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Summary	

Systems	biology	seeks	to	understand	how	normal	and	disease	protein	networks	respond	

when	specific	interactions	are	disrupted.	A	first	step	towards	this	goal	is	identifying	the	

molecular	target(s)	of	bioactive	compounds.	Here,	we	hypothesize	that	inhibitory	drugs	

should	produce	network-level	 effects	 similar	 to	 silencing	 the	 inhibited	gene	and	 show	

that	drug-protein	interactions	are	encoded	in	mRNA	expression	profile	correlations.	We	

use	 machine	 learning	 to	 classify	 correlations	 between	 drug-	 and	 knockdown-induced	

expression	 signatures	 and	 enrich	 our	 predictions	 through	 a	 structure-based	 screen.	

Interactions	manifest	both	as	direct	correlations	between	drug	and	target	knockdowns,	

and	as	 indirect	correlations	with	up/downstream	knockdowns.	Cross-validation	on	152	

FDA-approved	 drugs	 and	 3104	 potential	 targets	 achieved	 top	 10/100	 prediction	

accuracies	 of	 26/41%.	 We	 apply	 our	 method	 to	 1680	 bioactive	 compounds	 and	

experimentally	 validate	 five	 previously	 unknown	 interactions.	 Our	 pipeline	 can	

accelerate	drug	discovery	by	matching	existing	compounds	to	new	therapeutic	 targets	

while	informing	on	network	and	multi-target	effects.	
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Highlights	

• Inhibitory	drugs	and	gene	knockdowns	produce	similar	disruptions	of	cellular	protein	

networks	

• Drug	targets	can	be	identified	from	correlations	in	drug-	and	knockdown-induced	

mRNA	expression	

• Drug-target	interactions	manifest	as	both	direct/indirect	correlations	with	the	

target/pathway	

• Five	novel	interactions	are	experimentally	validated,	including	first-in-class	CHIP	

inhibitors	

	

eTOC	Blurb	

We	 delineate	 the	 role	 of	 small	 molecules	 in	 perturbing	 cellular	 protein	 networks	 by	

capturing	 direct	 correlations	 between	 drug-	 and	 target	 knockdown-induced	 mRNA	

expression	 profiles	 as	 well	 as	 indirect	 correlations	 with	 knockdowns	 of	 genes	

up/downstream	 of	 the	 actual	 target.	 Our	 findings	 could	 accelerate	 drug	 discovery	 by	

assessing	the	impact	of	promising	bioactive	chemistries	 in	modulating	gene	expression	

for	novel	therapeutic	targets.	
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Introduction	

	

Understanding	how	cellular	pathways	respond	when	specific	interactions	are	disrupted	

is	 essential	 for	 developing	 therapies	 that	 might	 restore	 perturbed	 networks	 to	 their	

native	 states.	 Probing	 cells	 with	 bioactive	 small	 molecules	 can	 yield	 insight	 towards	

identifying	 and	 correcting	 aberrant	 pathways	 if	 the	molecules’	 target(s)	 are	 known	 a	

priori,	 but	 this	 is	 often	 not	 the	 case	 (Drews,	 2000;	 Gregori-Puigjane	 et	 al.,	 2012;	

Overington	 et	 al.,	 2006).	 The	 target	 identification	 problem	 has	 traditionally	 been	

approached	 from	 a	 target-centric	 paradigm,	 relying	 on	 high-throughput	 in-vitro	

screening	of	 large	 libraries	against	a	 single	protein	 (Swinney	and	Anthony,	2011).	This	

approach	 has	 proven	 effective	 for	 kinases,	 GPCRs,	 and	 proteases,	 but	 yields	 for	

numerous	 other	 targets	 such	 as	 protein-protein	 interactions	 are	 poor	 (Bleicher	 et	 al.,	

2003;	Pritchard	et	al.,	2003).	Moreover,	these	in-vitro	biochemical	screens	often	cannot	

provide	any	 context	 regarding	drug	activity	 in	 the	 cell,	multi-target	 effects,	 or	 toxicity	

(Mayr	and	Bojanic,	2009;	Persidis,	1998).		

	

As	 an	 alternative	 to	 target-centric	 high	 throughput	 screening,	 compound-centric	

computational	 approaches	 are	 now	 commonly	 applied	 to	 predict	 drug–target	

interactions	 by	 leveraging	 existing	 data.	 Many	 of	 these	 methods	 extrapolate	 from	

known	 chemistry,	 structural	 homology,	 and/or	 functionally	 related	 compounds	 and	

excel	in	target	prediction	when	the	query	compound	is	chemically	or	functionally	similar	

to	known	drugs	(Gfeller	et	al.,	2014;	Keiser	et	al.,	2009;	Lo	et	al.,	2015;	Martinez-Jimenez	
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and	Marti-Renom,	 2015;	 Nickel	 et	 al.,	 2014;	 Yamanishi	 et	 al.,	 2010).	 Other	 structure-

based	methods	 such	as	molecular	docking	are	able	 to	evaluate	novel	 chemistries,	but	

are	limited	by	the	availability	of	protein	structures	(Li	et	al.,	2006;	Rognan,	2010;	Wang	

et	al.,	2012),	inadequate	scoring	functions	and	excessive	computing	times,	which	render	

structure-based	methods	ill-suited	for	genome-wide	virtual	screening	(Meslamani	et	al.,	

2012).	 More	 recently,	 a	 new	 paradigm	 for	 predicting	 molecular	 interactions	 using	

cellular	gene	expression	profiles	has	emerged	(Faith	et	al.,	2008;	Lamb,	2007;	Lamb	et	

al.,	 2006).	 Studies	have	mapped	drug-induced	differential	 gene	expression	 levels	onto	

known	 protein	 interaction	 network	 topologies	 and	 prioritized	 potential	 targets	 by	

identifying	highly	perturbed	subnetworks	(Cosgrove	et	al.,	2008;	Isik	et	al.,	2015;	Laenen	

et	 al.,	 2013).	 These	 studies	 predict	 roughly	 20%	 of	 known	 targets	within	 the	 top	 100	

ranked	genes	(SI	Appendix,	SI	Methods),	but	did	not	predict	any	new	interactions.	

	

The	 NIH’s	 Library	 of	 Integrated	 Cellular	 Signatures	 (LINCS)	 project	 presents	 an	

opportunity	to	develop	an	unbiased	approach	to	expression-based	target	prediction	by	

integrating	 drug-induced	 expression	 signatures	 with	 signatures	 from	 other	 types	 of	

cellular	 perturbations.	 Specifically,	 the	 LINCS	 L1000	 dataset	 contains	 cellular	 mRNA	

signatures	 from	 treatments	 with	 20,000+	 small	 molecules	 and	 20,000+	 gene	 over-

expression	 (cDNA)	or	knockdown	 (sh-RNA)	experiments.	Based	on	our	hypothesis	 that	

drugs	which	inhibit	their	target(s)	should	yield	similar	network-level	effects	to	silencing	

the	 target	 gene(s)	 (Figure	 1a),	 we	 calculated	 correlations	 between	 the	 expression	

signatures	 of	 thousands	 of	 small	 molecule	 treatments	 and	 gene	 knockdowns	 in	 the	
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same	 cells.	We	used	 the	 strength	of	 these	 correlations	 to	 rank	potential	 targets	 for	 a	

validation	set	of	29	FDA-approved	drugs	tested	 in	the	seven	most	abundant	LINCS	cell	

lines.	 We	 evaluate	 both	 direct	 signature	 correlations	 between	 drug	 treatments	 and	

knockdowns	 of	 their	 potential	 targets,	 as	 well	 as	 indirect	 signature	 correlations	 with	

knockdowns	 of	 proteins	 up/down-stream	 of	 potential	 targets.	 We	 combined	 these	

correlation	 features	 with	 additional	 gene	 annotation,	 protein	 interaction	 and	 cell-

specific	 features	 using	 Random	 Forest	 (Andy	 Liaw,	 2002;	 Qi	 et	 al.,	 2006)	 (RF)	 and	

achieved	 a	 top	 100	 target	 prediction	 accuracy	 of	 55%,	 due	 primarily	 to	 our	 novel	

correlation	features.		

	

Finally,	to	filter	out	false	positives	and	further	enrich	our	predictions,	we	used	molecular	

docking	 to	evaluate	 the	 structural	 compatibility	of	 the	RF-predicted	 compound–target	

pairs.	 This	 orthogonal	 analysis	 significantly	 improved	 our	 prediction	 accuracy	 on	 an	

expanded	validation	set	of	152	FDA-approved	drugs,	obtaining	a	top	10/100	accuracy	of	

26%/41%,	more	than	double	 that	of	previous	methods.	Finally,	we	tested	our	method	

on	 1680	 small	 molecules	 profiled	 in	 LINCS	 and	 experimentally	 confirmed	 previously	

unknown	 and	 first-in-class	 targets	 for	 five	 different	 compounds.	 These	 compounds	

validated	 our	 hypothesis	 that	 drug-	 and	 target	 knockdown-induced	 gene	 expression	

perturbations	correlate	directly	and/or	indirectly	via	genes	up/downstream	of	the	actual	

target.	 More	 importantly,	 we	 provide	 enriched	 sets	 of	 likely	 active	 compounds	 to	

hundreds	of	human	targets,	providing	a	new	avenue	to	identify	suitable	(multi-)	targets	
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for	 novel	 chemistries	 and	 accelerate	 the	 discovery	 of	 chemical	 probes	 of	 protein	

function.		
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Results	

	

Preliminary	prediction	of	drug	targets	using	expression	profile	correlation	features.	

We	constructed	a	validation	set	of	29	FDA-approved	drugs	 that	had	been	 tested	 in	at	

least	seven	LINCS	cells	lines,	and	whose	known	targets	were	among	2634	genes	knocked	

down	 in	 the	 same	 cell	 lines.	 For	 these	 drugs,	 we	 ranked	 potential	 targets	 using	 the	

direct	 correlation	 between	 the	 drug-induced	 mRNA	 expression	 signature	 and	 the	

knockdown-induced	signatures	of	potential	targets	(Figure	1b,c).	For	each	cell	 line,	the	

2634	 knockdown	 signatures	 were	 sorted	 by	 their	 Pearson	 correlation	 with	 the	

expression	 signature	 of	 the	 drug	 in	 that	 cell	 line.	 We	 used	 each	 gene’s	 lowest	 rank	

across	 all	 cell	 lines	 to	 produce	 a	 final	 ranking	 of	 potential	 targets	 for	 the	 given	 drug.	

Using	 this	 approach,	we	 predicted	 known	 targets	 in	 the	 top	 100	 potential	 targets	 for	

8/29	 validation	 compounds	 (Table	 S1).	 Indirect	 correlations	 were	 evaluated	 by	 the	

fraction	of	a	potential	target’s	known	interaction	partners	(cf.	BioGrid	(Chatr-Aryamontri	

et	 al.,	 2015))	whose	 knockdown	 signatures	 correlated	 strongly	with	 the	 drug-induced	

signature.	Ranking	by	indirect	correlations	predicted	the	known	target	in	the	top	100	for	

10	of	our	29	validation	compounds	(Table	S1).	Interestingly,	several	of	these	compounds	

showed	 little	 correlation	with	 the	 knockdown	 of	 their	 targets,	with	 only	 3/10	 targets	

correctly	predicted	using	the	direct	correlation	feature	alone	(Figure	1d,e).	

	

It	is	well	known	that	expression	profiles	vary	between	cell	types	(Shen-Orr	et	al.,	2010).	

Thus,	we	constructed	a	cell	 selection	 feature	 to	determine	 the	most	“active”	cell	 line,	
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defined	 as	 the	 cell	 line	 producing	 the	 lowest	 correlation	 between	 the	 drug-induced	

signature	 and	 the	 control	 signature.	 Ranking	 by	 direct	 correlations	 within	 the	 most	

active	 cell	 line	 for	 each	 drug	 predicted	 six	 known	 targets	 in	 the	 top	 100	 (Table	 S1).	

However,	 all	 six	 of	 these	 targets	 were	 already	 predicted	 by	 either	 direct	 or	 indirect	

correlations,	strongly	suggesting	that	scanning	for	the	optimal	correlation	across	all	cell	

lines	is	a	better	strategy	than	trying	to	identify	the	most	relevant	cell	type	by	apparent	

activity.	

