
DeepNeuron: An Open Deep Learning Toolbox for Neuron Tracing

Zhi Zhou1, 2, Hsien-Chi Kuo1, Hanchuan Peng1,2, *, Fuhui Long1,*

1. Allen Institute for Brain Science, Seattle, USA

2. Southeast University – Allen Institute Joint Center for Neuron Morphology, Southeast University,
Nanjing, China.

* Corresponding authors: Hanchuan Peng <hanchuanp@alleninstitute.org>
 Fuhui Long <fuhuil@alleninstitute.org>

Abstract
Reconstructing three-dimensional (3D) morphology of neurons is essential to understanding brain
structures and functions. Over the past decades, a number of neuron tracing tools including manual, semi-
automatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal
structures. Nevertheless, most of them were developed based on coding certain rules to extract and
connect structural components of a neuron, showing limited performance on complicated neuron
morphology. Recently, deep learning outperforms many other machine learning methods in a wide range
of image analysis and computer vision tasks. Here we developed a new open source toolbox,
DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron
morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet
challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron
signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and
refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and
axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and
confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy
in neuron tracing.

1. Introduction
Over the past few decades, researchers have developed algorithms and tools to reconstruct (trace) 3D
neuron morphology. A number of manual/semi-automatic neuron tracing software packages in both the
public domain and commercial world have been developed (Meijering, et al., 2004; Peng, et al., 2010;
Donohue and Ascoli, 2011; Longair, et al., 2011; Luisi, et al., 2011; Choromanska, et al., 2012; Peng, et
al., 2014; Feng, et al., 2015). To further promote the development of neuron tracing tools, the DIADEM
challenge (Liu, 2011) and the BigNeuron project (Peng, et al., 2015) were launched to compare different
automated algorithms. At small or medium scales, many algorithms (base-tracers) have been shown to
produce meaningful reconstructions on high quality neuron images. For large-scale image datasets,
UltraTracer (Peng, et al., 2017) provides an extendible framework to scale up the capability of these base-
tracers. Despite these efforts on algorithm and tool development, it remains an open question on how to
faithfully reconstruct neuron morphology from challenging image datasets that have medium to low
qualities and contain very complex neuron morphology.

Starting from a cell body, a neuron tracing process usually follows dendrites and axons, eventually
connecting all such neuron signal as a tree that represents the morphology of the neuron. In light
microscopy images, dendrites typically show continuous signal, whereas axons are often hard to trace due

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/254318doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/254318doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/254318doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/254318doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/254318doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/254318doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/254318doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/254318doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/254318doi: bioRxiv preprint

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/254318doi: bioRxiv preprint

https://doi.org/10.1101/254318
https://doi.org/10.1101/254318
https://doi.org/10.1101/254318
https://doi.org/10.1101/254318
https://doi.org/10.1101/254318
https://doi.org/10.1101/254318
https://doi.org/10.1101/254318
https://doi.org/10.1101/254318
https://doi.org/10.1101/254318
https://doi.org/10.1101/254318

to their punctuated appearance and large, complex arborization patterns (Peng, et al, 2010; see for
example the bright-field images of biocytin-labeled neurons in the Allen Cell Type Database). In addition,
the image quality varies a lot depending on sample preparation, imaging process, cell types and the
healthiness of neurons. For instance, neuron signal could be continuous in one image, but dim and broken
in another. It is difficult to automatically extract all such neuron signal under different conditions.

Several important steps in neuron tracing can be formulated as a classification problem. For example,
detection of neuron signal from background is essentially foreground-background classification.
Reconstruction of the topology of a neuron via connecting neuron fragments can be treated as connection-
separation classification. In this aspect, a few studies used traditional machine learning and recent deep
learning (LeCun, et al., 2015) models to produce neuron morphology. For example, Gala et al. introduced
an active learning model by combining different features to automatically trace neurites (Gala, et al.,
2014). Chen et al. proposed a self-learning based tracing approach, which did not require substantial
human annotations (Chen, et al., 2015). Fakhry et al. (Fakhry, et al., 2016) and Li et al. (Li, et al., 2017)
used deep learning neural networks to segment electron and light microscopy neuron images. Despite
these algorithmic efforts, none of these methods provide publicly available tools to use on external
datasets.

