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ABSTRACT 14 

Campylobacter jejuni and Campylobacter coli are the most common cause of bacterial 15 

gastroenteritis in the world. Ganglioside mimicry by C. jejuni lipooligosaccharide (LOS) is the 16 

triggering factor of Guillain-Barré syndrome (GBS), an acute polyneuropathy. 17 

Sialyltransferases from the glycosyltransferase (GT) family 42 are essential for the expression 18 

of ganglioside mimics in C. jejuni.  Recently, two novel GT-42 genes, cstIV and cstV, have 19 

been identified in C. coli. Despite being present in ~11% of currently available C. coli genomes, 20 

the biological role of cstIV and cstV is unknown. Here, we show that CstIV and CstV are 21 

involved in LOS biosynthesis. Additionally, cstV is associated with LOS sialylation, while 22 

cstIV is linked to the addition of a diacetylated nonulosonic acid residue.   23 
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INTRODUCTION 24 

Nonulosonic acids are a highly diverse family of nine-carbon α-keto acids. The most natural 25 

abundant nonulosonic acids are the sialic acids (N-acetylneuraminic acid, Neu5Ac) and 26 

derivatives 1. Initially thought to be only a deuterostomes feature, sialic acids have been found 27 

in virulence associated bacterial cell surface glycoconjugates such as lipopolysaccharides, 28 

capsules, pili, and flagella 2-4. Furthermore, these sialylated structures have been shown to 29 

influence pathogenesis through immune evasion, adhesion, and invasion 5, 6. Sialyltransferases, 30 

catalyse the transfer of sialic acid from cytidine-5′-monophospho-N-acetylneuraminic acid 31 

(CMP-Neu5Ac) to an acceptor, are key in the synthesis of sialoglycoconjugates. Known 32 

sialyltransferases have been classified into five distinct CAZy (Carbohydrate-active enzymes 33 

database) glycosyltransferase (GT) families; GT-29, GT-38, GT-42, GT-52, and GT-80 7. In 34 

Campylobacter jejuni, the most common cause of bacterial gastroenteritis, CMP-Neu5Ac 35 

biosynthesis (neuA, neuB1, and neuC) and GT-42 genes are present in the lipooligosaccharide 36 

(LOS) biosynthesis locus classes A, B, C, M, R, and V 8-10. C. jejuni strains carrying one of 37 

these genetic classes synthesize LOS structures generally resembling gangliosides 9, 11-13. In 38 

some cases, infection with a C. jejuni strain expressing ganglioside-like LOS induces 39 

production of cross-reactive anti-ganglioside antibodies. This leads to the development of 40 

Guillian-Barré syndrome (GBS); an acute autoimmune polyradiculoneuropathy disease with 41 

~5% mortality rate 14. 42 

C. coli, the second most common cause of campylobacteriosis, has also been isolated from 43 

GBS patients 15-18. Nevertheless, the role of C. coli in GBS has largely remained unclear due 44 

to the seemingly absence of key elements for the synthesis of ganglioside-like LOS (i.e GT-42 45 

and neuABC). Recently, three newly identified C. coli LOS-associated GT-42 genes were 46 

reported; cstIV, cstV, and cstVI 10, 19, 20. While cstVI is generally found as a pseudogene, cstIV 47 
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and cstV may potentially be involved in LOS biosynthesis 19. In this manuscript we sought to 48 

explore the role of the new GT-42 enzymes CstIV and CstV in LOS biosynthesis.  49 

RESULTS 50 

CstIV and CstV exhibit no sialyltransferase activity in vitro. 51 

To determine whether CstIV and CstV are capable of transferring Neu5Ac, C. coli crude 52 

protein extracts were tested for sialyltransferase activity using sugar acceptors labelled with 53 

either boron-dipyrromethene or BODIPY (BDP) and fluorescein (FCHASE). 54 

Monosialyltransferase activity on BDP-Lactose (BDP-Lac) and BDP-N-acetyllactosamine 55 

(BDP-LacNAc)  was detected in C. coli 76339 WT, C. coli 76339 ∆cstV-SF1, and C. coli 76339 56 

∆cstV-SR4 crude protein extracts (Suppl. Fig. 1). Conversely, no measurable enzymatic 57 

activity on any of the tested acceptors was detected in C. coli 76339∆cstI-XR3 and C. coli 58 

76339∆cstV-SR∆cstI-XR1 protein extracts. Likewise, no sialyltransferase activity was 59 

detected in the crude protein extracts of C. coli 65 and 73, C. coli 65 ∆cstIV-SF5 and C. coli 60 