	

Finally,	to	incorporate	the	findings	of	previous	studies	that	suggest	that	drug	treatments	

often	up/down	regulate	the	expression	of	their	target’s	 interaction	partners	(Cosgrove	

et	al.,	2008;	Isik	et	al.,	2015;	Laenen	et	al.,	2013),	we	constructed	two	features	to	report	

directly	 on	 the	 drug-induced	 differential	 expression	 of	 potential	 targets’	 interaction	

partners.	These	 features	 compute	 the	maximum	and	 the	mean	differential	expression	

levels	of	potential	 targets’	 interaction	partners	 in	 the	drug-induced	expression	profile.	

The	 lowest	 rank	of	each	potential	 target	across	all	 cell	 lines	 is	used	 in	a	 final	 ranking.	

Though	neither	expression	feature	produces	top	100	accuracies	better	than	those	of	our	

correlation	features,	maximum	differential	expression	identifies	three	new	targets	that	

were	not	identified	using	any	of	the	previous	features	(Table	S1).		

	

Combining	individual	features	using	random	forest	(RF).	While	each	of	the	features	in	

Table	 S1	 performed	 better	 than	 random,	 combining	 them	 further	 improved	 results.	

Using	Leave-One-Out	Cross	Validation	(LOOCV)	for	each	drug,	 logistic	regression	(Qi	et	
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al.,	2006)	correctly	identified	known	targets	in	the	top	100	predictions	for	11	out	of	29	

drugs	and	improved	the	average	known	target	ranking	of	all	drugs	(Table	S1).	However,	

logistic	regression	assumes	that	features	are	independent,	which	is	not	the	case	for	our	

dataset.	 Hence,	 we	 used	 RF,	 which	 is	 able	 to	 learn	 more	 sophisticated	 decision	

boundaries	 (Diaz-Uriarte	 and	 Alvarez	 de	 Andres,	 2006).	 Following	 the	 same	 LOOCV	

procedure,	 the	 RF	 classifier	 led	 to	 much	 better	 results	 than	 the	 baseline	 logistic	

regression,	correctly	finding	the	target	in	the	top	100	for	16	out	of	29	drugs	(55%)	(Table	

S1).	Without	 further	 training,	we	 tested	 the	 RF	 approach	 on	 the	 remaining	 123	 FDA-

approved	 drugs	 that	 had	 been	 profiled	 in	 4,	 5,	 and	 6	 different	 LINCS	 cell	 lines,	 and	

whose	 known	 targets	 were	 among	 3104	 genes	 knocked	 down	 in	 the	 same	 cells.	We	

predicted	known	targets	for	32	drugs	(26%)	in	the	top	100	(Table	S2),	 	an	encouraging	

result	 given	 the	 relatively	 small	 size	 of	 the	 training	 set	 and	 the	 expected	 decline	 in	

accuracy	as	the	number	of	cell	lines	decreases	(see	below,	Table	1).	

	

Re-training	 on	 the	 full	 set	 of	 152	 drugs	 and	 validating	 using	 LOOCV,	 we	 tested	 two	

alternative	RF	models:	“on-the-fly”,	which	learns	drug-specific	classifiers	trained	on	the	

set	 of	 drugs	 profiled	 in	 the	 same	 cell	 types,	 and	 “two-level”,	 which	 learns	 a	 single	

classifier	trained	on	experiments	from	all	training	drugs	(see	SI	Appendix,	SI	Methods).	

The	performances	of	both	methods	as	a	function	of	the	number	of	cell	lines	profiled	are	

summarized	in	Table	1.	On-the-fly	RF	correctly	ranked	the	targets	of	58	out	of	152	drugs	

in	 the	 top	100	 (38%),	with	42	of	 them	 in	 top	50	 (28%).	Two-level	RF	produced	better	

enrichment,	 correctly	predicting	 targets	 for	63	drugs	 in	 the	 top	100	 (41%),	and	 for	54	
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drugs	 in	 the	 top	 50	 (36%).	 In	 sharp	 contrast,	 random	 rankings	 (based	 on	 20000	

permutations)	leads	to	only	7%	of	drugs	with	targets	in	the	100,	indicating	that	both	our	

training/testing	 and	 LOOCV	 results	 are	 extremely	 significant	 (Figure	 S1).	 It	 is	 also	

noteworthy	 that	 the	 top-100	accuracy	of	 the	 two-level	RF	analysis	 increases	 to	50%	 if	

we	only	consider	drugs	treated	in	5	or	more	cell	lines.		

	

Structural	enrichment	of	genomic	predictions		

After	RF	classification,	we	used	structural	data	to	further	refine	our	predictions.	For	our	

63	“hits”,	drugs	in	the	validation	set	for	which	we	correctly	identified	the	known	target	

in	the	top	100,	we	generated	structural	models	of	their	potential	targets	by	mining	the	

Protein	 Data	 Bank	 (PDB)	 (Bernstein	 et	 al.,	 1978).	 We	 selected	 one	 or	 more	

representative	crystal	 structures	 for	each	gene,	optimizing	 for	 sequence	coverage	and	

structural	resolution.	We	then	docked	hits	to	their	top	100	potential	targets	and	ranked	

using	a	prospectively	validated	pipeline	(Baumgartner	and	Camacho,	2016;	Koes	et	al.,	

2013;	Koes	et	al.,	2015;	Ye	et	al.,	2016).		

	

On	 average,	 crystal	 structures	 were	 available	 for	 69/100	 potential	 targets	 for	 each	

compound,	and	 structures	of	 known	 targets	were	available	 for	53/63	hits.	 In	order	 to	

avoid	 redocking	 into	 cocrystals	 of	 our	 hits,	 we	 made	 sure	 to	 exclude	 structures	

containing	 these	53	 ligands.	As	shown	 in	Figure	2,	molecular	docking	scores	 improved	

the	 re-ranking	 of	 the	 known	 target	 for	 40	 of	 the	 53	 drugs,	with	 a	mean	 and	median	

improvement	of	13	and	9,	respectively.	Based	on	genomic	data	alone,	the	known	target	
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was	 ranked	 in	 the	 top	10	 for	40%	of	 the	63	hits.	After	 structural	 re-ranking,	65%	had	

their	 known	 targets	 in	 the	 top	 10	 candidates,	 and	 this	 value	 improved	 to	 75%	 in	 the	

subset	 of	 53	 drugs	 with	 known	 target	 structures.	 These	 results	 demonstrate	 the	

orthogonality	 of	 the	 genomic	 and	 structural	 screens,	 showing	 that	molecular	 docking	

can	efficiently	screen	false	positives	in	our	gene	expression-based	predictions.		

	

Identifying	 new	 interactions	 in	 the	 LINCS	 dataset.	 The	 final	 output	 of	 our	 prediction	

pipeline	 (Figure	 3)	 can	 be	 tailored	 to	 provide	 an	 enriched	 subset	 of	 roughly	 10	

predictions	for	experimental	validation,	whether	these	are	potential	targets	(compound-

centric)	or	potential	 inhibitors	 (target-centric).	Compound-centric	analyses	proceed	by	

performing	molecular	docking	on	the	available	structures	of	the	input	compound’s	top	

100	 RF-predicted	 targets.	 Target-centric	 analyses	 run	 the	 RF	 on	 all	 LINCS	 test	

compounds,	 identify	 compounds	 for	which	 the	 input	protein	 is	 ranked	 in	 the	 top	100	

potential	 targets,	 and	 then	 dock	 these	 candidate	 inhibitors	 to	 the	 target.	 In	 both	

applications,	we	analyzed	the	final	docking	score	distributions	and	applied	a	50%	cutoff	

threshold	 to	 identify	highly	enriched	compound/target	hits.	 Structural	 analysis	 further	

facilitates	visual	validation	of	the	docking	models	of	predicted	hits,	thereby	minimizing	

false	positives.	

	

Compound-centric.	 We	 first	 demonstrated	 a	 compound-centric	 application	 of	 our	

pipeline	 by	 analyzing	Wortmannin,	 a	 selective	 PI3K	 covalent	 inhibitor	 and	 commonly	

used	cell	biological	tool.	Drugbank	(Wishart	et	al.,	2006)	lists	four	known	human	targets	
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of	Wortmannin:	 PIK3CG,	 PLK1,	 PIK3R1,	 and	 PIK3CA.	 Of	 the	 100	 targets	 predicted	 for	

Wortmannin,	 the	 PDB	 contained	 structures	 for	 75,	 which	 we	 used	 to	 re-rank	 these	

potential	targets	(Figure	S2).	Only	one	known	kinase	target	of	Wortmannin,	PIK3CA,	was	

detected,	and	ranked	5th.	Our	pipeline	also	ranked	4th	the	human	kinase	PDPK1	(PDK1).	

Although	PDK1	is	a	downstream	signaling	partner	of	PI3Ks	(Vanhaesebroeck	and	Alessi,	

2000),	 there	 is	 no	 prior	 evidence	 of	 a	 direct	 Wortmannin-PDK1	 interaction	 in	 the	

literature.	Nevertheless,	the	drug	induced	expression	signature	of	wortmannin	showed	

strong	direct	 correlation	with	 the	 knockdown	of	PDK1	 (Figure	 S3a),	 and	 the	predicted	

binding	 affinity	 was	 comparatively	 high	 (Figure	 S2),	 both	 of	 which	 suggest	 a	 possible	

interaction.	

	

We	 experimentally	 tested	 this	 interaction	 using	 an	 alphascreen	 PDK1	 interaction-

displacement	 assay.	 Since	we	 predicted	 that	Wortmannin	 binds	 to	 the	 PH	 domain	 of	

PDK1	(Figure	S4),	we	measured	the	effect	of	increasing	Wortmannin	concentrations	on	

the	 interaction	of	PDK1	with	 the	second	messenger	PIP3.	We	 found	 that	Wortmannin	

specifically	 increased	PDK1-PIP3	 interaction,	 relative	 to	 control	 (Figure	 S5).	Given	 that	

PIP3-mediated	recruitment	of	PDK1	to	 the	membrane	 is	 thought	 to	play	an	 important	

regulatory	role	in	the	activity	of	the	enzyme	(Gao	and	Harris,	2006;	Masters	et	al.,	2010),	

a	 disruptive	 increase	 in	 PDK1-PIP3	 interaction	 following	 treatment	 with	 Wortmannin	

supports	our	prediction.	

	

Target-centric.	To	 test	a	 target-centric	application	of	our	pipeline,	we	chose	a	protein	
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that,	 to	 our	 knowledge,	 lacks	 specific	 inhibitors.	 STUB1,	 also	 known	 as	 CHIP	 (the	

carboxy-terminus	of	Hsc70	 interacting	protein),	 is	 an	E3	ubiquitin	 ligase	 that	manages	

the	turnover	of	over	60	cellular	substrates	(Paul	and	Ghosh,	2015).	CHIP	interacts	with	

the	 Hsp70	 and	 Hsp90	molecular	 chaperones	 via	 its	 TPR	motif,	 which	 recruits	 protein	

substrates	and	catalyzes	their	ubiquitination.	Thus,	treatment	with	small	molecules	that	

inhibit	 CHIP	 may	 prove	 valuable	 for	 pathologies	 where	 substrates	 are	 prematurely	

destroyed	by	the	ubiquitin-proteasome	system	(Meacham	et	al.,	2001).		

	

The	 screening	 of	 the	 1680	 LINCS	 small	 molecules	 profiled	 in	 at	 least	 four	 cell	 lines	

predicted	 104	 compounds	 with	 CHIP	 among	 the	 top	 100	 targets.	 We	 docked	 these	

molecules	 to	 our	 representative	 structure	 of	 the	 TPR	 domain	 of	 CHIP	 (PDB	 ID:	 2C2L	

(Zhang	et	al.,	2005)),	for	which	we	had	an	available	fluorescence	polarization	(FP)	assay.	

