncRNA gene models identified, by category.          |
| 1022 |                                                                                             |
| 1023 | Table S8. Number of novel goat lncRNA gene models identified, by category.                  |
| 1024 |                                                                                             |
| 1025 | Table S9. Alignments of novel sheep lncRNA gene models to goat, cattle and human            |
| 1026 | lncRNAs.                                                                                    |
| 1027 |                                                                                             |
| 1028 | Table S10. Alignments of novel goat lncRNA gene models to sheep, cattle and human           |
| 1029 | lncRNAs.                                                                                    |
| 1030 |                                                                                             |
| 1031 | Table S11. Presence of intergenic lncRNAs both in sheep and cattle, in regions of conserved |
| 1032 | synteny.                                                                                    |
| 1033 |                                                                                             |
| 1034 | Table S12. Presence of intergenic lncRNAs both in sheep and goat, in regions of conserved   |
| 1035 | synteny.                                                                                    |
| 1036 |                                                                                             |
| 1037 | Table S13. Presence of intergenic lncRNAs both in cattle and goat, in regions of conserved  |
| 1038 | synteny.                                                                                    |
| 1039 |                                                                                             |
| 1040 | Table S14. Presence of intergenic lncRNAs both in sheep and human, in regions of            |
| 1041 | conserved synteny.                                                                          |
| 1042 |                                                                                             |

1043 Table S15. Presence of intergenic lncRNAs both in goat and human, in regions of conserved 1044 synteny. 1045 1046 Table S16. Presence of intergenic lncRNAs both in cattle and human, in regions of conserved 1047 synteny. 1048 1049 Table S17. High-confidence lncRNA pairs, those conserved across species both sequentially 1050 and positionally. 1051 1052 Table S18. lncRNAs inferred in one species by the genomic alignment of a transcript 1053 assembled with the RNA-seq libraries from a related species. 1054 1055 Table S19. Expression level estimates for 13,047 novel sheep lncRNAs, as transcripts per 1056 million (TPM), assessed using 71 adult RNA-seq libraries (11 tissues plus one cell type in 1057 two different conditions, each sequenced in 6 individuals). 1058 1059 Table S20. Expression level estimates for 4392 novel goat lncRNAs, as transcripts per 1060 million (TPM), assessed using 54 RNA-seq libraries (20 tissues plus one cell type in two 1061 different conditions, each sequenced in 4 individuals). 1062 1063 Table S21. Reproducibility of sheep lncRNA gene models when merging all combinations of 1064 data from 6 adults (3 female, 3 male), each individual having sequenced a common set of 1065 RNA-seq libraries (comprising 31 tissues/cell types).


- 1067 **Table S22.** Number of sheep expression atlas RNA-seq libraries (out of 429 in total) in which
- 1068 a candidate lncRNA gene model cannot be fully reconstructed.
- 1069
- 1070 Table S23. Genes within each co-expression cluster, after network analysis of the sheep
- 1071 RNA-seq libraries.
- 1072
- 1073 **Table S24.** No. of lncRNAs co-expressed with protein-coding genes.


- 1075 Table S25. Distance between lncRNAs and protein-coding genes within the same co-
- 1076 expression cluster, on the same chromosome.
- 1077
- 1078 Table S26. Correlation between the expression profile of sheep lncRNAs and their nearest
- 1079 protein-coding genes, both 5' and 3'.