73 ∆cstIV-SF3. Furthermore, recombinant CstIV and CstV showed no activity with any of the 61 

tested acceptors (Suppl. Fig. 2). 62 

CstIV and CstV are involved in LOS biosynthesis. 63 

The LOS of ∆cstIV and ∆cstV strains showed an increased mobility on silver stained SDS-64 

PAGE gels relative to the WTs (Fig. 1). Thus, deletion of cstV in C. coli 76339 and cstIV in C. 65 

coli 65 and 73 resulted in a truncated LOS. The complemented cstV mutant exhibited two LOS 66 

bands on SDS-PAGE gels; the upper one corresponding to the WT LOS and the lower 67 

molecular weight band to the truncated LOS (Suppl. Fig. 3). This suggests that partial 68 

restoration of the phenotype was achieved upon complementation in cis of ∆cstV-SR4. 69 

C. coli 76339 neuB is involved in the biosynthesis of CstV substrate. 70 
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Since no clear shift in the electrophoretic mobility of C. coli 76339 LOS was detected after 71 

neuraminidase treatment (Suppl. Fig. 4), neuB1 was knocked out to determine whether CMP-72 

Neu5Ac was CstV’s substrate. The LOS of 76339 ∆neuB-SR2 showed a similar profile to those 73 

of 76339 ∆cstV-SF1 and 76339 ∆cstV-SR4 (Suppl. Fig. 5). Thus, deletion of neuB results in a 74 

seemingly similar LOS truncation to the one observed in ∆cstV strains, suggesting the potential 75 

involvement of neuB1 in CstV substrate synthesis. 76 

CstIV and CstV are associated to nonulosonate residues in C. coli LOS 77 

Predicted LOS compositions by LC-MS for C. coli 76339 WT and mutants are shown on 78 

Table 1. C. coli 76339 contains a core oligosaccharide linked via two 3-deoxy-D-manno-oct-79 

2-ulosonic acid (Kdo) molecules to a lipid A molecule. The core oligosaccharide of C. coli 80 

76339 is composed of heptoses (Hep), hexoses (Hex), hexosamines (HexNAc), and NeuAc. 81 

The resulting MS/MS spectrum obtained from the O-deacylated LOS of C. coli 76339 WT  82 

revealed a single ion at m/z 1214.4 corresponding to Hex3•Hep2•PEtn1•KDO1 (Fig. 2). The 83 

fragment ions at m/z 1052.4 and 890.3 correspond to the additional loss of two Hex residues. 84 

The spectra also revealed ions that derived from lipid A, m/z 693.5 and m/z 388.3 85 

corresponding to HexN3N1•P1•(C14:0 3-OH)2 and HexN3N1•(C14:0 3-OH)1, respectively. 86 

The observation of fragment ions at m/z 292.1 and 274.1 provided evidence for the presence 87 

of sialic acid on core region LOS. The MS/MS spectrum of precursor ion m/z 1064.0 from C. 88 

coli 76339 ΔcstI is similar to that from C. coli 76339 WT, in which the diagnostic ions for 89 

sialic acid were detected at m/z 292.1 and 274.2 (Fig. 2b). However, no sialic acid was 90 

detected in the MS/MS spectrum C. coli 76339 ΔcstV (Fig. 2c). Thus, cstV is associated to 91 

the presence of NeuAc, while cstI plays no role in C. coli 76339 LOS biosynthesis.  92 

 93 
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A similar lipid A moiety was indicated by the MS/MS spectrum obtained from the O-94 

deacylated LOS of C. coli strain 73 WT. The spectra also revealed ions that derived from 95 

lipid A, m/z 693.5 and m/z 388.3 corresponding to HexN3N1•P1•(C14:0 3-OH)2 and 96 

HexN3N1•(C14:0 3-OH)1, respectively. The observation of fragment ions at m/z 317.2 and 97 

299.1 provided evidence for the presence of a residue with a molecular weight of 334.2 Da or 98 

316.2 Da for its anhydrous form on core region LOS (Fig. 3a). These masses are consistent 99 

with free diNAc-nonulosonate and its conjugated form, respectively. However, these 100 

characteristic ions were not detected in the MS/MS spectrum C. coli 73 ∆cstIV-SF3 (Fig. 3b). 101 

Thus, suggesting the role of cstIV in the biosynthesis of diNAc-nonulosonate LOS in C. coli 102 

