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Abstract 
Reconstructing three-dimensional (3D) morphology of neurons is essential to understanding brain 
structures and functions. Over the past decades, a number of neuron tracing tools including manual, semi-
automatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal 
structures. Nevertheless, most of them were developed based on coding certain rules to extract and 
connect structural components of a neuron, showing limited performance on complicated neuron 
morphology. Recently, deep learning outperforms many other machine learning methods in a wide range 
of image analysis and computer vision tasks. Here we developed a new open source toolbox, 
DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron 
morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet 
challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron 
signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and 
refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and 
axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and 
confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy 
in neuron tracing.  

1. Introduction 
Over the past few decades, researchers have developed algorithms and tools to reconstruct (trace) 3D 
neuron morphology. A number of manual/semi-automatic neuron tracing software packages in both the 
public domain and commercial world have been developed (Meijering, et al., 2004; Peng, et al., 2010; 
Donohue and Ascoli, 2011; Longair, et al., 2011; Luisi, et al., 2011; Choromanska, et al., 2012; Peng, et 
al., 2014; Feng, et al., 2015). To further promote the development of neuron tracing tools, the DIADEM 
challenge (Liu, 2011) and the BigNeuron project (Peng, et al., 2015) were launched to compare different 
automated algorithms. At small or medium scales, many algorithms (base-tracers) have been shown to 
produce meaningful reconstructions on high quality neuron images. For large-scale image datasets, 
UltraTracer (Peng, et al., 2017) provides an extendible framework to scale up the capability of these base-
tracers. Despite these efforts on algorithm and tool development, it remains an open question on how to 
faithfully reconstruct neuron morphology from challenging image datasets that have medium to low 
qualities and contain very complex neuron morphology.   

Starting from a cell body, a neuron tracing process usually follows dendrites and axons, eventually 
connecting all such neuron signal as a tree that represents the morphology of the neuron. In light 
microscopy images, dendrites typically show continuous signal, whereas axons are often hard to trace due 
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to their punctuated appearance and large, complex arborization patterns (Peng, et al, 2010; see for 
example the bright-field images of biocytin-labeled neurons in the Allen Cell Type Database). In addition, 
the image quality varies a lot depending on sample preparation, imaging process, cell types and the 
healthiness of neurons. For instance, neuron signal could be continuous in one image, but dim and broken 
in another. It is difficult to automatically extract all such neuron signal under different conditions.  

Several important steps in neuron tracing can be formulated as a classification problem. For example, 
detection of neuron signal from background is essentially foreground-background classification. 
Reconstruction of the topology of a neuron via connecting neuron fragments can be treated as connection-
separation classification. In this aspect, a few studies used traditional machine learning and recent deep 
learning (LeCun, et al., 2015)  models to produce neuron morphology. For example, Gala et al. introduced 
an active learning model by combining different features to automatically trace neurites (Gala, et al., 
2014).  Chen et al. proposed a self-learning based tracing approach, which did not require substantial 
human annotations (Chen, et al., 2015). Fakhry et al. (Fakhry, et al., 2016) and Li et al. (Li, et al., 2017) 
used deep learning neural networks to segment electron and light microscopy neuron images. Despite 
these algorithmic efforts, none of these methods provide publicly available tools to use on external 
datasets. 

Nowadays deep learning methods outperform traditional methods in many pattern recognition and 
computer vision applications. We analyzed commonly used modules of neuron tracing/editing workflows 
in real applications, and concluded that an open source deep learning toolbox would help significantly to 
this growing field. Using deep learning neural networks as the classification models, we develop 
DeepNeuron, which provides several essential modules to neuron tracing. For automated tracing, 
DeepNeuron can be used as either a new tracing algorithm to reconstruct neurites from difficult neuron 
images, or an extra processing component to improve other tracing algorithms. DeepNeuron could also 
assist annotators in manual tracing. Supporting extendable functions as plugins, currently DeepNeuron 
contains five commonly used modules (Figure 1):  

• Neurite signal detection: automatically identify 3D dendritic and axonal signal from 
background. 