The	 RF	 and	 docking	 score	 distributions	 were	 then	 plotted	 for	 all	 104	 compounds	 to	

select	those	highly	enriched	in	one	or	both	scoring	metrics	(Figure	S6).	We	next	visually	

examined	 the	 docking	 models	 of	 top	 ranking/scoring	 hits	 to	 select	 those	 that	 show	

suitable	mechanisms	of	action,	and	purchased	six	compounds	for	testing	(Table	S3).	 In	

parallel,	 we	 performed	 a	 pharmacophore-based	 virtual	 screen	 of	 the	 ZINC	 database	

(Irwin	and	Shoichet,	2005)	using	the	ZincPharmer	(Koes	et	al.,	2015)	server,	followed	by	

the	same	structural	optimization	 (Baumgartner	and	Camacho,	2016;	Koes	et	al.,	2013;	

Koes	et	al.,	2015;	Ye	et	al.,	2016)	performed	on	 the	LINCS	compounds.	We	purchased	

seven	of	the	resulting	ZINC	compounds	for	parallel	testing.	
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Our	FP	assay	measured	competition	with	a	natural	peptide	substrate	for	the	CHIP	TPR	

domain.	 We	 found	 that	 four	 (out	 of	 six)	 of	 our	 LINCS	 compounds	 reliably	 reduced	

substrate	binding	(Figure	4a,b),	while	three	(out	of	seven)	ZINC	compounds	did	so	to	a	

modest	degree	(Figure	S7).	The	two	strongest	binders	were	LINCS	compounds	2.1	and	

2.2.	A	functional	assay	also	verified	that	2.1	and	2.2	prevented	substrate	ubiquitination	

and	autoubiquitination	(Figure	4c,d,	S8,	S9).	 Importantly,	 the	predicted	binding	modes	

of	 these	 two	 compounds	did	not	match	 the	pharmacophore	model	 of	 the	 TPR-HSP90	

interaction	(Zhang	et	al.,	2005)	that	was	used	to	screen	the	ZINC	database	(Figure	S10).	

The	 latter	 emphasizes	 the	 power	 of	 our	 approach	 to	 identify	 novel	 compounds	 and	

mechanisms	of	action	to	targets	without	known	inhibitors.		

	

Comparison	 to	existing	 target	prediction	methods.	We	next	compared	results	 for	our	

63	 hits	 from	 the	 validation	 set	 to	 those	 produced	 by	 available	 structure	 and	 ligand-

based	methods.	HTDocking	 (HTD)	 (Wang,	 2012)	 is	 a	 structure-based	 target	 prediction	

method	 that	docks	 and	 scores	 the	 input	 compound	against	 a	manually	 curated	 set	of	

607	human	protein	structures.	For	comparison,	in	our	analysis	we	were	able	to	extract	

high	 quality	 domain	 structures	 for	 1245	 (40%)	 of	 the	 3104	 potential	 gene	 targets.	

PharmMapper	(PHM)	(Liu	et	al.,	2010)	is	a	ligand-based	approach	that	screens	the	input	

compound	 against	 pharmacophore	 models	 generated	 from	 publicly	 available	 bound	

drug-target	cocrystal	structures	of	459	human	proteins,	and	then	ranks	potential	targets	

by	 the	 degree	 to	 which	 the	 input	 compound	 matches	 the	 binding	 mode	 of	 the	

cocrystalized	 ligands.	 The	 scope	 of	 HTD	 is	 limited	 by	 the	 availability	 of	 the	 target	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/254367doi: bioRxiv preprint 

https://doi.org/10.1101/254367


	 17	

structure,	while	PHM	is	limited	by	chemical	and	structural	similarity	of	active	ligands.		

	

HTD	and	PHM	rankings	for	known	targets	are	shown	in	Table	S4,	and	complete	results	

are	 shown	 in	 Table	 S5.	 Our	 combined	 genomics-structure	 method	 outperforms	 the	

structure-based	HTD	server	(average	ranking	of	the	known	target	is	13	for	our	method	

vs.	 50	 for	 the	 HTD	 server).	 This	 suggests	 that	 limiting	 the	 structural	 screening	 to	 our	

genomic	 hits	 allowed	 us	 to	 predict	 targets	 with	 higher	 accuracy	 than	 docking	 alone.	

Results	when	using	the	PHM	server	are	on	average	similar	to	ours.	However,	PHM	relies	

on	the	availability	of	ligand-bound	crystal	structures,	which	in	practice	makes	this	class	

of	 methods	 more	 suitable	 for	 drug	 repurposing	 than	 assessing	 new	 chemistries	 or	

targets.		

	

With	regards	to	our	new	validated	interactions,	a	Wortmannin-PDK1	interaction	at	the	

catalytic	site	was	ranked	540th	by	HTD	and	56th	by	PHM.	Although	we	cannot	rule	out	a	

possible	kinase	domain	 interaction,	a	catalytic	activity	assay	showed	that	Wortmannin	

had	no	measureable	effect	on	the	in	vitro	phosphorylation	of	the	substrate	T308tide	by	

the	 isolated	catalytic	domain	of	PDK1	(Figure	S11).	On	the	other	hand,	CHIP	 inhibitors	

were	not	predicted	by	either	of	these	methods,	indicating	their	limitation	assessing	new	

chemistries	or	targets.		
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Discussion	

	

Delineating	 the	 role	 of	 small	 molecules	 in	 perturbing	 cellular	 interaction	 networks	 in	

normal	 and	 disease	 states	 in	 an	 important	 step	 towards	 identifying	 new	 therapeutic	

targets	and	chemistries	for	drug	development.	To	advance	on	this	goal,	we	developed	a	

novel	target	prediction	method	based	on	the	hypothesis	that	drugs	that	inhibit	a	given	

protein	should	have	similar	network-level	effects	to	silencing	the	inhibited	gene	and/or	

its	up/downstream	partners.	Using	gene	expression	profiles	from	knockdown	and	drug	

treatment	 experiments	 in	 multiple	 cell	 types	 from	 the	 LINCS	 L1000	 database,	 we	

developed	 several	 correlation-based	 features	 and	 combined	 them	 in	 a	 random	 forest	

(RF)	model	to	predict	drug-target	interactions.		

	

On	 a	 validation	 set	 of	 152	 FDA-approved	 drugs	we	 achieve	 top-100	 target	 prediction	

accuracy	more	than	double	that	of	previous	approaches	that	use	differential	expression	

alone	(Isik	et	al.,	2015;	Laenen	et	al.,	2013).	Consistent	with	our	underlying	hypothesis,	

the	RF	results	highlight	the	importance	of	both	direct	expression	signature	correlations	

between	 drug	 treatment	 and	 knockdown	 of	 the	 gene	 target	 (Figure	 1c)	 and	 indirect	

correlations	between	the	drug	and	the	target’s	interacting	partners	(Figure	1e,	Figure	5).	

Contrary	to	earlier	work	(Cosgrove	et	al.,	2008;	Isik	et	al.,	2015;	Laenen	et	al.,	2013),	our	

methods	 and	 predictions	 are	 available	 for	 immediate	 download	 and	 testing	

(http://sb.cs.cmu.edu/Target2/),	 including	 predicted	 targets	 for	 1680	 LINCS	 small	

molecules	from	among	3000+	different	human	proteins.		
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Unlike	most	available	ligand-based	prediction	methods	(Gfeller	et	al.,	2014;	Keiser	et	al.,	

2009;	 Lo	 et	 al.,	 2015;	 Martinez-Jimenez	 and	Marti-Renom,	 2015;	 Nickel	 et	 al.,	 2014;	

Yamanishi	 et	 al.,	 2010),	 the	 accuracy	 of	 our	 approach	 does	 not	 rely	 on	 chemical	

similarity	between	compounds	 in	 the	 training/test	 sets	 (Figure	S12).	The	experimental	

validation	of	our	predictions	 for	CHIP	and	Wortmannin	demonstrate	the	power	of	our	

combined	genomic	and	structural	pipeline	in	identifying	novel	targets	and	chemotypes.	

For	instance,	our	screen	against	CHIP,	a	target	with	no	known	small	molecule	inhibitors,	

delivered	 four	 out	 six	 binding	 compounds,	 whereas	 a	 parallel	 analysis	 using	 solely	 a	

state-of-the-art	 structure-based	 virtual	 screening	 (Koes	 and	 Camacho,	 2012;	 Ye	 et	 al.,	

2016)	 yielded	 only	 two	 weak-binding	 compounds.	 Moreover,	 the	 predicted	 mode	 of	

actions	 of	 the	 LINCS	 compounds	 suggest	 novel	 chemotypes	 that	 would	 have	 been	

difficult	to	prioritize	in	a	ligand-based	screen	(Figure	S10).		

	

Indirect	 mRNA	 expression	 profile	 correlations	 with	 knockdowns	 of	

upstream/downstream	 interacting	 partners	 are	 an	 important	 determinant	 of	 drug-

target	interactions.	However,	they	are	also	an	important	source	of	false	positives	in	our	

analysis	since	profiles	of	knockdowns	in	the	same	pathway	can	correlate.	Figure	5	shows	

that	 this	 is	 the	 case	 for	 compound	 2.1,	 which	 based	 on	 indirect	 correlations	 with	

interacting	partners	UbcH5	and	HSP90	predicts	CHIP	as	a	target,	but	also	predicts	UbcH5	

and	 HSP90	 as	 possible	 targets	 based	 on	 their	 corresponding	 direct	 correlations.	

Similarly,	Figure	1	shows	indirect	correlations	of	vinblastine	to	its	known	target	TUBA1,	
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based	 on	 direct	 correlations	 with	 interacting	 partners	 such	 as	 RUVBL1.	 Our	 pipeline	

eliminates	 some	 of	 these	 false	 positives	 using	 an	 orthogonal	 structure-based	 docking	

scheme	 that	 although	 limited	 to	 targets	with	 known	 structure	 allows	 us	 to	 achieve	 a	

top-10	prediction	accuracy	of	26%	for	the	compounds	in	our	validation	set.		

	

Detailed	 analyses	 of	 our	 predictions	 suggest	 several	 new	 features	 to	 improve	

enrichment.	 We	 established	 a	 clear	 correlation	 between	 the	 number	 of	 cell-types	

screened	and	the	target	prediction	accuracy.	We	 identified	that	a	significant	source	of	

false	positives	are	 indirect	correlations	 that	while	 important	 to	detect	 the	 true	 target,	

also	tend	to	predict	interacting	partners	as	potential	targets.	Incorporating	compound-	

or	target-specific	features	are	also	likely	to	improve	our	results.	For	instance,	we	noticed	

that	our	prediction	results	were	less	accurate	for	membrane	proteins.	Hence,	we	tested	

a	cellular	localization	feature	into	our	RF	model,	increasing	the	number	of	top-100	hits	

in	our	validation	set	from	63	to	66	(Si	Appendix,	SI	Results).	

	

In	 sum,	 our	method	 represents	 a	 novel	 application	 of	 gene	 expression	 data	 for	 small	

molecule–protein	 interaction	prediction,	with	 structural	 analysis	 further	 enriching	 hits	

to	 an	 unprecedented	 level	 in	 our	 proteome-scale	 screens.	 Given	 the	 success	 of	 our	

proof-of-concept	 experiments,	 we	 are	 hopeful	 that	 our	 open	 source	 method	 and	

predictions	will	now	be	useful	to	other	labs	around	the	world	for	identifying	new	drugs	

for	key	proteins	involved	in	various	diseases	and	for	better	understanding	the	impact	of	

drug	 modulation	 of	 gene	 expression.	 Moreover,	 our	 approach	 represents	 a	 new	
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framework	 for	 extracting	 robust	 correlations	 from	 intrinsically	 noisy	 gene	 expression	

data	that	reflect	the	underlying	connectivity	of	the	cellular	interactome.	
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Materials	and	Methods	

	

Data	sources	

A	 full	description	of	 the	data	used	 in	our	analysis	 can	be	 found	 in	 the	SI	Appendix,	 SI	

Methods.	 Briefly,	 from	 the	 NIH	 LINCS	 library	 we	 extracted	 gene	 expression	

perturbations	 on	 978	 “landmark	 genes”	 from	 thousands	 of	 small	molecule	 treatment	

and	gene	knockdown	experiments	in	various	cell	lines.	We	then	used	ChEMBL	(Gaulton	

et	al.,	2012),	an	open	large-scale	bioactivity	database,	to	identify	the	LINCS	compounds	

that	 were	 FDA	 approved	 and	 had	 known	 targets.	 To	 construct	 our	 validation	 set	 we	

selected	the	152	FDA	approved	compounds	that	had	been	tested	in	at	least	four	distinct	

LINCS	 cell	 lines,	 and	whose	known	 targets	were	 knocked	down	 in	 the	 same	cell	 lines.	