73.  103 

DISCUSSION 104 

C. jejuni. C. jejuni GT-42 were the first glycosyltransferases from this CAZy family to be 105 

enzymatically and structurally characterized; CstII is mono/bifunctional exhibiting α2,3-/α2,8-106 

sialyltransferase activity, while CstI and CstIII are monofunctional α2,3- sialyltransferases 21-107 

24. The activity of CstII and CstIII has been shown to be essential for the biosynthesis 108 

ganglioside-like LOS structures, which are linked to GBS onset 12, 24. Despite the importance 109 

of GT-42 enzymes in virulence and pathogenesis 25-28, the activity of these glycosyltransferases 110 

has not been explored in other Campylobacter species. Approximately 29% of C. coli genomes 111 

have been found to contain a GT-42 encoding gene within the LOS biosynthesis locus 19. While 112 

cstVI was the most common LOS associated GT-42 encoding gene in C. coli, in 99% of the 113 

analysed genomes it was observed to be present as a pseudo gene. Thus, we focused our 114 

attention on the role of cstIV and cstV in LOS biosynthesis. Until recently, cstV had been solely 115 

identified in the genome of C. coli 76339 20. However, in a systematic screen of publicly 116 

available C. coli genomes several cstV positive strains were identified 19. C. coli 76339 crude 117 

protein extracts were tested for sialyltransferase activity as Neu5Ac had been previously 118 
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detected in the strain’s LOS 20. Monosialyltransferase activity was initially detected, but was 119 

found to be due to activity of CstI. As in C. jejuni, C. coli 76339 cstI is located outside the LOS 120 

biosynthesis locus and encodes a α2,3- sialyltransferase which has no role in LOS biosynthesis 121 

20, 21. No sialyltransferase activity was detected on the protein extracts of the cstI mutant strain. 122 

However, transcriptomic analysis showed polycistronic expression of LOS biosynthesis genes 123 

indicating the active expression of cstV. Similarly, recombinant CstV exhibited no detectable 124 

activity on any of the tested acceptors. Deletion of neuB1 or cstV resulted in identical LOS 125 

electrophoretic profiles. Additionally, LC-MS analysis showed that deletion of cstV resulted in 126 

the loss 2 Hex and 1 NeuAc. Thus, it is probable that cstV is associated to C. coli 76339 LOS 127 

sialylation. Yet, further studies are required to identified CstV natural acceptor and corroborate 128 

its activity in vitro.   129 

After cstVI, cstIV is the most common orthologue being present in ~38% of the genomes 130 

positive for a LOS associated GT-42. Previously, no evidence of Neu5Ac had been found in 131 

the LOS of strains expressing cstIV 29. This was to be expected as Neu5Ac biosynthesis genes 132 

are rarely present in strains carrying cstIV 19. Furthermore, no sialyltransferase activity was 133 

detected neither in C. coli 65 and 73 protein extracts nor in recombinant CstIV. Thus, we 134 

assumed that CstIV was a cryptic, possibly inactive, sialyltransferase with no role in LOS 135 

biosynthesis. Nevertheless, deletion of cstIV in C. coli 65 and 73 resulted in a truncated LOS. 136 

Sequence alignment of CstIV with previously characterized GT42 sialyltransferases revealed 137 

numerous amino acid substitutions at conserved positions (Suppl. Fig. 6)30. Additionally, 138 

superimposition of CstIV on C. jejuni CstII structure identified various substitutions at amino 139 

acids involved in substrate interactions 23, 31-33. Interestingly, most substitutions predicted to 140 

impact CstIV were in the amino acids associated with CMP-Neu5Ac, particularly with the 141 

Neu5Ac moiety. Moreover, these substitutions were conserved in multiple CstIV orthologues 142 

23, 32, 33. Altogether, results pointed at the possibility of an alternative sugar donor for CstIV. 143 
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Detection of a diNAc-nonulosonate residue in C. coli 73 WT LOS and its absence in C. coli 73 144 

∆cstIV-SF3 prompted us to investigate genes potentially linked to the synthesis of this residue. 145 

In C. coli, neuB2 (ptmC, legI) and neuB3 (pseI) are conserved flagella glycosylation genes 146 

involved in the synthesis of legionaminic and pseudaminic acid derivatives, respectively 34-40. 147 