• Neurite connection: automatically connect local neurite signal to form neuronal trees. 
• Smart pruning: filter false positive and refine automated reconstruction results.  
• Manual reconstruction evaluation: evaluate manual reconstructions and provide quality scores. 
• Classification of dendrites and axons: automatically classify neurite types during real-time 

annotation.  
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Figure 1. The workflow of the open source DeepNeuron toolbox, which has five deep learning based modules. Each 
DeepNeuron module has one or more processing components. Neurite signal detection module (section 2.1) uses 
convolutional neural networks (CNNs) to do foreground/background classification. Neurite connection module 
(section 2.2) uses a revised Siamese network (Bromley, et al., 1994; Chopra, et al., 2005) to connect neurite 
structure from detected neuron signals. Smart pruning module (section 2.3) refines a neuron’s morphology by using 
CNN models to filter out false positives. Manual reconstruction evaluation module (section 2.4) uses the output of 
CNNs as quality scores to evaluate reconstructions. Finally, dendrites/axons classification module (section 2.5) uses 
CNNs to perform multi-class classification to differentiate axons, dendrites, and background. Note that all the actual 
deep learning networks in our five modules can be replaced with other network models or user’s own design.  

2. Five Modules 
2.1. Neurite Signal Detection  

Due to difficulties in sample preparations and imaging, neurite signals often appear broken in a 3D image. 
It is hard to use any existing automated tracing algorithm to reconstruct 3D neuronal structures when this 
happens. Even for human annotators, locating these isolated axonal signals from the noisy background is 
a daunting work. To reliably detect neurite signals, we introduce the neurite signal detection module 
based on deep CNN to classify signal and background. This allows us to precisely detect neurite signals 
without any pre-processing steps applied on the original image.  To speed up the detection and lower the 
GPU memory requirement, we used a two-dimensional (2D) CNN model followed by 3D mapping to 
detect signal in 3D and achieved satisfactory results on our testing data. However, our framework is not 
limited to 2D CNN but can also directly use 3D CNN models.  

Manually reconstructed neurons were used as training samples. The 3D reconstruction of a neuron is 
represented as a tree, which contains a series of 3D X, Y, Z locations, radius, and topological “parent” of 
annotation nodes. To train the network, local 3D blocks (block size 61x 61 x 61 was used in our 
experiments) centered on manually annotated nodes in neurite segments were cropped from the original 
images. 2D maximum intensity projections (MIPs) of theses 3D blocks were used as the positive training 
set, and the same number of 2D background MIPs were randomly selected as the negative training set.  

We tested our module using AlexNet (Krizhevsky, et al., 2012) with five convolutional and three fully-
connected layers. Table 1 shows the five-fold cross-validation test of the module robustness. The training 
image dataset was partitioned into five equal size subsets (1-24, 25-48, 49-72, 73-96, and 97-122 as 
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shown in Table 1). Four subsets were used for training, and the remaining single subset was used for 
validation. Our results show our overall accuracy > 98% for both training and validation.  

Table 1. Five-fold cross-validation on bright-field training sets 

 

In testing, we first projected the original 3D image stack onto the XY plane and generated a MIP image. 
We then cropped 2D patches using a sliding window with n-pixel stride. These patches were classified 
into patches centered on foreground or background pixels using our trained CNN model. To further 
improve classification accuracy and exclude false positive patches, we applied mean-shift (Cheng, 1995) 
to the detected foreground patches and map them back to the actual 3D locations based on the local 
maximum intensity along Z. Finally, we classified these 3D detected signals using our CNN model again 
based on the MIPs of the local 3D blocks.  

 

Figure 2. The workflow of 3D neurite signal detection. A) An example of the original 3D image stack. It is a 
cropped 3D bright-field image of a biocytin-labeled mouse neuron; the pixel resolution is 0.14 um x 0.14 um x 0.28 
um. B) 2D MIP on the XY plane. C) Initial neurite signal detected by a deep CNN model (AlexNet in this case). D) 

Training Set Foreground Accuracy Background Accuracy Overall Accuracy
Training Validation Training Validation Training Validation

{1-122}\{1-24} 98.77% 97.78% 98.97% 96.87% 98.87% 97.33%

{1-122}\{25-48} 98.54% 99.07% 98.78% 98.34% 98.66% 98.71%

{1-122}\{49-72} 98.67% 98.28% 98.78% 99.13% 98.73% 98.71%

{1-122}\{73-96} 98.71% 96.64% 98.28% 99.23% 98.50% 97.94%

{1-122}\{97-122} 98.64% 99.02% 98.77% 98.41% 98.71% 98.72%

Average 98.67% 98.08% 98.83% 98.44% 98.75% 98.26%



Refined 2D signal detection result using a mean-shift. C and D are overlaid on top of B. E) Mapped 3D detection 
result based on local maximum intensity along Z-direction. F) Final 3D detection result after deep learning based 
refinement. E and F are overlaid on top of A. Red dots indicate 2D/3D detected signals. 