Nowadays deep learning methods outperform traditional methods in many pattern recognition and
computer vision applications. We analyzed commonly used modules of neuron tracing/editing workflows
in real applications, and concluded that an open source deep learning toolbox would help significantly to
this growing field. Using deep learning neural networks as the classification models, we develop
DeepNeuron, which provides several essential modules to neuron tracing. For automated tracing,
DeepNeuron can be used as either a new tracing algorithm to reconstruct neurites from difficult neuron
images, or an extra processing component to improve other tracing algorithms. DeepNeuron could also
assist annotators in manual tracing. Supporting extendable functions as plugins, currently DeepNeuron
contains five commonly used modules (Figure 1):

• Neurite signal detection: automatically identify 3D dendritic and axonal signal from
background.

• Neurite connection: automatically connect local neurite signal to form neuronal trees.
• Smart pruning: filter false positive and refine automated reconstruction results.
• Manual reconstruction evaluation: evaluate manual reconstructions and provide quality scores.
• Classification of dendrites and axons: automatically classify neurite types during real-time

annotation.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/254318doi: bioRxiv preprint

https://doi.org/10.1101/254318

Figure 1. The workflow of the open source DeepNeuron toolbox, which has five deep learning based modules. Each
DeepNeuron module has one or more processing components. Neurite signal detection module (section 2.1) uses
convolutional neural networks (CNNs) to do foreground/background classification. Neurite connection module
(section 2.2) uses a revised Siamese network (Bromley, et al., 1994; Chopra, et al., 2005) to connect neurite
structure from detected neuron signals. Smart pruning module (section 2.3) refines a neuron’s morphology by using
CNN models to filter out false positives. Manual reconstruction evaluation module (section 2.4) uses the output of
CNNs as quality scores to evaluate reconstructions. Finally, dendrites/axons classification module (section 2.5) uses
CNNs to perform multi-class classification to differentiate axons, dendrites, and background. Note that all the actual
deep learning networks in our five modules can be replaced with other network models or user’s own design.

2. Five Modules
2.1. Neurite Signal Detection

Due to difficulties in sample preparations and imaging, neurite signals often appear broken in a 3D image.
It is hard to use any existing automated tracing algorithm to reconstruct 3D neuronal structures when this
happens. Even for human annotators, locating these isolated axonal signals from the noisy background is
a daunting work. To reliably detect neurite signals, we introduce the neurite signal detection module
based on deep CNN to classify signal and background. This allows us to precisely detect neurite signals
without any pre-processing steps applied on the original image. To speed up the detection and lower the
GPU memory requirement, we used a two-dimensional (2D) CNN model followed by 3D mapping to
detect signal in 3D and achieved satisfactory results on our testing data. However, our framework is not
limited to 2D CNN but can also directly use 3D CNN models.

Manually reconstructed neurons were used as training samples. The 3D reconstruction of a neuron is
represented as a tree, which contains a series of 3D X, Y, Z locations, radius, and topological “parent” of
annotation nodes. To train the network, local 3D blocks (block size 61x 61 x 61 was used in our
experiments) centered on manually annotated nodes in neurite segments were cropped from the original
images. 2D maximum intensity projections (MIPs) of theses 3D blocks were used as the positive training
set, and the same number of 2D background MIPs were randomly selected as the negative training set.

We tested our module using AlexNet (Krizhevsky, et al., 2012) with five convolutional and three fully-
connected layers. Table 1 shows the five-fold cross-validation test of the module robustness. The training
image dataset was partitioned into five equal size subsets (1-24, 25-48, 49-72, 73-96, and 97-122 as

Neurite Signal
Detection

3D Detected
Signals

3D Detected
Signals (Manual/

Automatic)
Neurite Connection

Locally Connected
Segments

3D Automatic
Reconstruction Smart Pruning Refined Automatic

Reconstruction

3D Manual
Reconstruction

Manual Reconstruction
Evaluation

Quantitative
Evaluation Score

3D Image
Stack

Real-time
Annotation

Classification of
Dendrites and Axons

Real-time Neurite
Type Annotation

DeepNeuron Modules

shown in Table 1). Four subsets were used for training, and the remaining single subset was used for
validation. Our results show our overall accuracy > 98% for both training and validation.