Deletion of neuB2 had no impact on C. coli 73 LOS electrophoretic mobility (Suppl. Fig. 7), 148 

implying that neuB2 is not involved in the synthesis of CstIV substrate. Despite repetitive 149 

attempts, no viable C. coli 73 ∆neuB3 mutants were obtained. Although neuB3 deletion has 150 

been successful in C. coli VC167, disruption of flagellin glycosylation and potentially 151 

truncation of the LOS might have resulted in a lethal phenotype for C. coli 73 40. In sum, it is 152 

tempting to speculate that the diNAc-nonulosonate residue in C. coli 73 WT corresponds to 153 

pseudaminic acid. However, the nature of this residue cannot be inferred from MS/MS spectra 154 

alone, since many diNAc-nonulosonate variants have been identified 41. Thus, this task is still 155 

under investigation. 156 

Conclusion 157 

Due to its close relatedness to C. jejuni and large horizontal gene transfer between both species, 158 

C. coli glycobiology has been largely neglected. Similarly to C. jejuni, C. coli appears to 159 

express LOS structures containing nonulosonate acids. The importance of this to C. coli 160 

ecology and host-pathogen interaction remains to be explore. 161 

METHODS 162 

Bacterial strains, plasmids, and growth conditions. Bacterial strains used in this study are 163 

listed in Supplemental Table 1. C. coli cultivation and DNA isolation were carried out as 164 

previously described, unless specified otherwise 20.  165 

Construction of ∆cstIV, ∆cstV, ∆cstI, and ∆neuB mutants.  166 
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Chromosomal mutant strains of C. coli 76339 (cstV, cstI, and neuB1) 19, 20, C. coli 73 (cstIV 167 

and neuB2), and C. coli (cstIV) 19, 29 were generated by homologues recombination with suicide 168 

vectors containing genes inactivated by the insertion of an antibiotic resistance cassette (All 169 

recombinant plasmids and primers are shown in Supplemental material).  The genes cstV, cstIV, 170 

neuB1, and neuB2 were inactivated by the insertion of an erythromycin resistance cassette 171 

(EryC) 42, while cstI was disrupted with a chloramphenicol acetyltransferase cassette (CAT) 43. 172 

Preparation of electrocompetent cells and transformation was done as previously described 43. 173 

Selection of ∆cstIV, ∆cstV, ∆neuB1 and ∆neuB2 mutants was done on nutrient blood agar 174 

(NBA) supplemented with 10 µg ml-1 of erythromycin, while ∆cstI mutants were selected in 175 

NBA supplemented with 12.5 µg ml-1 of chloramphenicol. Homologous recombination of all 176 

mutants was verified by PCR.  177 

Complementation of C. coli 76339 ∆cstV-SR 178 

Complementation of C. coli 76339 ∆cstV-SR4 was done in cis by integration of cstV under the 179 

active promoter of gamma glutalmyltranspeptidase (ggt). The ggt is an accessory gene in C. 180 

coli and has no role in LOS biosynthesis. Additionally, the ggt locus is located far from the 181 

LOS locus and its deletion does not induce a loss in bacterial viability. The suicide vector 182 

containing an inactivated ggt by the insertion of a cstV and CAT (pGEM-ggt-cstV-CAT) was 183 

used to transform C. coli 76339 ∆cstV-SR4 electrocompetent cells as above. Transformants 184 

were selected on NBA supplemented with 12.5 µg ml-1 of chloramphenicol. Homologous 185 

recombination of mutants was verified by testing for GGT activity as before 44. 186 

LOS silver staining. LOS profiles were assessed by silver staining as described earlier 29. 187 

Additionally, LOS sensitivity to neuraminidase was assessed. Crude LOS was treated with 2 188 

IU/ml of Clostridium perfringens neuraminidase (Sigma-Aldrich) overnight at 37 ºC. 189 

Mass spectrometry analysis of C. coli LOS composition.  190 
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Following 1% formaldehyde in PBS (pH 7.4) treatment, C. coli cell pellets were washed 3X in 191 

PBS and lyophilized. Then, cells were dehydrated by a sequence of 2 washes in each of 70% 192 

ethanol (in PBS), 100% ethanol, and 100% acetone. The dehydrated cells were treated with 193 

proteinase K, RNAse A, and DNAse I as previously described 45. Digested cells were then 194 

treated with hydrazine to cleave O-linked fatty acids 45. The O-deacylated LOS samples were 195 

analysed by LC-MS by coupling a Waters Premier Q-TOF with an Agilent 1260 capillary LC 196 

system. Mass spectrometry was operated in positive-ion detection mode. Liquid 197 

chromatography separation was done on an Agilent Eclipse XDB C8 column (5µm, 50 x 1mm). 198 