Protein-protein	 interaction	 data	 used	 in	 feature	 construction	 was	 extracted	 from	

BioGRID	(Chatr-Aryamontri	et	al.,	2015)	and	HPRD	(Keshava	Prasad	et	al.,	2009),	both	of	

which	 contain	 curated	 sets	 of	 physical	 and	 genetic	 interactions.	 Protein	 cellular	

localization	 data	 used	 in	 feature	 construction	 was	 obtained	 from	 the	 Gene	 Ontology	

database	(Harris	et	al.,	2004).	

	

Extracting	and	integrating	features	from	different	data	sources	

The	notation	and	symbols	that	we	use	 in	constructing	and	using	the	genomic	features	

are	 described	 in	 Tables	 S6	 and	 S7.	 Feature	 construction	 is	 summarized	 below	 and	 is	

explained	in	detail	in	the	SI	Appendix,	SI	Methods.	
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Direct	 correlation:	 The	 first	 feature	 𝑓"#$ ,computes	 the	 correlation	 between	 the	

expression	 profiles	 resulting	 from	 a	 gene	 knockdown	 and	 treatment	 with	 the	 small	

molecule.	 Since	 we	 are	 considering	 multiple	 cells	 for	 each	 molecule/knockdown,	 the	

correlation	feature	for	each	molecule	d,	i.e.	𝑓"#$(𝑑,∙,∙),	has	a	dimension	of	 𝑇+ × 𝐶+ .		

	

Indirect	correlation:	Information	about	protein	interaction	networks	may	be	informative	

about	 additional	 knockdown	experiments	 that	we	might	 expect	 to	 be	 correlated	with	

the	small	molecule	treatment	profile.	To	construct	a	feature	that	can	utilize	this	idea	we	

did	 the	 following:	 for	 each	molecule,	 protein,	 and	 cell	 line	we	 computed	𝑓./(𝑑, 𝑔, 𝑐),	

which	 encodes	 the	 fraction	 of	 the	 known	 binding	 partners	 of	 g	 (i.e.	 the	 proteins	

interacting	 with	 g)	 in	 the	 top	 X	 knockdown	 experiments	 correlated	 with	 this	

molecule/cell	 compared	to	what	 is	expected	based	on	 the	degree	of	 that	protein	 (the	

number	of	interaction	partners	-	this	corrects	for	hub	proteins).	We	used	X	=	100	here,	

though	 50	 and	 200	 gave	 similar	 results.	 See	 SI	 Appendix,	 SI	 Methods	 for	 complete	

details.	

	

Cell	selection:	While	the	correlation	feature	is	computed	for	all	cells,	it	is	likely	that	most	

drugs	are	only	active	in	certain	cell	types	and	not	others.	Since	the	ability	to	consider	the	

cellular	 context	 is	one	of	 the	major	advantages	of	our	method	we	added	a	 feature	 to	

denote	the	impact	a	drug	has	on	a	cell	line.	For	each	drug/molecule	d	we	compute	a	cell	

specific	 feature,	𝑓/2(𝑑,∙) ,	 which	 measures	 the	 correlation	 between	 the	 response	

expression	profile	and	the	control	(WT)	experiments	for	that	cell.	We	expect	a	smaller	
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correlation	if	the	drug/molecule	is	active	in	this	cell,	and	a	larger	correlation	if	it	is	not.		

	

	

Differential	 expression:	 In	 addition	 to	 determining	 the	 correlation-based	 rankings	 of	

interacting	 proteins,	 we	 also	 took	 their	 drug-induced	 differential	 expression	 into	

account.	We	constructed	two	features	that	summarize	this	information	for	each	protein	

(see	SI	Appendix,	SI	Methods	for	details).	These	features	either	encode	the	average	or	

the	max	 (absolute	 value)	 expression	 level	 of	 the	 interaction	 partners	 of	 the	 potential	

target	protein.	

	

Generating	structural	models	for	docking	

In	 order	 to	 use	 molecular	 docking	 to	 enrich	 of	 our	 random	 forest	 predictions,	 we	

needed	to	generate	structural	models	for	the	genes	profiled	in	LINCS.	The	union	of	our	

top	100	target	predictions	for	the	1680	small	molecules	profiled	in	LINCS	in	at	least	four	

cell	lines	consisted	of	3333	unique	human	genes.	We	used	a	python	script	(available	on	

github2)	 to	mine	 the	PDB	 for	structures	of	 these	genes	and	then	select	 representative	

crystal	 structures	 for	 each.	When	multiple	 structures	were	 available,	 a	 representative	

subset	 of	 structures	 were	 chosen	 so	 as	 to	 maximize	 sequence	 coverage,	 minimize	

strucutral	 resolution,	 and	 account	 for	 structural	 heterogeneity.	 Full	 details	 of	 this	

procedure	can	be	found	in	the	SI	Appendix,	SI	Methods.	

	

																																																								
2 https://github.com/npabon/generate_gene_models 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/254367doi: bioRxiv preprint 

https://doi.org/10.1101/254367


	 26	

Docking	procedure	

Compounds	were	 docked	 to	 representative	 structures	 of	 their	 predicted	 targets	 with	

smina	 (Koes	et	al.,	 2013),	using	default	exhaustiveness	and	a	6	Å	buffer	 to	define	 the	

box	 around	 each	 potential	 binding	 site.	 Docked	 poses	 across	 predicted	 binding	 sites	

(Kozakov	et	al.,	2015)	on	a	given	target	were	compared	and	the	highest	scoring	pose	of	

each	 compound	was	 selected	 for	 further	 analyses	 (Baumgartner	 and	 Camacho,	 2016;	

Koes	 et	 al.,	 2013;	 Koes	 et	 al.,	 2015;	 Ye	 et	 al.,	 2016)	 and	 comparison	 to	 other	

targets/compounds.			

	

Experimental	assays	

Full	details	on	all	experimental	assays	 involving	CHIP	and	PDK1	can	be	 found	 in	 the	SI	

Appendix,	SI	Methods.	
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Figures	

	

	

	

Figure	 1.	 Drug-	 and	 gene	 knockdown-induced	mRNA	 expression	 profile	 correlations	

reveal	 drug-target	 interactions.	 (a)	 Illustration	 of	 our	 main	 hypothesis:	 we	 expect	 a	

drug-induced	mRNA	signature	to	correlate	with	the	knockdown	signature	of	the	drug’s	

target	 gene	 and/or	 genes	 on	 the	 same	 pathway(s).	 (b,c)	 mRNA	 signature	 from	

knockdown	of	proteasome	gene	PSMA1	does	not	significantly	correlate	with	signature	
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induced	 by	 tubulin-binding	 drug	 mebendazole,	 but	 shows	 strong	 correlation	 with	

signature	 from	 proteasome	 inhibitor	 bortezomib.	 Data	 points	 represent	 differential	

expression	 levels	 (Z-scores)	 the	 978	 landmark	 genes	 measured	 in	 the	 LINCS	 L1000	

experiments.	(d,e)	Signature	from	tubulin-binding	drug	vinblastine	shows	little	signature	

correlation	 with	 knockdown	 of	 its	 target	 TUBA1A,	 but	 instead	 correlates	 with	 the	

knockdown	of	functionally	related	gene	RUVBL1.	
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Figure	2.	Structural	enrichment	of	genomic	target	predictions.	Predicted	ranking	(lower	

is	better)	of	the	highest-ranking	known	target	for	the	53	hits	 in	our	validation	set	with	

known	target	structures.	Percentile	rankings	are	shown	following	RF	analysis	(blue),	and	

following	structural	re-ranking	(orange).	Drug	names/IDs	are	listed	in	Table	S8.	
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Figure	 3.	 Flowchart	 of	 combined	 genomic	 (green)	 and	 structural	 (blue)	 pipeline	 for	

drug-target	interaction	prediction.	The	approximate	number	of	proteins/compounds	in	

each	phase	is	indicated	on	the	left	in	grey.	
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Figure	 4.	 (a,b)	 Predicted	 CHIP	 inhibitors	 disrupt	 binding	 to	 chaperone	 peptide	 by	

fluorescence	polarization.	High	ranked	(a)	and	low	ranked	(b)	compounds	were	tested	

for	 the	 ability	 to	 compete	with	 a	 known	TPR	 ligand	 (5-FAM-GSGPTIEEVD,	 0.1	µM)	 for	

binding	to	CHIP	(0.5	µM).	Results	are	the	average	and	standard	error	of	the	mean	of	two	

experiments	each	performed	 in	 triplicate.	 (c,d)	CHIP	 inhibitors	prevent	ubiquitination	

by	 CHIP	 in	 vitro.	 (c)	Quantification	of	 substrate	 ubiquitination	by	CHIP	 from	Anti-GST	

western	blot	experiments	with	tested	compounds	at	500µM,	blotted	as	 in	Figure	S11a	

and	normalized	to	DMSO	treated	control	(2.1,	2.2:	N=4;	all	other	compounds:	N=2).	(d)	

Quantification	of	 total	ubiquitination	by	CHIP	 from	Anti-GST	western	blot	experiments	

with	 tested	 compounds	 at	 500µM,	 blotted	 as	 in	 Figure	 S11b	 and	 normalized	 to	

ubiquitination	by	a	DMSO	treated	control	(all	compounds:	N=2).	
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Figure	5.	mRNA	expression	signature	of	CHIP	inhibitor	2.1	correlates	with	knockdown	

of	CHIP	 interacting	partners.	The	 figure	 illustrates	 the	correlation	between	the	mRNA	

expression	profile	signatures	produced	by	treating	cells	with	2.1	and	by	knocking	down	

CHIP	 interaction	 partners	 UbcH5	 and	 HSP90.	 These	 three	 perturbations	 have	 similar	

network	effects	(left),	as	 illustrated	by	their	resulting	differential	expression	signatures	

(right).	For	clarity,	expression	signatures	show	only	the	subset	of	LINCS	landmark	genes	

that	 are	 functionally	 related	 to	 CHIP	 according	 to	 BioGRID	 (Chatr-Aryamontri	 et	 al.,	

2015).	
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Tables	

	

#	of	Cells	 All	 7	 6	 5	 4	

#	of	Drugs	 152	 29	 30	 42	 51	

On-the-fly	 	 	 	 	 	

Top	100	 58	 13	 15	 16	 14	

Top	50	 42	 10	 10	 12	 10	

Top	100%	 38%	 45%	 50%	 38%	 27%	

Top	50%	 28%	 34%	 33%	 29%	 20%	

Two-level	 	 	 	 	 	

Top	100	 63	 14	 15	 22	 13	

Top	50	 54	 12	 14	 20	 8	

Top	100%	 41%	 48%	 50%	 52%	 25%	

Top	50%	 36%	 41%	 47%	 48%	 16%	

	

	

Table	 1.	 Performance	 of	 two	 random	 forest	 models	 on	 validation	 set	 of	 152	 FDA-

approved	drugs.	The	number	of	drugs	with	targets	ranked	in	top	100/50	are	shown	for	

the	 “on-the-fly”	 and	 “two-level”	 RF	 classification	 models.	 Results	 are	 divided	 into	

subsets	of	drugs	profiled	in	different	numbers	of	cell	lines.	Note	that	the	success	rate	for	

RF	is	significant	with	p	<	10-6	based	on	randomization	tests	(Figure	S1).	
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SI	 Appendix:	 Proteome-scale	 detection	 of	 drug-target	 interactions	 using	

correlations	in	transcriptomic	perturbations	
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1.	SI	Results	

	

Gene	ontology	analysis	of	protein	targets	

While	 the	success	 rate	of	our	Random	Forest	genomic	analysis	 is	promising,	 there	are	

still	 several	 drugs	 for	which	we	 fail	 to	 correctly	 identify	 the	 target.	We	 attempted	 to	

determine	 if	 the	genomic	data	we	used	 is	more	appropriate	 to	specific	drug	/	protein	

characteristics.	By	characterizing	the	set	of	drugs	and	/	or	proteins	for	which	we	expect	

the	method	to	be	more	accurate	we	improve	the	ability	of	experimentalists	to	use	our	

methods	when	studying	one	of	these	molecules.	

	

We	divided	the	152	drugs	in	our	training	data	into	“successful”	predictions	(the	63	drugs	

for	which	the	correct	target	was	ranked	in	the	top	100),	and	“unsuccessful”	predictions.	