Table 1. Five-fold cross-validation on bright-field training sets

In testing, we first projected the original 3D image stack onto the XY plane and generated a MIP image.
We then cropped 2D patches using a sliding window with n-pixel stride. These patches were classified
into patches centered on foreground or background pixels using our trained CNN model. To further
improve classification accuracy and exclude false positive patches, we applied mean-shift (Cheng, 1995)
to the detected foreground patches and map them back to the actual 3D locations based on the local
maximum intensity along Z. Finally, we classified these 3D detected signals using our CNN model again
based on the MIPs of the local 3D blocks.

Figure 2. The workflow of 3D neurite signal detection. A) An example of the original 3D image stack. It is a
cropped 3D bright-field image of a biocytin-labeled mouse neuron; the pixel resolution is 0.14 um x 0.14 um x 0.28
um. B) 2D MIP on the XY plane. C) Initial neurite signal detected by a deep CNN model (AlexNet in this case). D)

Training Set Foreground Accuracy Background Accuracy Overall Accuracy
Training Validation Training Validation Training Validation

{1-122}\{1-24} 98.77% 97.78% 98.97% 96.87% 98.87% 97.33%

{1-122}\{25-48} 98.54% 99.07% 98.78% 98.34% 98.66% 98.71%

{1-122}\{49-72} 98.67% 98.28% 98.78% 99.13% 98.73% 98.71%

{1-122}\{73-96} 98.71% 96.64% 98.28% 99.23% 98.50% 97.94%

{1-122}\{97-122} 98.64% 99.02% 98.77% 98.41% 98.71% 98.72%

Average 98.67% 98.08% 98.83% 98.44% 98.75% 98.26%

Refined 2D signal detection result using a mean-shift. C and D are overlaid on top of B. E) Mapped 3D detection
result based on local maximum intensity along Z-direction. F) Final 3D detection result after deep learning based
refinement. E and F are overlaid on top of A. Red dots indicate 2D/3D detected signals.

We applied our module to two challenging datasets of mouse neurons. The first set was a bright-field
biocytin-labeled mouse neuron dataset from Allen Cell Type Database. The second set was a whole
mouse brain data imaged by fMOST imaging technology (Gong, et al., 2016). For the first dataset, we
used 122 bright-field neuron image stacks and their associated manual reconstructions as the training set
and produced ~813K training samples including ~404K foreground patches, and ~408K background
patches. For the whole mouse brain dataset, we used ~493K training samples including ~252K
foreground patches, and ~241K background patches from 22 whole mouse brain images. Figure 3 shows
two examples of axon detection results. Using neurite signal detection module, most of axonal signals
have been precisely detected in both datasets.

Figure 3. Axon detection results on two challenging datasets. A) An example of a 3D image stack of mouse neuron
imaged with bright field microscopy (also see Figure 2A). B) An example of a 3D stack (shown as cropped) from a
whole mouse brain imaged with fMOST; the pixel resolution is 0.3 um x 0.3 um x 1 um. Red dots indicate detected
axonal signals. The two false positive example patches shown in A and B could be eliminated with more training
samples. Those false negative patches (also as shown in A and B) with very weak signals at the center could be
further identified by increasing the amount of weak signal foreground samples in the training set.

2.2. Neurite Connection

A complete neuron forms a tree structure that is composed of continuous neurite segments. Global, local,
and topological features including total length, bifurcations, terminal tips and more others are used to
study the neuronal morphology. These features have to be extracted from neurite segments instead of
dots. Therefore, finding the continuity of neurites and connecting neurite segments is a critical step in
neuron tracing. Generally, automated tracing algorithms can achieve good performance on connecting
neurite segments with small gaps based on the continuity of segment orientations. However, it is difficult
to automatically connect dots-like neurite signals. Using the spatial distance between these signals as the
weight, Minimal Spanning Tree (MST) provides a possible solution. However, without biological
context, it could also introduce topological errors. Human beings are good at finding the continuity of
isolated signals per their observations and domain knowledge. By learning the neurite connectivity from a
large dataset annotated by humans, a deep learning based MST (DMST) approach we proposed can
successfully connect neurite segments with relatively big gaps (Figure 4).