We applied our module to two challenging datasets of mouse neurons. The first set was a bright-field 
biocytin-labeled mouse neuron dataset from Allen Cell Type Database. The second set was a whole 
mouse brain data imaged by fMOST imaging technology (Gong, et al., 2016).  For the first dataset, we 
used 122 bright-field neuron image stacks and their associated manual reconstructions as the training set 
and produced ~813K training samples including ~404K foreground patches, and ~408K background 
patches. For the whole mouse brain dataset, we used ~493K training samples including ~252K 
foreground patches, and ~241K background patches from 22 whole mouse brain images. Figure 3 shows 
two examples of axon detection results. Using neurite signal detection module, most of axonal signals 
have been precisely detected in both datasets.  

 

Figure 3. Axon detection results on two challenging datasets. A) An example of a 3D image stack of mouse neuron 
imaged with bright field microscopy (also see Figure 2A). B) An example of a 3D stack (shown as cropped) from a 
whole mouse brain imaged with fMOST; the pixel resolution is 0.3 um x 0.3 um x 1 um. Red dots indicate detected 
axonal signals. The two false positive example patches shown in A and B could be eliminated with more training 
samples. Those false negative patches (also as shown in A and B) with very weak signals at the center could be 
further identified by increasing the amount of weak signal foreground samples in the training set. 

2.2. Neurite Connection 

A complete neuron forms a tree structure that is composed of continuous neurite segments. Global, local, 
and topological features including total length, bifurcations, terminal tips and more others are used to 
study the neuronal morphology. These features have to be extracted from neurite segments instead of 
dots. Therefore, finding the continuity of neurites and connecting neurite segments is a critical step in 
neuron tracing. Generally, automated tracing algorithms can achieve good performance on connecting 
neurite segments with small gaps based on the continuity of segment orientations. However, it is difficult 
to automatically connect dots-like neurite signals. Using the spatial distance between these signals as the 
weight, Minimal Spanning Tree (MST) provides a possible solution. However, without biological 
context, it could also introduce topological errors. Human beings are good at finding the continuity of 
isolated signals per their observations and domain knowledge. By learning the neurite connectivity from a 
large dataset annotated by humans, a deep learning based MST (DMST) approach we proposed can 
successfully connect neurite segments with relatively big gaps (Figure 4). 
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Figure 4. The workflow of neurite connection module. A) In the training step, the connectivity of a signal pair is 
learned using a revised Siamese network. In each pair, two 1x200 feature vector are extracted. B) The validated 
result with sorted dissimilarity scores for all signal pairs shows that the dissimilarity scores of positive pairs are 
much lower than that of negative pairs. C) The trained model is applied in the connection step to calculate the 
dissimilarity for each detected signal pair. Results of our DMST connection and the original MST connection (using 
distance as the weight only) are shown. 

Siamese networks (Bromley, Guyon, LeCun, Säckinger and Shah, 1994; Chopra, Hadsell and LeCun, 
2005) are used among tasks that involve finding similarity or the relationship between two subjects being 
compared. Our revised Siamese model in this work includes two identical arms. Each consists two 
convolutional layers with max pooling, followed by three fully-connected layers. The two arms are then 
fed to a contrastive loss function to produce a binary decision.  

In training (Figure 4A), we used pairs of patches generated from two consecutive annotation nodes as 
positive training samples, and pairs of patches generated from two spatially separated annotation nodes as 
negative training samples. We used ~919K training pairs, ~460K of them being positive pairs and ~459K 
being negative pairs. 

In connection (Figure 4C), a 1xM feature vector is extracted from individual input patch (M can be 
defined by the user. We used M = 200 in our experiment). The Euclidean distance between two feature 
vectors is calculated as the dissimilarity score of a patch-pair, which is multiplied by the distance to form 
the weight in our proposed DMST graph. 

Combing neurite signal detection and neurite connection modules, we were able to reconstruct axons that 
present big challenges to traditional methods due to large gaps between signal segments (Figure 5).  
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Figure 5. DeepNeuron axon reconstruction. A) The same example image as shown in Figure 2A. B) 3D axon 
signals (red dots) were extracted with neurite signal detection module; local 3D connections (green lines) between 
signals were generated by neurite connection module. As shown in B, the proposed DMST in the connection module 
can formulate the correct neurite structure even when the detected signals from different neurites are spatially close 
to one another. In a more difficult case, however, the loss of true signal in the local area can make the information 
captured by the network outweighed by the distance, resulting in false connection. This could be avoided by 
adequately enlarging the examined local area. Note that unconnected fragments like those on the bottom-left would 
be further processed by our non-deep-learning functions of the tool, which is out of the scope of this article.  