We	also	divided	the	known	targets	 into	those	that	were	correctly	predicted	and	those	

that	were	 not.	We	 considered	 several	 different	ways	 to	 characterize	 small	molecules	

including	molecular	weight,	solubility,	and	hydrophobicity,	but	none	of	these	seemed	to	

significantly	correlate	with	our	“successful”	and	“unsuccessful”	classifications.	Next,	we	

used	gene	ontology	(SI	Appendix,	SI	Methods)	to	test	for	enrichment	of	“successful”	and	

“unsuccessful”	 targets.	 Interestingly,	 we	 found	 that	 “successful”	 targets	 were	

significantly	 associated	 with	 intracellular	 categories,	 while	 the	 “unsuccessful”	 targets	

were	mostly	associated	with	transmembrane	and	extracellular	categories	(Table	S9).		

	

Based	on	this	result	we	further	incorporated	cellular	component	as	a	feature	in	our	two-
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level	random	forest.	We	encode	this	feature	by	assigning	1	to	the	intracellular	genes	and	

-1	 to	 the	 extracellular	 ones.	We	 ran	 the	 two-level	 random	 forest	with	 this	 additional	

feature	 included	and	demonstrated	that	the	cellular	component	 increases	the	number	

of	top	100	genes	to	66	and	top	50	genes	to	55.		
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2.	SI	Methods	

	

Data	sources	

LINCS:	 LINCS	 is	 an	 NIH	 program	 that	 generates	 and	 curates	 gene	 expression	 profiles	

across	multiple	cell	 lines	and	perturbation	types	at	a	massive	scale.	To	date,	LINCS	has	

generated	millions	of	gene	expression	profiles	 (over	150	gigabytes	of	data)	 containing	

small-molecules	 and	 genetic	 gain-	 (cDNA)	 and	 loss-of-function	 (sh-RNA)	 constructs	

across	multiple	cell	types.	Specifically,	the	LINCS	dataset	contains	experiments	profiling	

the	 effects	 of	 20,143	 small-molecule	 compounds	 (including	 known	 drugs)	 and	 22,119	

genetic	 constructs	 for	 over-expressing	 or	 knocking-down	 genes	 performed	 in	 18	

different	 cell	 types	 selected	 from	 diverse	 lineages	which	 span	 established	 cancer	 cell	

lines,	immortalized	(but	not	transformed)	primary	cells,	and	both	cycling	and	quiescent	

cells.	

	

The	 gene	 expression	 profiles	 were	 measured	 using	 a	 bead-based	 assay	 termed	 the	

L1000	assay2.	To	increase	throughput	and	save	costs,	this	assay	only	profiles	a	set	of	978	

so-called	 “landmark	 genes”	 and	 the	 expression	 values	 of	 other	 genes	 can	 be	

computationally	 imputed	 from	 this	 set.	Note	however,	 that	 in	our	 analysis	we	do	not	

rely	on	such	imputation	and	our	methods	only	need	to	use	the	values	for	the	measured	

genes.	 In	 our	 analysis	 we	 used	 level-4	 signature	 values	 (containing	 z-scores	 for	 each	

gene	 in	 each	 experiment	 based	 on	 repeats	 relative	 to	 population	 control).	 Data	

																																																								
2 http://support.lincscloud.org/hc/en-us/sections/200437157-L1000-Assay 
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processing	of	LINCS	was	done	using	the	l1ktool.3	

	

ChEMBL:	To	obtain	a	 list	of	known	targets	 for	 the	drugs	 in	our	validation	set	we	used	

ChEMBL,	an	open	 large-scale	bioactivity	database	 (Gaulton	et	al.,	2012).	We	 retrieved	

the	 records	 of	 all	 FDA-approved	 drugs	 using	 the	 ChEMBL	 web	 service	 API4.	 These	

records	contain	the	designed	targets	for	the	drugs	along	with	their	synonyms	(alternate	

names)	 and	 unique	 chemical	 IDs.	 We	 used	 this	 information	 to	 cross-reference	 these	

drugs	with	those	in	LINCS.	

	

Protein-protein	 interaction	 and	 gene	 ontology:	 We	 obtained	 PPI	 information	 for	 our	

feature	sets	from	BioGRID	(Chatr-Aryamontri	et	al.,	2015)	and	HPRD	(Keshava	Prasad	et	

al.,	2009),	both	of	which	contain	curated	sets	of	physical	and	genetic	 interactions.	We	

retrieved	all	the	records	corresponding	to	protein-protein	interactions	(PPI)	from	these	

data	sources	and	converted	them	to	an	adjacency	list	representation.	We	obtained	the	

cellular	 localization	of	proteins	 from	the	Gene	Ontology	database	 (Harris	et	al.,	2004).	

We	 relied	 on	 prior	 analysis	 (Navlakha	 et	 al.,	 2014)	 to	 assign	 the	 location	 of	 for	 each	

protein	 as	 either	 “intracellular”	 (inside	 of	 cell)	 or	 “extracellular”	 (outside	 of	 cell).	 See	

Supplementary	Methods	for	details	on	how	various	compartments	are	assigned.	

	

	

Extracting	experiments	from	LINCS	

																																																								
3 http://code.lincscloud.org/ 
4 https://www.ebi.ac.uk/chembl/ 
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After	 determining	 the	 subsets	 of	 small	 molecules	 and	 cell	 lines,	 we	 obtained	 the	

associated	experiment	 identifiers	 known	as	 “distil	 IDs”	 from	LINCS	meta-	 information.	

We	included	only	the	reproducible	distil	IDs	known	as	“Gold”	IDs.	We	then	extracted	the	

corresponding	 signature	 values	 from	 LINCS	 using	 the	 L1000	 Analysis	 Tools	 (l1ktools)5.	

We	 only	 extracted	 the	 signature	 values	 of	 the	 978	 “landmark"	 genes	 because	 their	

expression	 was	 directly	 measured,	 whereas	 the	 values	 of	 other	 genes	 were	 imputed	

from	the	data	of	these	landmark	genes.	

	

Drug	response	experiments		

There	exist	multiple	experiments	 (distil	 IDs)	corresponding	 to	a	combination	of	drug	d	

and	 cell	 line	 c	 (applying	 drug	 d	 to	 cell	 line	 c).	 Denote	 the	 Ndc	 as	 the	 number	 of	

experiments	for	the	combination	d,c.	We	extracted	a	matrix	of	signature	values	of	size	

978	×	Ndc	(number	of	landmark	genes	×	number	of	experiments)	per	combination.	We	

next	took	the	median	of	signature	values	across	different	experiments,	and	obtained	a	

987	×	1	signature	vector	per	combination.	The	overall	drug-response	data	Δ,	therefore,	

is	 implemented	 as	 a	 MATLAB	 structure	 with	 D	 =	 152	 entries,	 each	 containing	 the	

following	fields.	

	

	 name:		 𝑃𝑒𝑟𝑡𝐼𝐷+ 	(string)	

	 cells:		 𝐶𝑒𝑙𝑙𝑠/; 	( 𝐶+ 	×	1	string	array)	

	 signature:		 ∆+∙∙	(978	×	 𝐶+ )	

																																																								
5 https://github.com/cmap/l1ktools 
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where	𝑃𝑒𝑟𝑡𝐼𝐷+ 	is	 the	 unique	 internal	 identifier	 of	 a	 small	 molecule	 d	 in	 LINCS.	∆+∙∙	

contains	the	expression	values	of	drug	d	across	Cd	different	cell	 lines.	The	𝐶𝑒𝑙𝑙𝑠/� 	field	

contains	cell	line	names	corresponding	to	the	column	of	∆+∙∙.	

	

Gene	knockdown	experiments		

We	 follow	 a	 similar	 protocol	 to	 extract	 the	 signature	 values	 of	 gene	 knockdown	

experiments.	Denote	Ngc	as	the	number	of	experiments	for	the	combination	of	gene	g	

and	cell	line	c	(knocking	down	gene	g	in	cell	line	c).	Then,	for	each	combination	of	g	and	

c	 we	 extracted	 signature	 values	 of	 size	 978	×	Ngc.	 After	 taking	 the	 medians	 across	

different	 experiments,	we	 obtain	 a	 978	×	1	 vector	 per	 combination.	 The	 overall	 gene	

knockdown	data	Γ	has	C	=	7	entries	and	each	entry	contains	the	following	fields:	

	

	 name:		 𝐶𝑒𝑙𝑙𝑠" 	(string)	

	 genes:		 𝑆𝑦𝑚𝑏𝑜𝑙𝑠BC 	( 𝐺" 	×	1	string	array)	

	 signature:			Γ"∙∙	(978	×	 𝐺" )	

	

where	𝐶𝑒𝑙𝑙𝑠" 	is	the	name	of	the	cell	line	indexed	by	c.		Γ"∙∙	contains	the	signature	values	

of	the	knockdown	of	genes	in	cell	line	c.	The	𝑆𝑦𝑚𝑏𝑜𝑙𝑠BC 	field	is	a	subset	of	gene	symbols	

corresponding	to	the	column	identifiers	of	Γ"∙∙	under	the	HGNC	naming	scheme.	

	

Control	experiments	
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We	also	extracted	the	signatures	of	control	experiments.	The	signature	values	for	each	

cell	line	were	extracted	and	we	obtained	a	978	×	1	vector	after	taking	the	medians.	We	

denote	the	overall	control	experiment	data	as	Ψ.	Ψ	is	of	size	978	×	C	and	implemented	

with	the	following	format:	

	

	 name:		 𝐶𝑒𝑙𝑙𝑠" 	(string)	

	 control:	 Ψ∙" 	(978	×	1)	

	

where	Ψ∙" 	is	the	signature	column	vector	for	a	cell	line	c.	

	

Building	a	validation	dataset	from	LINCS	

We	 used	 ChEMBL	 to	 retrieve	 the	 reported	 targets	 and	 other	meta-information	 of	 all	

FDA-approved	drugs,	 and	 then	cross	 referenced	 these	drugs	with	 the	 small	molecules	

profiled	in	LINCS	using	their	primary	product	names,	synonyms,	canonical	SMILES	strings	

and	standard	InChIKey.	Based	on	this	analysis	we	identified	1031	out	of	approximately	

1300	 FDA-approved	 drugs	 reported	 in	 LINCS.	 However,	 most	 of	 these	 drugs	 were	

profiled	 in	 only	 one	 or	 very	 few	 cell	 lines,	which	meant	 that	 relatively	 little	 response	

data	was	available	for	them.	We	thus	further	reduced	this	set	to	152	drugs	profiled	in	at	

least	4	cell	lines	(Table	1)	and	used	these	drugs	and	their	known	targets	as	the	positive	

training	set.	Table	S10	lists	the	number	of	drugs	and	knockdown	experiments	available	

for	the	seven	most	abundant	cell	lines	in	terms	of	known	targets	profiled	that	we	used	

in	our	analysis.	
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Extracting	and	integrating	features	from	different	data	sources	

	

Correlation	feature	

The	correlation	feature,	denoted	as	fcor,	is	constructed	as	follows:	

	

-	For	each	drug	d	in	Δ	(∆+∙∙):	

	

-	Denote	Td	as	the	intersection	of	gene	symbol	indices	for	cells	in	Cd:	

	 	

𝑇+ = 𝐺"
"∈/;

	

	

-	Obtain	 the	knockdown	signature	values	of	Td		 from	Γ.	Denote	 this	data	matrix	as	

Γ/;∙J;,	which	 is	 of	 size	 𝐶+ 	×	978	×	 𝑇+ ,	where	 for	 each	 cell	 line	 in	Cd	 	 there	 is	 a	

signature	matrix	of	size	978	×	 𝑇+ .	

	

	

-	 Compute	 the	 Pearson's	 correlation	 between	∆+∙∙	(978	×	 𝐶+ )	 and	Γ/;∙J; 	( 𝐶+ 	×	

978	×	 𝑇+ ).	 Specifically,	 for	 each	 cell	 line	𝑐 ∈ 𝐶+ ,	 we	 compute	 the	 correlation	

between	∆+∙" 	and	Γ"∙J;,	 and	 obtain	 a	 correlation	 vector	 of	 size	 𝑇+ .	 This	 is	 the	

correlation	 between	 the	 responses	 of	 the	 cells	 to	 the	 drug	 treatment	 and	 their	
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response	to	the	gene	knockdown.	Each	entry	in	this	vector	is	the	correlation	of	978	

landmark	genes	of	the	drug	d	in	one	cell	line	(∆+∙")	and	a	knockdown	of	gene	g	in	the	

same	cell	line	(Γ"∙K).	In	other	words,	if	we	collect	these	correlation	vectors	for	all	cell	

lines	in	Cd	and	denote	the	overall	correlation	feature	as	fcor:	

	

𝑓"#$ 𝑑, 𝑔, 𝑐 = 𝑐𝑜𝑟𝑟(∆+∙", Γ"∙K)					∀𝑔 ∈ 𝑇+ 	

	

The	correlation	feature	for	one	drug	d,	𝑓"#$ 𝑑,∙,∙ ,	has	a	dimension	of	 𝑇+ 	×	 𝐶+ .	