B. Example Image 2

False Positive

False Negative

False Positive

False Negative

Contrast Adjust

True Positive 1

True Positive 2

True Positive

Contrast Adjust

A. Example Image 1

Figure 4. The workflow of neurite connection module. A) In the training step, the connectivity of a signal pair is
learned using a revised Siamese network. In each pair, two 1x200 feature vector are extracted. B) The validated
result with sorted dissimilarity scores for all signal pairs shows that the dissimilarity scores of positive pairs are
much lower than that of negative pairs. C) The trained model is applied in the connection step to calculate the
dissimilarity for each detected signal pair. Results of our DMST connection and the original MST connection (using
distance as the weight only) are shown.

Siamese networks (Bromley, Guyon, LeCun, Säckinger and Shah, 1994; Chopra, Hadsell and LeCun,
2005) are used among tasks that involve finding similarity or the relationship between two subjects being
compared. Our revised Siamese model in this work includes two identical arms. Each consists two
convolutional layers with max pooling, followed by three fully-connected layers. The two arms are then
fed to a contrastive loss function to produce a binary decision.

In training (Figure 4A), we used pairs of patches generated from two consecutive annotation nodes as
positive training samples, and pairs of patches generated from two spatially separated annotation nodes as
negative training samples. We used ~919K training pairs, ~460K of them being positive pairs and ~459K
being negative pairs.

In connection (Figure 4C), a 1xM feature vector is extracted from individual input patch (M can be
defined by the user. We used M = 200 in our experiment). The Euclidean distance between two feature
vectors is calculated as the dissimilarity score of a patch-pair, which is multiplied by the distance to form
the weight in our proposed DMST graph.

Combing neurite signal detection and neurite connection modules, we were able to reconstruct axons that
present big challenges to traditional methods due to large gaps between signal segments (Figure 5).

Training
Data

Positive
Signal-pair
Negative

Signal-pair

Trained
Model

Each
Detected

Signal-pair

Dissimilarity
Score

Distance

Deep
Learning

based MST

A. Training

C. Connection
3D Detected Signals DMST Connection MST Connection

VS.

Di
ss

im
ila

rit
y s

co
re

Positive pairs

Negative pairs

B. Validation Result

Revised Siamese
Networks

Signal
-pair

Signal
patch 1
Signal

patch 2

C1 P1 F3
Contrastive

Loss

C2 P2 F4 F5

Convolutional Layer Max Pooling Layer Fully Connected Layer

C1 P1 F3C2 P2 F4 F5

0/1

Number of Pairs

Testing

Figure 5. DeepNeuron axon reconstruction. A) The same example image as shown in Figure 2A. B) 3D axon
signals (red dots) were extracted with neurite signal detection module; local 3D connections (green lines) between
signals were generated by neurite connection module. As shown in B, the proposed DMST in the connection module
can formulate the correct neurite structure even when the detected signals from different neurites are spatially close
to one another. In a more difficult case, however, the loss of true signal in the local area can make the information
captured by the network outweighed by the distance, resulting in false connection. This could be avoided by
adequately enlarging the examined local area. Note that unconnected fragments like those on the bottom-left would
be further processed by our non-deep-learning functions of the tool, which is out of the scope of this article.

2.3. Smart Pruning

Many of the existing automatic tracing algorithms rely on the correct estimation of the threshold that
separates the potential foreground signal from the background. Typical methods include those that use the
weighted average intensity of the entire image to threshold the image or add a pre-processing step to
enhance signals. These methods have limited success for neuron images with low signal-to-noise ratio
and uneven background. To solve the problem, we developed a smart pruning module in DeepNeuron. It
relieves the burden of precisely separating foreground and background up the front. Using existing
algorithms, our module first generated over-traced results with a lower foreground/background
segregation threshold or through signal enhancement step. We then trained CNN networks to classify true
signals and false positive signals. Using the trained models, we filtered out falsely detected signals and
pruned the reconstructed neuronal tree. Furthermore, different tracing results generated from multiple
base tracing algorithms could be combined (Wan, et al., 2015) to produce a consensus using this module
(Figure 6).

Figure 6. The workflow of consensus generation using the smart pruning module. Multiple automatic
reconstructions are filtered by CNN based classification models first. Then all filtered reconstructions are fused
together to produce a consensus. Reconstructions are shown in red lines on top of the original image stack.