2.3. Smart Pruning  

Many of the existing automatic tracing algorithms rely on the correct estimation of the threshold that 
separates the potential foreground signal from the background. Typical methods include those that use the 
weighted average intensity of the entire image to threshold the image or add a pre-processing step to 
enhance signals. These methods have limited success for neuron images with low signal-to-noise ratio 
and uneven background. To solve the problem, we developed a smart pruning module in DeepNeuron. It 
relieves the burden of precisely separating foreground and background up the front. Using existing 
algorithms, our module first generated over-traced results with a lower foreground/background 
segregation threshold or through signal enhancement step. We then trained CNN networks to classify true 
signals and false positive signals. Using the trained models, we filtered out falsely detected signals and 
pruned the reconstructed neuronal tree. Furthermore, different tracing results generated from multiple 
base tracing algorithms could be combined (Wan, et al., 2015) to produce a consensus using this module 
(Figure 6). 

 



Figure 6. The workflow of consensus generation using the smart pruning module. Multiple automatic 
reconstructions are filtered by CNN based classification models first. Then all filtered reconstructions are fused 
together to produce a consensus. Reconstructions are shown in red lines on top of the original image stack.  

2.4. Manual Reconstruction Evaluation  

Since manual reconstruction is largely used as the gold standard to evaluate automated reconstruction 
algorithms and to generate training set for machine learning based approaches, it is important to assess the 
consistency of manual reconstructions among different annotators or of the same annotator at different 
times. For this purpose, DeepNeuron provides an evaluation module based on deep learning classification 
model. Take the mouse neuron dataset from the Allen Cell Type Database we described in section 2.1 as 
an example, we divided the 122 manual reconstructions from multiple annotators into five subsets and 
took a five-fold cross validation strategy. Each time we took four subsets as the training data. Once the 
network was trained, we used it to evaluate how consistent the remaining subset is with respect to the 
training subsets (Figure 7, Table 2). More specifically:   

• First, all annotation nodes in test subset were classified into two categories: foreground and 
background. 

• All classified foreground nodes formed an initial prediction.  
• Based on the orientation, tip location, and distance, fragments in the initial prediction were 

automatically connected to produce a refined prediction. In our experiment, we only connected 
terminal tips between two segments whose orientation differs less than 30 degrees and distance is 
smaller than 30 voxels.  

• The test subset is evaluated by the consistency score c:  

c = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓		𝑛𝑜𝑑𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑒𝑓𝑖𝑛𝑒𝑑	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑜𝑑𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑚𝑎𝑛𝑢𝑎𝑙	𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
	× 100% 

  

Figure 7. The workflow of manual reconstruction evaluation module. All annotation nodes are classified into 
foreground (red lines) and background (white dots). Gaps in the initial prediction were automatically filled based on 
the orientation, tip location, and distance in the refined prediction. 

Table 2 shows the five-fold cross validation results on 122 manual reconstructions for the bright-field 
biocytin-labeled mouse neuron dataset from Allen Cell Type Database. The high consistency scores 
indicate that manual reconstructions are very consistent across different annotators and different subsets 
of data. In addition, thicker and more continuous dendrites (>99%) have higher consistency scores than  
dim and discontinuous axons (>96%), which are harder to reconstruct. 
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Table 2. Five-fold cross-validation on 122 manual reconstructions of biocytin-labeled mouse neuron dataset  

 

More broadly, we applied our evaluation module to 31 manual reconstructions including 10 human 
neurons and 21 mouse neurons in the Allen Cell Type Database. Table 3 shows our comparison results. 
Consistent with Table 2, dendrites have higher scores than axons. In addition, scores on human neurite 
(axon and dendrite) reconstructions are higher than those of mouse, indicating that annotators have better 
tracing performance on physically larger human neurons.   

Table 3. Comparison results of consistency scores on human and mouse neuron reconstructions 

 

 2.5. Classification of Dendrites and Axons 

Dendrites and axons have their own functions and play different roles in the nervous system. 
Distinguishing these two types of neurites can help us gain insight into the brain circuitry. Although 
dendrites and axons show different shapes and intensity properties in light microscopy images, such a 
general rule of thumb, however, is not always guaranteed. Due to variant image quality, axons can also 
appear continuous and look more like dendrites. This makes them difficult to be correctly labeled in most 
of tracing algorithms. Here we present a deep learning module serving as a vehicle for the networks that 
are trained for this purpose. This tool allows to automatically classify dendrites and axons on real-time 
manual annotation, and potentially save time for annotators. 