	

Cell	selection	feature	

The	cell	selection	feature,	denoted	as	fCS,	is	computed	as	follows:	

	

-	For	each	drug	d	in	Δ	(∆+∙∙):	

	

-	For	each	cell	line	c	in	Cd:	

	

-	Compute	the	correlation	between	∆+∙" 	and	Ψ∙" 	

	

𝑓/2 𝑑, 𝑐 = 𝑐𝑜𝑟𝑟(∆+∙", Ψ∙")	
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𝑓/2 𝑑,∙ 	produces	 a	 𝐶+ 	×	1	 vector,	 and	 each	 entry	 corresponds	 to	 the	 correlation	

between	the	drug-response	and	control	experiments	for	one	cell	line	in	Cd.	This	feature	

is	used	to	determine	the	relevance	of	the	drug	to	the	cell	type	being	studied.	

	

PPI	correlation	score:		

The	PPI	correlation	Score,	denoted	as	fPC	is	constructed	as	follows:	

	

-	For	each	drug	d	in	Δ	(∆+∙∙):	

	

-	Obtain	Td,	as	defined	above.	

	

-	For	each	cell	line	c	in	Cd:	

	

-	Sort	Td	in	descending	order	using	the	correlation	values	𝑓"#$ 𝑑,∙, 𝑐 	

	

-	Denote	the	sorted	gene	symbol	indices	for	cell	line	c	as	𝜎"(𝑇+)	

	

-	For	each	knockdown	gene	g	in	Td:	

	

-	Obtain	the	set	of	neighbor	gene	symbol	indices	from	the	PPI	adjacency	list,	

and	denote	it	as	Ng.	
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-	Compute	fPC	as:	

	

𝑓./ 𝑑, 𝑔, 𝑐 =
𝑁K ∩ 𝜎"(𝑇+)P:PRR
𝑁K ∩ 𝜎"(𝑇+) + 50

	

	

𝑓./ 𝑑, 𝑔, 𝑐 	has	the	same	dimension	as	𝑓"#$ 	( 𝑇+ 	×	 𝐶+ ).	It	reflects	the	fraction	of	gene	

g's	binding	partners	that	are	more	correlated	with	drug	d	in	the	context	of	cell	line	c.	We	

use	 50	 as	 the	 pseudo-count	 to	 penalize	 hub	 proteins,	 which	 have	 substantially	more	

neighbors	than	others.	

	

PPI	expression	score	

We	 compute	 two	 types	 of	 PPI	 expression	 scores,	 denoted	 as	𝑓.VWXY 	and	𝑓.VXZ[,	 as	

follows:	

	

-	For	each	drug	d	in	Δ	(∆+∙∙):	

	

-	For	each	knockdown	gene	g	in	Td:	

	

-	Obtain	Ng,	as	above	(the	list	of	neighbors,	or	interaction	partners,	of	g)	

	

-	For	each	cell	line	c	in	Cd:	
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-	Find	the	set	of	signature	values	for	the	neighbors	of	g,	∆+,\[," 	(size	 𝑁K 	×	1)	

	

-	Compute	the	two	PPI	expression	scores	as:	

	

𝑓.VWXY 𝑑, 𝑔, 𝑐 = max	(∆+,\[,")	

	

𝑓.VXZ[ 𝑑, 𝑔, 𝑐 = avg	(∆+,\[,")	

	

	

Feature	data	structure	

We	combined	the	features	for	all	drugs	in	a	MATLAB	structure	Ω.	Ω	has	D	entries,	and	

each	entry	Ω(d)	has	the	following	fields:	

	

	 name:		 𝑃𝑒𝑟𝑡𝐼𝐷+ 	(string)	

	 targets:	 𝑃+ 	(protein	targets	for	d)	

	 cells:		 𝐶𝑒𝑙𝑙𝑠/; 	( 𝐶+ 	×	1	string	array)	

	 genes:	 𝑇+ 	(common	genes	across	Gc)	

	 correlation:	 𝑓"#$(𝑑,∙,∙)	( 𝑇+ 	×	 𝐶+ )	

	 PPI	correlation:	 𝑓./(𝑑,∙,∙)	( 𝑇+ 	×	 𝐶+ )	

	 max	PPI	expression:	 𝑓.VWXY(𝑑,∙,∙)	( 𝑇+ 	×	 𝐶+ )	

	 avg		PPI	expression:	 𝑓.VXZ[(𝑑,∙,∙)	( 𝑇+ 	×	 𝐶+ )	

	 cell	selection:	 𝑓/2(𝑑,∙)	( 𝐶+ 	×	1)	
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There	are	a	total	of	D	=	152	drugs	in	Ω,	and	the	number	of	drugs	with	different	values	of	

𝐶+ 	are	summarized	in	Table	1.	

	

	

Subcellular	Localization	Assignment	

We	obtained	the	cellular	localization	of	genes	from	the	Gene	Ontology	Consortium.	The	

GO	 database	 provides	 web	 services	 to	 query	 genes	 in	 terms	 of	 their	 associated	

biological	 processes,	 cellular	 components	 and	 molecular	 functions	 in	 a	 species-

independent	manner6.	We	further	assign	the	locations	as	either	“intracellular”	(inside	of	

cell)	or	“extracellular”	(outside	of	cell).	The	detailed	assignments	are	shown	in	Table	S9.	

	

Classification	procedure	

	

Criterion	of	successful	classification	

Due	to	the	intrinsic	noise	from	the	data,	we	define	a	successful	classification	for	a	drug	if	

any	of	its	correct	targets	is	enriched	into	the	top	K	ranked	genes,	where	K	can	be	either	

50	or	100.	

	

Analysis	of	feature	importance	

																																																								
6	http://geneontology.org/page/go-enrichment-analysis	
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The	evaluation	of	single	features	was	performed	using	the	drugs	that	have	been	applied	

on	all	seven	cell	 lines.	There	are	29	of	these	drugs	from	Ω.	We	sort	(descendingly)	the	

common	genes	Td	for	a	drug	d	and	cell	line	c	using	an	individual	feature	𝑓(𝑑,∙, 𝑐),	where	

𝑓	is	either	𝑓"#$ 	or	𝑓./ .	Denote	𝜎+(𝑔, 𝑐)	as	the	ranking	of	a	gene	𝑔 ∈ 𝑇+ 	in	the	context	of	

cell	line	c.	Then,	we	define	the	overall	ranking	of	a	gene,	𝜎+(𝑔),	to	be	the	best	ranking	

across	all	seven	cell	lines:	𝜎+ 𝑔 = min	(𝜎+ 𝑔, 𝑐 )	for	𝑐 ∈ 𝐶+.	

		

Constructing	training	dataset	

Next,	 we	 wish	 to	 learn	 and	 evaluate	 classifiers	 that	 predict	 drug	 targets	 using	 all	

features	from	the	feature	dataset	Ω.	We	first	construct	a	training	data	set	(design	matrix	

X	and	its	associated	labels	y)	from	the	feature	dataset	Ω.	

	

For	each	drug	d	 in	Ω,	we	 select	 the	 rows	 corresponding	 to	 the	 targets	 in	Pd	 from	 the	

other	feature	matrices	and	concatenate	them	into	a	row	vector.	The	same	cell	selection	

vector	is	appended	to	every	row	of	targets.	These	rows	are	assigned	with	a	positive	label	

1.	We	then	randomly	sampled	100	non-target	genes	(denoted	as	𝜈+)	and	construct	the	

row	 vectors	 the	 same	 way	 as	 the	 target	 genes,	 and	 these	 rows	 are	 assigned	 with	 a	

negative	label	0.	In	other	words,	the	training	matrix	and	label	vector	constructed	from	a	

drug	d	are	of	the	following	format:	
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𝑋+ =

𝑓"#$(𝑑, 𝑃+P,∙) 𝑓.�(𝑑, 𝑃+P,∙) 𝑓.VWXY(𝑑, 𝑃+P,∙) 𝑓.VXZ[(𝑑, 𝑃+P,∙) 𝑓/2(𝑑,∙)

𝑓"#$(𝑑, 𝑃+f,∙) 𝑓./(𝑑, 𝑃+f,∙) 𝑓.VWXY(𝑑, 𝑃+f,∙) 𝑓.VXZ[(𝑑, 𝑃+f,∙) 𝑓/2(𝑑,∙)

⋮ ⋮ ⋮ ⋮ ⋮

𝑓"#$(𝑑, 𝑃+h,∙) 𝑓./(𝑑, 𝑃+h,∙) 𝑓.VWXY(𝑑, 𝑃+h,∙) 𝑓.VXZ[(𝑑, 𝑃+h,∙) 𝑓/2(𝑑,∙)

𝑓"#$(𝑑, 𝜈+P,∙) 𝑓./(𝑑, 𝜈+P,∙) 𝑓.VWXY(𝑑, 𝜈+P,∙) 𝑓.VXZ[(𝑑, 𝜈+P,∙) 𝑓/2(𝑑,∙)

𝑓"#$(𝑑, 𝜈+f,∙) 𝑓./(𝑑, 𝜈+f,∙) 𝑓.VWXY(𝑑, 𝜈+f,∙) 𝑓.VXZ[(𝑑, 𝜈+f,∙) 𝑓/2(𝑑,∙)

⋮ ⋮ ⋮ ⋮ ⋮

𝑓"#$(𝑑, 𝜈+PRR,∙) 𝑓./(𝑑, 𝜈+PRR,∙) 𝑓.VWXY(𝑑, 𝜈+PRR,∙) 𝑓�VXZ[(𝑑, 𝜈+PRR,∙) 𝑓/2(𝑑,∙)

;	𝑦+ =

1

1

⋮

1

0

0

⋮

0

	

	

where	𝑚 = 𝑃+ ,	the	total	number	of	targets	for	drug	d.	Therefore,	the	training	matrix	

Xd	for	drug	d	is	of	size	(𝑚 + 100)	×	5 𝐶+ ,	and	label	vector	𝑦+	has	length	(𝑚 + 100).	

	

Extending	Random	forests	to	Drugs	with	Missing	Features	

Since	our	goal	here	is	to	predict	targets	for	as	many	small	molecule	as	possible,	we	did	

not	want	to	restrict	our	analysis	to	molecules	that	were	only	profiled	in	a	large	number	

of	cell	 lines.	As	noted	above,	 requiring	at	 least	seven	cell	 lines	reduces	the	number	of	

known	drugs	that	can	be	evaluated	from	152	to	29	and	 leads	to	a	similar	reduction	 in	

the	number	of	novel	small	molecules	that	can	be	evaluated.	Thus,	it	is	highly	desirable	

that	our	classifiers	can	handle	missing	data	 (i.e.,	 cells	 for	which	experiments	were	not	

performed).	 To	 this	 end,	 we	 developed	 two	 distinct	 methods	 to	 deal	 with	 different	

compound-specific	cell	 line	combinations	and	extended	the	random	forest	(Andy	Liaw,	

2002;	Qi	 et	 al.,	 2006)	model	 so	 that	 can	handle	molecules	profiled	 in	 less	 than	 seven	

(but	more	than	four)	cell	types.		

	

In	the	first	method	we	simply	build	the	random	forest	“on-the-fly”.	For	a	given	drug	 i,	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/254367doi: bioRxiv preprint 

https://doi.org/10.1101/254367


	

	 51	

we	 iterate	 through	all	other	drugs	 in	Ω	and	 test	 if	 a	drug	d	was	profiled	 in	at	 least	all	

cells	which	drug	i	was	profiled	in.	In	other	words,	we	test	if	𝐶k ⊆ 𝐶+ 	and	if	so	we	extract	

the	features	of	corresponding	cell	lines	in	Ci	from	Ω(+)	and	include	them	in	the	training	

data.	After	we	include	data	for	all	compatible	drugs	we	can	use	the	training	data	to	train	

and	apply	a	random	forest	for	the	given	drug	i.	We	note	that	for	any	drug	in	Ω,	there	are	

at	least	28	compatible	drugs	because	29	drugs	have	been	applied	to	all	seven	cell	lines.	