2.4. Manual Reconstruction Evaluation

Since manual reconstruction is largely used as the gold standard to evaluate automated reconstruction
algorithms and to generate training set for machine learning based approaches, it is important to assess the
consistency of manual reconstructions among different annotators or of the same annotator at different
times. For this purpose, DeepNeuron provides an evaluation module based on deep learning classification
model. Take the mouse neuron dataset from the Allen Cell Type Database we described in section 2.1 as
an example, we divided the 122 manual reconstructions from multiple annotators into five subsets and
took a five-fold cross validation strategy. Each time we took four subsets as the training data. Once the
network was trained, we used it to evaluate how consistent the remaining subset is with respect to the
training subsets (Figure 7, Table 2). More specifically:

• First, all annotation nodes in test subset were classified into two categories: foreground and
background.

• All classified foreground nodes formed an initial prediction.
• Based on the orientation, tip location, and distance, fragments in the initial prediction were

automatically connected to produce a refined prediction. In our experiment, we only connected
terminal tips between two segments whose orientation differs less than 30 degrees and distance is
smaller than 30 voxels.

• The test subset is evaluated by the consistency score c:

c = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓		𝑛𝑜𝑑𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑒𝑓𝑖𝑛𝑒𝑑	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑜𝑑𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑚𝑎𝑛𝑢𝑎𝑙	𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
	× 100%

Figure 7. The workflow of manual reconstruction evaluation module. All annotation nodes are classified into
foreground (red lines) and background (white dots). Gaps in the initial prediction were automatically filled based on
the orientation, tip location, and distance in the refined prediction.

Table 2 shows the five-fold cross validation results on 122 manual reconstructions for the bright-field
biocytin-labeled mouse neuron dataset from Allen Cell Type Database. The high consistency scores
indicate that manual reconstructions are very consistent across different annotators and different subsets
of data. In addition, thicker and more continuous dendrites (>99%) have higher consistency scores than
dim and discontinuous axons (>96%), which are harder to reconstruct.

Node
Classification

Manual
Reconstruction

3D Image Stack

Evaluation

Initial
Prediction

Refined
Prediction

Consistency
Score

Table 2. Five-fold cross-validation on 122 manual reconstructions of biocytin-labeled mouse neuron dataset

More broadly, we applied our evaluation module to 31 manual reconstructions including 10 human
neurons and 21 mouse neurons in the Allen Cell Type Database. Table 3 shows our comparison results.
Consistent with Table 2, dendrites have higher scores than axons. In addition, scores on human neurite
(axon and dendrite) reconstructions are higher than those of mouse, indicating that annotators have better
tracing performance on physically larger human neurons.

Table 3. Comparison results of consistency scores on human and mouse neuron reconstructions

 2.5. Classification of Dendrites and Axons

Dendrites and axons have their own functions and play different roles in the nervous system.
Distinguishing these two types of neurites can help us gain insight into the brain circuitry. Although
dendrites and axons show different shapes and intensity properties in light microscopy images, such a
general rule of thumb, however, is not always guaranteed. Due to variant image quality, axons can also
appear continuous and look more like dendrites. This makes them difficult to be correctly labeled in most
of tracing algorithms. Here we present a deep learning module serving as a vehicle for the networks that
are trained for this purpose. This tool allows to automatically classify dendrites and axons on real-time
manual annotation, and potentially save time for annotators.

We used the same approach as described in section 2.1, except that the problem is now a multinomial
classification (dendrite, axon, and background) instead of a binary classification (foreground and
background) problem. Figure 8 shows the performance on two testing cases from the Allen Cell Type
Database. In this example, we used ~813K training samples including ~143K axons, ~261K dendrites,
and ~409K background. In this article, AlexNet and a revised model were used as demonstration. In Fig.
8, both AlexNet and our revised model can accurately classify continuous dendritic and discrete axonal
signals. However, when the signal of axons is similar to dendrites (Figure 8B), AlexNet mistakenly
classified axons into dendrites, while the revised model with one more convolutional layer successfully
distinguished axons from dendrites. Table 4 shows the comparison of classification accuracy between the