We used the same approach as described in section 2.1, except that the problem is now a multinomial 
classification (dendrite, axon, and background) instead of a binary classification (foreground and 
background) problem. Figure 8 shows the performance on two testing cases from the Allen Cell Type 
Database. In this example, we used ~813K training samples including ~143K axons, ~261K dendrites, 
and ~409K background.  In this article, AlexNet and a revised model were used as demonstration. In Fig. 
8,  both AlexNet and our revised model can accurately classify continuous dendritic and discrete axonal 
signals. However, when the signal of axons is similar to dendrites (Figure 8B), AlexNet mistakenly 
classified axons into dendrites, while the revised model with one more convolutional layer successfully 
distinguished axons from dendrites. Table 4 shows the comparison of classification accuracy between the 

Training set
Consistency Score

Training Validation
Axon Dendrite Overall Axon Dendrite Overall

{1-122}\{1-24} 97.02% 99.35% 98.45% 95.90% 99.74% 98.30%

{1-122}\{25-48} 96.69% 99.68% 98.45% 97.51% 98.07% 97.94%

{1-122}\{49-72} 97.14% 99.31% 98.52% 95.66% 99.79% 97.95%

{1-122}\{73-96} 96.67% 99.34% 98.41% 96.48% 99.58% 98.02%

{1-122}\{97-122} 96.82% 99.39% 98.36% 98.07% 99.61% 99.15%

Average 96.87% 99.41% 98.45% 96.47% 99.34% 98.25%

Number Axon Dendrite Overall

Human 10 98.23% 99.60% 98.93%
Mouse 21 94.28% 99.40% 95.38%



two models on the training samples. We found that the revised model yields much better classification 
performance. In exchange, the efficiency of the revised model is sacrificed due to much more number of 
outputs in each convolutional layer (3.27s forward-backward time for AlexNet; 335.91s forward-
backward time for the revised model).   

 

Figure 8. Comparison of dendrite and axon classification using AlexNet and a revised model. A) Axons are 
discrete, and dendrites are continuous. B) Both axons and dendrites are continuous. The left segment is extracted 
from a long axon. The right segment is extracted from a local dendrite.  Red color indicates the axon, and blue color 
indicates the dendrite in A and B. Note that all these 3D segments are manually annotated using Virtual Finger 
technology (Peng, et al., 2014); neurite types are automatically annotated by the proposed module. 

Table 4. Comparing AlexNet with a revised model 

 

3. Discussion 
In this paper, we presented a new deep learning based open source toolbox for neuron tracing: 
DeepNeuron.  With extensible framework, DeepNeuron currently provides five modules to comprehend 
the major tasks: 

• For a neuron image stack, it can be used to automatically detect neurite signals. 
• For a neuron image stack with detected 3D signals, it can automatically connect signals to 

generate local segments. 
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A revised model A revised model
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Deemed 
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AlexNet 3.27 s 84.79% 93.86% 99.04%
A revised model 335.91 s 97.89% 98.55% 99.82%



• For a neuron image stack with its associated automated reconstruction, it can be used as a filter to 
clean up all false positive tracing and generate a refined result. 

• For a neuron image stack with its associated manual reconstructions, it can evaluate how 
consistent and reliable the reconstructions are.  

• For a neuron image stack with interactive human annotation via the user interface, it can label 
neurite types in real-time. 

DeepNeuron has been implemented as an open source plugin in Vaa3D (http://vaa3d.org) (Peng, Ruan, 
Long, Simpson and Myers, 2010; Peng, Bria, Zhou, Iannello and Long, 2014). DeepNeuron toolbox is a 
highly flexible vehicle allowing investigators to take advantage of deep learning to facilitate neuron 
tracing in their research. As mentioned in this article, researchers can freely replace different network 
models that suit their needs. Combined with other related features in Vaa3D including 30+ automatic 
neuron tracing plugins, semi-automatic neuron annotation, annotation utilities, neuron 
image/reconstruction visualization, DeepNeuron works as a smart artificial intelligence engine which 
offers great help to biologists in exploring neuronal morphology.  

Toolbox and Software Availability 
The DeepNeuron toolbox was written in C++ as a plugin to Vaa3D. DeepNeuron source code is available 
at https://github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/MK/DeepNeuron. In addition, the 
DeepNeuron plugin is also included as a plugin in binary releases of Vaa3D, which can be downloaded at 
https://github.com/Vaa3D/Vaa3D_Data/releases/tag/1.0. 
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