The flow rate was 20 µl/min.  Solvent A: aqueous 0.2% formic acid/0.028% ammonia; solvent 199 

B: Isopropanol with 0.2% formic acid/0.028% ammonia.  The following gradient was used:  0-200 

2 min. 10% B, 2-16 min linear gradient to 85% B, 16-25 min. 85% B, 25-30 min., and 201 

equilibration at 10% B. 202 

  203 
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Figure Legends 349 

Figure 1. Electrophoresis mobility comparison of C. coli LOS of WT and mutant strains. C. 350 

jejuni 81-176 was used as a reference. Samples marked with an asteric were neuraminidase 351 

treated. 352 

Figure 2. MS/MS spectra for the precursor ions of O-deacylated LOS from (a) C. coli 76339 353 

WT, m/z 1064.0; (b) C. coli 76339 ΔcstI, m/z 1064.0; and (c) C. coli 76339 ΔcstV, m/z 354 

1295.4.  355 

Figure 3. MS/MS spectra for the precursor ions of O-deacylated LOS from (a) C. coli strain 356 

73 WT, m/z 1072.4;  (b) C. coli 73 ∆cstIV-SF3, m/z 1566.0. 357 
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Table X.  LC-MS in positive mode data and proposed compositions for O-deacylated LOS of C. coli 76339 (strain 51) and corresponding cstI and cstV knock-358 

out mutants. 359 
 360 

Strain 
Observed ions 

(m/z) 

Molecular mass  

(Da) 
Proposed compositions 

 
[M+3H]3

+ 

[M+2H+NH4]
3+ 

[M+2H

]2+ 

[M+H+NH4

]2+ 
Observed Calculatedi Core oligosaccharide 

Phosphorylat

ion in lipid A 

Acylation in  

lipid A 

wt 1063.43 1069.11   3187.30 3187.35 Kdo2•Hep2•Hex4•HexNAc1•NeuAc1 PPEtn 3 N-(C14:0 3-OH) 

 1104.43 1110.11   3310.30 3310.36 Kdo2•Hep2•Hex4•HexNAc1•NeuAc1•PEtn1 PPEtn 3 N-(C14:0 3-OH) 

 1138.48 1144.17   3412.46 3412.56 Kdo2•Hep2•Hex4•HexNAc1•NeuAc1 PPEtn 4 N-(C14:0 3-OH) 

 1179.51 1185.17   3535.51 3535.57 Kdo2•Hep2•Hex4•HexNAc1•NeuAc1•PEtn1 PPEtn 4 N-(C14:0 3-OH) 

ΔcstI 1063.44 1069.11   3187.31 3187.35 Kdo2•Hep2•Hex4•HexNAc1•NeuAc1 PPEtn 3 N-(C14:0 3-OH) 

 1104.44 1110.12   3310.33 3310.36 Kdo2•Hep2•Hex4•HexNAc1•NeuAc1•PEtn1 PPEtn 3 N-(C14:0 3-OH) 

 1138.51 1144.18   3412.52 3412.56 Kdo2•Hep2•Hex4•HexNAc1•NeuAc1 PPEtn 4 N-(C14:0 3-OH) 

 1179.51 1185.20   3535.55 3535.57 Kdo2•Hep2•Hex4•HexNAc1•NeuAc1•PEtn1 PPEtn 4 N-(C14:0 3-OH) 

ΔcstV   1225.56 1234.09 2449.14 2449.14 Kdo2•Hep2•Hex2•HexNAc1 P 3 N-(C14:0 3-OH) 

   1287.08 1295.56 2572.13 2572.15 Kdo2•Hep2•Hex2•HexNAc1 PPEtn 3 N-(C14:0 3-OH) 

   1348.58  2695.14 2695.16 Kdo2•Hep2•Hex2•HexNAc1•PEtn1 PPEtn 3 N-(C14:0 3-OH) 

 361 

 362 

i Isotope-monoisotopic mass units were used for calculation of molecular mass values based on proposed compositions as follows: HexN, 161.0688; HexN3N, 160.0848; 

C14:0 3-OH, 226.1933; PEtn, 123.0085; P, 79.9663; Kdo, 220.0583; Hep, 192.0634; Hex, 162.0528; HexNAc, 203.0794; NeuAc, 291.0954; H2O, 18.0106. 
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