Training set
Consistency Score

Training Validation
Axon Dendrite Overall Axon Dendrite Overall

{1-122}\{1-24} 97.02% 99.35% 98.45% 95.90% 99.74% 98.30%

{1-122}\{25-48} 96.69% 99.68% 98.45% 97.51% 98.07% 97.94%

{1-122}\{49-72} 97.14% 99.31% 98.52% 95.66% 99.79% 97.95%

{1-122}\{73-96} 96.67% 99.34% 98.41% 96.48% 99.58% 98.02%

{1-122}\{97-122} 96.82% 99.39% 98.36% 98.07% 99.61% 99.15%

Average 96.87% 99.41% 98.45% 96.47% 99.34% 98.25%

Number Axon Dendrite Overall

Human 10 98.23% 99.60% 98.93%
Mouse 21 94.28% 99.40% 95.38%

two models on the training samples. We found that the revised model yields much better classification
performance. In exchange, the efficiency of the revised model is sacrificed due to much more number of
outputs in each convolutional layer (3.27s forward-backward time for AlexNet; 335.91s forward-
backward time for the revised model).

Figure 8. Comparison of dendrite and axon classification using AlexNet and a revised model. A) Axons are
discrete, and dendrites are continuous. B) Both axons and dendrites are continuous. The left segment is extracted
from a long axon. The right segment is extracted from a local dendrite. Red color indicates the axon, and blue color
indicates the dendrite in A and B. Note that all these 3D segments are manually annotated using Virtual Finger
technology (Peng, et al., 2014); neurite types are automatically annotated by the proposed module.

Table 4. Comparing AlexNet with a revised model

3. Discussion
In this paper, we presented a new deep learning based open source toolbox for neuron tracing:
DeepNeuron. With extensible framework, DeepNeuron currently provides five modules to comprehend
the major tasks:

• For a neuron image stack, it can be used to automatically detect neurite signals.
• For a neuron image stack with detected 3D signals, it can automatically connect signals to

generate local segments.

A. Testing Example 1 B. Testing Example 2

A revised model A revised model

Global view of testing example 2AlexNet AlexNet

Deep learning network Averaged forward-
backward time

Deemed
axon

Deemed
dendrite

Deemed
background

AlexNet 3.27 s 84.79% 93.86% 99.04%
A revised model 335.91 s 97.89% 98.55% 99.82%

• For a neuron image stack with its associated automated reconstruction, it can be used as a filter to
clean up all false positive tracing and generate a refined result.

• For a neuron image stack with its associated manual reconstructions, it can evaluate how
consistent and reliable the reconstructions are.

• For a neuron image stack with interactive human annotation via the user interface, it can label
neurite types in real-time.

DeepNeuron has been implemented as an open source plugin in Vaa3D (http://vaa3d.org) (Peng, Ruan,
Long, Simpson and Myers, 2010; Peng, Bria, Zhou, Iannello and Long, 2014). DeepNeuron toolbox is a
highly flexible vehicle allowing investigators to take advantage of deep learning to facilitate neuron
tracing in their research. As mentioned in this article, researchers can freely replace different network
models that suit their needs. Combined with other related features in Vaa3D including 30+ automatic
neuron tracing plugins, semi-automatic neuron annotation, annotation utilities, neuron
image/reconstruction visualization, DeepNeuron works as a smart artificial intelligence engine which
offers great help to biologists in exploring neuronal morphology.

Toolbox and Software Availability
The DeepNeuron toolbox was written in C++ as a plugin to Vaa3D. DeepNeuron source code is available
at https://github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/MK/DeepNeuron. In addition, the
DeepNeuron plugin is also included as a plugin in binary releases of Vaa3D, which can be downloaded at
https://github.com/Vaa3D/Vaa3D_Data/releases/tag/1.0.

Acknowledgement
We thank Allen Institute for Brain Science for providing neuron datasets and manual annotations. The
authors wish to thank the Allen Institute founders, P. G. Allen and J. Allen, for their vision,
encouragement and support.

Author contributions
H.P. conceived and managed the project. F.L. proposed the overall technical framework. Z.Z. developed
the toolbox and conducted the experiments. H.K. implemented a plugin for the dendrite and axon
classification and assisted in several other experiments. All authors edited the manuscript.

Conflict of Interest Statement
On behalf of all authors, the corresponding author states that there is no conflict of interest.