However,	 the	 main	 disadvantage	 of	 this	 method	 is	 that	 we	 need	 to	 train	 separate	

random	forest	for	every	test	drug.	

	

In	 the	 second	method	we	 perform	 a	 “two-level”	 random	 forest	 construction	 process.	

Here,	in	addition	to	the	standard	step	of	selecting	a	(random)	subset	of	the	features	for	

each	of	 the	 trees	 in	 the	 forest	we	 included	a	 step	 that	 selected	a	 (random)	 subset	of	

cells	 for	each	of	 the	 trees.	Specifically,	 in	 the	 first	 step,	we	 randomly	 sample	 four	cell	

lines	from	the	seven	total	cell	lines	(denoted	as	Ci).	In	the	second	step,	we	find	all	drugs	

𝑑 ∈ Ω	such	 that	𝐶k ⊆ 𝐶+,	 extract	 their	 features,	 and	 use	 them	 to	 train	 that	 tree.	We	

repeat	this	process	3500	times,	such	that	each	combination	of	four	cell	lines	is	expected	

to	have	 roughly	100	 trees	 ( 74 = 35).	To	apply	 this	 two-level	 random	forest	 to	a	 test	

drug	t	with	cell	line	profile	Ct,	we	select	from	the	forest	those	decision	trees	i	for	which	

𝐶k ⊆ 𝐶p	and	 use	 them	 to	 predict	 the	 targets	 for	 t.	 Note	 that	 unlike	 the	 on-the-fly	

method	above,	here	we	only	need	to	train	one	forest	for	the	entire	prediction	task.	

	

Generating	structural	models	for	docking	
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Using	a	python	script7	We	queried	the	PDB	via	its	RESTful	Web	Service	interface8	using	

Uniprot	primary	gene	name	as	the	search	criteria	and	found	crystal	structures	for	1245	

of	the	3333	human	genes	in	our	analysis.	The	mean	and	median	numbers	of	structures	

per	gene	were	11	and	3,	 respectively.	We	 then	analyzed	 the	 structures	 for	each	gene	

and	selected	representative	structures	that	would	be	used	for	docking.	Representative	

structure	 selection	was	 performed	 automatically	 using	 a	 procedure	 (explained	 below)	

that	attempts	 to	optimize	 for	 sequence	coverage,	 structural	 resolution,	 and	 structural	

diversity.	

	

To	select	 representative	structures,	we	 first	divided	each	gene’s	structures	 into	“high”	

and	“low”	resolution	categories	using	a	2.0	Å	threshold.	Small	structures	with	less	than	

20	amino	acids	were	discarded.	We	 then	used	a	greedy	algorithm	 to	assess	 sequence	

coverage	 for	 the	 remaining	 structures	 and	 select	 (as	 representative)	 the	 fewest	 and	

highest	 resolution	 structures	 that	 would	 cover	 the	 most	 of	 the	 protein	 sequence.	

Redundant	 structures,	 defined	 as	 structures	 that	 did	 not	 contain	 at	 least	 10	 residues	

that	 were	 not	 contained	 in	 any	 of	 the	 larger	 or	 higher	 resolution	 structures,	 were	

discarded	 unless	 they	 represented	 a	 unique	 conformation	 of	 the	 protein.	 Protein	

conformation	 was	 evaluated	 using	 ProDy	 (Bakan	 et	 al.,	 2011)	 and	 was	 considered	

“unique”	 if	 the	 redundant	 structure	 had	 an	 all	 atom	 RMSD	 to	 each	 of	 the	 other	

representative	structures	that	was	above	a	cutoff	 threshold	that	could	range	between	

4.0	Å	and	10.0	Å.	The	specific	value	of	the	threshold	used	for	each	gene	was	chosen	to	

																																																								
7 https://github.com/npabon/generate_gene_models 
8 https://www.rcsb.org/pdb/software/rest.do 
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try	to	minimize	the	number	of	redundant	structures	that	would	be	docked	against,	and	

higher	 cutoffs	were	 used	 for	 genes	 that	 had	many	 redundant	 structures	 representing	

different	 conformations.	 After	 selection,	 the	 mean	 and	 median	 numbers	 of	

representative	 structures	 per	 gene	 were	 2	 and	 1,	 respectively.	 Each	 representative	

structure	consisted	of	exactly	one	amino	acid	 chain	and	coordinated	 ions	but	without	

cocrystal	 ligands	or	crystallographic	waters.	We	note	that	this	automated	procedure	 is	

not	necessarily	 tailored	 to	produce	 representative	 structures	 for	 functional	oligomers,	

since	only	one	chain	is	considered	at	a	time.		

	

Comparison	to	previous	expression	perturbation	target	prediction	methods	

Unlike	 our	 method	 which	 uses	 both	 drug-induced	 and	 knockdown-induced	 mRNA	

expression	 perturbations,	 previous	 target	 prediction	methods	 analyzed	 only	 the	 drug	

data	within	the	context	of	protein	interaction	networks	(Isik	et	al.,	2015;	Laenen	et	al.,	

2013).	 As	 their	 primary	 measurement	 of	 prediction	 accuracy,	 these	 works	 generally	

report	 the	 aggregate	 Area	 Under	 the	 Curve	 (AUC)	 of	 their	 gene	 rankings	 across	 all	

validation	 compounds.	 The	 studies	 mentioned	 above	 achieve	 AUC	 values	 of	 0.9	 and	

higher	 in	 ranking	 between	 11,000	 and	 18,000	 potential	 gene	 targets	 for	 each	

compound.	 To	 compare	 these	 results	 against	 our	method,	we	examined	 the	 reported	

AUC	curves	and	calculated	 the	percentage	of	 compounds	 for	which	 the	correct	 target	

was	ranked	within	the	top	100	potential	targets.	Both	studies	achieved	top-100	accuracy	

of	20-21%.	
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Experimental	assays	involving	CHIP	

	

Materials:	Rabbit	anti-GST	polyclonal	antibody	conjugated	to	HRP	was	purchased	from	

Abcam	(ab3416),	mouse	anti-ubiquitin	monoclonal	antibody	was	purchased	from	Santa	

Cruz	Biotechnology	(sc-8017),	and	horse	anti-mouse	polyclonal	antibody	conjugated	to	

HRP	 was	 purchased	 from	 Cell	 Signaling	 Technology	 (7076S).	 E2	 enzyme	 UbcH5b	 and	

recombinant	 human	 ubiquitin	 were	 obtained	 from	 Boston	 Biochem	 (E2-662	 and	 U-

100H,	respectively).	

	

Protein	 purifications:	 His-Ube1,	 His-CHIP,	 GST-Hsc70395-646,	 and	 GST-AT-3	 JD	 were	

expressed	in	and	purified	from	E.	coli	BL21(DE3)	competent	cells	(New	England	Biolabs).	

Ube1/PET21d	 was	 a	 gift	 from	 Dr.	 Cynthia	 Wolberger	 (Addgene	 plasmid	 #34965)	

(Berndsen	 and	Wolberger,	 2011),	 pET151/D-TOPO	CHIP	 and	 pGST‖2	Hsc70395-646	were	

gifts	from	Dr.	Saurav	Misra	(Sheffield	et	al.,	1999;	Zhang	et	al.,	2015),	and	pGEX6p1	AT-3	

JD	 was	 a	 gift	 from	 Dr.	 Matthew	 Scaglione	 (Faggiano	 et	 al.,	 2013;	 Todi	 et	 al.,	 2010).	

Transformed	cultures	were	 incubated	 in	Luria	broth	with	100	µg/mL	ampicillin	at	37°C	

and	shaken	at	225	rpm	until	an	OD600	of	0.3	was	attained.		Protein	expression	was	then	

induced	 with	 500µM	 isopropyl	 β-D-1-thiogalactopyranoside	 (IPTG)	 and	 cultures	 were	

incubated	for	24	hrs.	at	18°C	(15°C	for	cells	expressing	GST-Hsc70395-646	or	GST-AT-3	JD)	

before	 the	 cells	were	harvested	 at	 5000	 rpm	 for	 10	min	 at	 4°C	using	 an	 F7S-4x1000y	

rotor	for	the	Sorvall	RC-5B	Plus	Superspeed	centrifuge.	Cell	pellets	were	stored	at	-80°C.		
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Cells	harboring	His-Ube1	or	His-CHIP	were	thawed	and	lysed	by	incubation	in	lysis	buffer	

(10	mM	imidazole,	50	mM	NaPO4	pH	8,	300	mM	NaCl,	5	mM	2-mercaptoethanol,	0.25%	

Triton-100X,	2	mg/mL	lysozyme)	for	30	min	on	ice	followed	by	sonication.	Purification	of	

Ube1	required	addition	of	protease	inhibitors	(1%	PMSF,	0.2%	leupeptin,	0.1%	pepstatin	

A)	during	lysis	and	throughout	purification.	After	centrifugation,	lysates	were	applied	to	

Ni-NTA	 agarose	 resin	 (Qiagen),	 the	 column	 was	 washed	 with	 30	 mM	 imidazole,	 and	

proteins	were	eluted	with	200	mM	imidazole.	Peak	fractions	containing	His-Ube1	were	

pooled,	dialyzed	into	20	mM	HEPES	pH	7.4,	20	mM	NaCl,	and	further	purified	by	anion	

exchange	 chromatography	 over	 DEAE-Sepharose	 (GE	 Healthcare).	 Bound	 protein	 was	

eluted	with	a	50-300	mM	NaCl	gradient.	Purified	His-Ube1	and	His-CHIP	were	dialyzed	

into	 50	 mM	 HEPES	 pH	 7,	 50	 mM	 NaCl,	 and	 His-CHIP	 was	 further	 concentrated	 by	

centrifugal	filtration	(Millipore).	

	

Cells	 harboring	 GST-Hsc70395-646	 or	 GST-AT-3	 JD	 were	 similarly	 thawed	 and	 lysed	 by	

incubation	in	lysis	buffer	(50	mM	Tris	pH	7.5,	150	mM	NaCl,	5	mM	2-mercaptoethanol,	

0.25%	Triton-100X,	2	mg/mL	lysozyme,	with	protease	inhibitors)	followed	by	sonication.	

After	 centrifugation,	 lysates	were	 applied	 to	 glutathione	 agarose	 (Sigma),	 the	 column	

was	washed,	and	proteins	were	eluted	in	6.8	mg/mL	reduced	glutathione.	Peak	fractions	

for	each	substrate	were	pooled	and	dialyzed	into	50	mM	HEPES	pH	7,	50	mM	NaCl.	

	

After	 isolation,	 the	 purity	 of	 all	 proteins	 was	 verified	 by	 SDS-PAGE	 followed	 by	

Coomassie	 Brilliant	 Blue	 staining.	 	 Protein	 concentration	 was	 determined	 by	 either	
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Bradford	 (Bio-Rad)	 or	 BCA	 (Thermo	 Scientific)	 protein	 concentration	 assays.	 Purified	

proteins	were	flash	frozen	in	liquid	nitrogen	and	stored	at	-80°C.	

	

Fluorescence	polarization	assay:	Fluorescence	polarization	(FP)	studies	were	carried	out	

as	previously	described	(Assimon	et	al.,	2015).	Briefly,	the	FP	tracer	was	composed	of	a	

peptide	derived	from	Hsp72/HSPA1A	(GSGPTIEEVD)	that	was	coupled	at	the	N-terminus	

to	5-carboxyfluorescein	(5-FAM)	via	an	aminohexanoic	acid	spacer.	This	tracer	(KD	~	0.51	

±	 0.03	 µM)	was	 used	 in	 a	 competition	 FP	 format	 to	 estimate	 binding	 to	 CHIP.	 Tracer	

concentration	was	1	µM,	and	the	CHIP	concentration	was	0.5	µM	in	a	total	volume	of	20	

µL	 in	 50	 mM	 HEPES,	 10	 mM	 NaCl,	 0.01%	 Triton	 X-100,	 pH	 7.4.	 The	 final	 DMSO	

concentration	was	approximately	1%.	After	mixing	the	components,	each	black	384	well	

plate	(Corning)	was	covered	from	light	and	incubated	at	room	temperature	for	30	min.	