References
2015 Allen Institute for Brain Science. Allen Cell Types Database Available from: http://celltypes.brain-
map.org/.
Bromley, J., Guyon, I., LeCun, Y., Säckinger, E. and Shah, R. (1994) Signature verification using a"
siamese" time delay neural network. Advances in Neural Information Processing Systems. pp. 737-744.
Chen, H., Xiao, H., Liu, T. and Peng, H. (2015) SmartTracing: self-learning-based neuron reconstruction,
Brain informatics, 2, 135-144.
Cheng, Y. (1995) Mean shift, mode seeking, and clustering, IEEE transactions on pattern analysis and
machine intelligence, 17, 790-799.

Chopra, S., Hadsell, R. and LeCun, Y. (2005) Learning a similarity metric discriminatively, with
application to face verification. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on. IEEE, pp. 539-546.
Choromanska, A., Chang, S.-F. and Yuste, R. (2012) Automatic reconstruction of neural morphologies
with multi-scale tracking, Frontiers in neural circuits, 6.
Donohue, D.E. and Ascoli, G.A. (2011) Automated reconstruction of neuronal morphology: an overview,
Brain research reviews, 67, 94-102.
Fakhry, A., Peng, H. and Ji, S. (2016) Deep models for brain EM image segmentation: novel insights and
improved performance, Bioinformatics, 32, 2352-2358.
Feng, L., Zhao, T. and Kim, J. (2015) neuTube 1.0: a new design for efficient neuron reconstruction
software based on the SWC format, eneuro, 2, ENEURO. 0049-0014.2014.
Gala, R., Chapeton, J., Jitesh, J., Bhavsar, C. and Stepanyants, A. (2014) Active learning of neuron
morphology for accurate automated tracing of neurites, Frontiers in neuroanatomy, 8.
Gong, H., Xu, D., Yuan, J., Li, X., Guo, C., Peng, J., Li, Y., Schwarz, L.A., Li, A. and Hu, B. (2016)
High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic
landmarks at the cellular level, Nature communications, 7.
Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems. pp. 1097-1105.
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning, Nature, 521, 436.
Li, R., Zeng, T. and Ji, S. (2017) Deep Learning Segmentation of Optical Microscopy Images Improves
3D Neuron Reconstruction, IEEE Transactions on Medical Imaging.
Liu, Y. (2011) The DIADEM and Beyond, Neuroinformatics, 9, 99-102.
Longair, M.H., Baker, D.A. and Armstrong, J.D. (2011) Simple Neurite Tracer: open source software for
reconstruction, visualization and analysis of neuronal processes, Bioinformatics, 27, 2453-2454.
Luisi, J., Narayanaswamy, A., Galbreath, Z. and Roysam, B. (2011) The FARSIGHT trace editor: an
open source tool for 3-D inspection and efficient pattern analysis aided editing of automated neuronal
reconstructions. Springer.
Meijering, E., Jacob, M., Sarria, J.C., Steiner, P., Hirling, H. and Unser, M. (2004) Design and validation
of a tool for neurite tracing and analysis in fluorescence microscopy images, Cytometry Part A, 58, 167-
176.
Peng, H., Bria, A., Zhou, Z., Iannello, G. and Long, F. (2014) Extensible visualization and analysis for
multidimensional images using Vaa3D, Nature protocols, 9, 193-208.
Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering, E. and Ascoli, G.A. (2015)
BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images, Neuron, 87, 252-256.
Peng, H., Ruan, Z., Long, F., Simpson, J.H. and Myers, E.W. (2010) V3D enables real-time 3D
visualization and quantitative analysis of large-scale biological image data sets, Nature biotechnology, 28,
348-353.
Peng, H., Tang, J., Xiao, H., Bria, A., Zhou, J., Butler, V., Zhou, Z., Gonzalez-Bellido, P.T., Oh, S.W.,
Chen, J., Mitra, A., Tsien, R.W., Zeng, H., Ascoli, G.A., Iannello, G., Hawrylycz, M., Myers, E. and
Long, F. (2014) Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte
volume image visualization and analysis, Nature Communications, 5, 4342.
Peng, H., Zhou, Z., Meijering, E., Zhao, T., Ascoli, G.A. and Hawrylycz, M. (2017) Automatic tracing of
ultra-volumes of neuronal images, Nature Methods, 14, 332.
Wan, Y., Long, F., Qu, L., Xiao, H., Hawrylycz, M., Myers, E.W. and Peng, H. (2015) BlastNeuron for
Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies, Neuroinformatics, DOI:
10.1007/s12021-12015-19272-12027.