Polarization	values	were	measured	at	 Excitation	485	nm	and	Emission	530	nm	using	a	

Molecular	 Devices	 Spectramax	M5	 plate	 reader	 (Sunnyvale,	 CA).	 Data	 were	 analyzed	

using	GraphPad	Prism	6	software.	

	

CHIP	 in	 vitro	 ubiquitination	 assay:	Reactions	were	 initiated	 by	 pre-incubating	 125	 nM	

Ube1,	1	µM	UbcH5b,	and	200	µM	ubiquitin	for	30	min	at	37°C	in	50	mM	HEPES	pH	7.0,	

50	mM	NaCl,	2	mM	ATP,	and	4	mM	MgCl2.	In	a	separate	reaction	tube,	10	µM	purified	

CHIP	and	up	to	500	µM	compound	dissolved	in	DMSO	were	combined	and	incubated	for	

15	min	on	ice,	followed	by	the	addition	of	3	µM	of	either	GST-Hsc70395-646	or	GST-AT-3	

JD,	 which	 served	 as	 substrates	 for	 CHIP-dependent	 ubiquitination.	 DMSO	 in	 these	
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reactions	 was	 <5%.	 After	 pre-incubation,	 the	 ubiquitin-charged	 E1/E2	 mixture	 was	

dispensed	 after	 which	 all	 reactions	 proceeded	 for	 15	 min	 at	 37°C.	 Reactions	 were	

quenched	by	addition	of	SDS	sample	buffer	 supplemented	with	50	mM	EDTA,	20	mM	

DTT.	Quenched	reactions	were	resolved	by	10%	SDS-PAGE,	transferred	to	nitrocellulose	

membranes	 and	 western	 blotted	 with	 either	 anti-GST	 HRP-conjugated	 antibody	 to	

visualize	 substrate	 ubiquitination,	 or	 anti-ubiquitin	 primary	 antibody,	 followed	 by	 an	

HRP-conjugated	 secondary	 antibody	 to	 visualize	 the	 amount	 of	 total	 ubiquitination.	

Products	were	visualized	using	a	Bio-Rad	ChemiDoc	XRS+	imaging	system	and	quantified	

using	ImageJ	software.	

	

Experimental	assays	involving	PDK1	

	

Materials:	 Soluble	 biotin-phosphatidylinositol3,4,5-triphosphate,	 biotin-PIP3,	 labeled	

with	biotin	at	sn1-position,	was	from	Echelon	Biosciences	Inc.	Bio-GST,	used	as	a	control	

in	the	alphascreen	system,	corresponds	to	biotinylated	GST,	(Perkin-Elmer).	The	peptide	

substrate	T308tide	(KTFCGTPEYLAPEVRR;	>	75%	purity)	were	synthesized	using	Pepscan.	

	

PDK1	constructs:	PDK1	CD	(1-359)	and	PDK1	PH	(360-556)	were	cloned	in	pEBG2T	vector	

in	 frame	 with	 GST,	 expressed	 in	 HEK293	 by	 transient	 transfection	 and	 purified	 using	

glutathione-sepharose,	 as	 described	 previously	 for	 different	 GST-fusion	 constructs	

(Dettori	et	al.,	2009).		
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Alphascreen	 interaction	 assay:	 The	 interaction	 between	 GST-PDK1	 PH	 (10	 nM)	 and	

biotin-PIP3	(20	nM)	was	measured	using	alphascreen	technology	(Perkin-Elmer),	a	bead-

based	 proximity	 assay.	 The	 displacement	 of	 the	 interaction	 by	 Wortmannin	 was	

performed	 as	 previously	 described	 for	 the	 catalytic	 domain	 of	 PDK1	 (Schulze	 et	 al.,	

2016;	Zhang	et	al.,	2014).	Briefly,	the	assays	were	performed	in	a	final	volume	of	25	µL	

in	white	384-well	microtiter	plates	(Greiner	Bio-One),	including	the	interacting	partners	

in	 a	 buffer	 containing	 50	mM	Tris-HCl	 pH	 7.4,	 100	mM	NaCl,	 2	mM	DTT,	 0.01%	 (v/v)	

Tween-20,	0.1%	(w/v)	BSA,	and	the	corresponding	concentration	of	the	compound	(1%	

final	 DMSO	 concentration).	 5	 µL	 of	 beads	 (anti-GST	 conjugated	 acceptor	 beads	 and	

streptavidin-coated	 donor	 beads)	 at	 a	 20	 µg/ml	 (microg/ml)	 were	 then	 added	 to	 the	

mixture	and	after	an	incubation	of	60	minutes,	alphascreen	counts	were	measured	in	an	

EnVision	 Multiplate	 reader.	 To	 set-up	 the	 assays,	 cross-titration	 experiments	 were	

performed,	 where	 the	 concentration	 of	 both	 interacting	 partners	 were	 varied.	 The	

concentration	of	binding	partners	in	the	assays	were	chosen	so	that	both	inhibitors	and	

enhancers	of	the	interaction	could	be	identified.	Controls	using	Bio-GST	were	performed	

to	rule	out	unspecific	effects	on	the	biotin-GST	alphascreen	interaction	assay	system.	

	

PDK1	protein	kinase	activity	assay:	The	 in	vitro	activity	of	PDK1	was	 tested	using	100-

300	ng	purified	protein,	following	the	transfer	of	32P	from	radiolabelled	[g32P]ATP	to	the	

polypeptide	substrate	T308tide	at	room	temperature	(22	°C)	in	a	mix	containing	50	mM	

Tris	pH	7.5,	0.05		mg/ml	BSA,	0.1%	b-mercaptoethanol,	10	mM	MgCl2,	100	µM	[g32P]ATP	

(5-50	cpm/pmol)	and	0.003%	Brij,	as	previously	performed.	(Schulze	et	al.,	2016)		
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3.	SI	Figures	

	

Figure	 S1.	 Comparing	 the	 random	 forest	 approaches	 with	 a	 random	 classifier	 for	

predicting	known	targets	of	the	152	drugs	in	the	validation	set.	The	red	arrow	indicates	

the	success	 rate	of	on-the-fly	 random	forest	and	the	green	arrow	represents	 the	two-

level	random	forest.	
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Figure	 S2.	 Predicted	 targets	 for	 the	 drug	 wortmannin.	 Points	 represent	 structural	

models	 of	 the	 top-100	RF-predicted	potential	 targets	 for	wortmannin.	 The	RF	 ranking	

for	each	target	(x	axis)	is	plotted	against	the	docking	score	ranking	(y	axis).	The	red	dot	

indicates	the	ranking	of	the	known	target	PIK3CA.	The	green	dot	 indicates	the	ranking	

for	the	previously	unknown	target,	PDPK1.	
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Figure	S3.	Expression	profile	correlations	of	newly	discovered	interactions.	(a)	Drug-

induced	expression	signature	of	wortmannin	shows	strong	direct	correlation	with	the	

knockdown	of	newly	validated	target	PDPK1.	(b,c,d)	Drug	induced	expression	signature	

of	phenolphthalein	shows	little	direct	correlation	with	newly	validated	target	CHIP,	but	

shows	comparatively	stronger	indirect	correlation	with	CHIP	interaction	partners	

HSP90AA1	and	UBE2D1.	
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Figure	S4.	Docking	model	of	wortmannin	bound	to	the	PH	domain	of	PDK1.	(a)	Cocrystal	

structure	(PDB	ID:	1W1G	(Komander	et	al.,	2004))	of	the	PH	domain	of	PDK1	bound	to	

the	 4PT	 ligand	which	mimics	 the	 head	 group	 of	 it’s	 natural	 ligand	 PIP3.	 Dashed	 lines	

indicate	key	polar	 interactions.	 (b)	Docking	model	of	wortmannin	bound	to	the	PDPK1	

PH	domain,	which	captures	many	of	the	same	polar	interactions	seen	in	the	cocrystal.	
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Figure	S5.	Alphascreen	PDK1-PIP3	interaction-displacement	assay	results	for	increasing	

concentrations	 of	 wortmannin.	 Error	 bars	 represent	 the	 standard	 error	 on	 the	mean	

from	two	parallel	runs.	
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Figure	S6.	Result	of	the	target-centric	screen	against	CHIP.	The	plot	on	the	left	shows	

the	104	compounds	predicted	by	random	forest	to	bind	CHIP,	plotted	according	to	the	

rank	 of	 CHIP	 in	 their	 predicted	 targets	 list	 (x	 -	 axis),	 vs.	 their	 CHIP	 docking	 score	 (y	 –	

axis).	The	shaded	red	area	of	the	plot	represents	compounds	that	were	filtered	out	of	

analysis	 due	 to	 low	 rank/score.	 The	 blue	 dots	 represent	 the	 compounds	 that	 were	

purchased	 for	 experimental	 validation.	 The	 histogram	 on	 the	 right	 shows	 the	

distribution	of	compounds	by	docking	score.	
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Figure	S7.	Disruption	of	CHIP	binding	to	chaperone	peptide	measured	by	fluorescence	

polarization.	 Results	 are	 the	 average	 and	 standard	 error	 of	 the	 mean	 of	 two	

experiments	each	performed	in	triplicate.	
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Figure	S8.	CHIP	inhibitors	prevent	ubiquitination	by	CHIP	in	vitro.	(a)	Anti-GST	western	

blot	showing	substrate	ubiquitination	by	CHIP	in	reactions	treated	with	high	ranked	(2.1,	

2.2)	and	low	ranked	(2.5)	compounds.	(b)	Anti-ubiquitin	western	blot	showing	total	

ubiquitination	by	CHIP	in	reactions	treated	with	high	ranked	(2.1,	2.2)	and	low	ranked	

(2.5)	compounds.	
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Figure	S9.	Predicted	CHIP	Inhibitors	Prevent	Ubiquitination	of	an	Alternate	Substrate.	(A)	Anti-

GST	western	blot	showing	AT-3	JD	substrate	ubiquitination	by	CHIP	in	reactions	treated	with	

compounds.	(B)	Quantification	of	all	reactions	as	in	A	treated	with	up	to	500	µM	compound	2.1,	

2.2,	or	2.6,	normalized	to	ubiquitination	by	a	DMSO	treated	control	(all	compounds:	N=4).	
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Figure	S10.	Comparison	of	virtual	screens	against	CHIP.	HSP90	shows	structure	of	the	

CHIP	(grey)	-	HSP90	(magenta)	interface	(PDB	ID:	2C2L(Zhang	et	al.,	2005)),	indicating	

the	hydrophobic	(green	spheres)	and	polar	contact	(blue	surface	/	dashed	lines)	

pharmacophores	used	to	screen	the	ZINC	database.	Strong	binders	show	predicted	

binding	modes	for	compounds	2.1	and	2.2	from	the	LINCS	screen,	which	showed	the	

strongest	FP	signal	and	robust	inhibition	of	CHIP	ligases	activity.	Interestingly,	2.1	and	

2.2	are	the	only	predicted	hits	to	make	a	novel	hydrogen	bond	to	CHIP	residue	Q102,	a	

contact	whose	importance	is	not	obvious	from	the	cocrystal	structure.	Weak	binders	

show	predicted	binding	modes	for	compounds	2.3	and	2.4	from	the	LINCS	screen,	and	

compounds	1.1,	1.2,	and	1.7	from	the	ZINC	screen,	which	showed	modest	FP	signal.	

Non-binders	show	predicted	binding	modes	for	non-binding	LINCS	compounds	2.5	and	

2.6,	and	non-binding	ZINC	compounds	1.3	–	1.6.	
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Figure	 S11.	 Effect	 of	 wortmannin	 on	 the	 in-vitro	 phosphorylation	 of	 the	 substrate	

T308tide	by	the	isolated	catalytic	domain	of	PDK1.	The	two	lines	are	from	two	replicates	

of	the	activity	assay,	with	error	bars	representing	the	standard	error	on	the	mean	from	

two	parallel	runs	for	each	replicate.	
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Figure	 S12.	 Correlation	 of	 target	 prediction	 accuracy	 and	 “structural	 uniqueness”	 of	

the	query	 compound	with	 respect	 to	 the	 training	 compounds.	Each	point	 in	 the	plot	

represents	 one	 of	 the	 53	 compounds	 in	 our	 enrichment	 analysis.	 The	 structural	

uniqueness	of	a	compound	(x-axis)	is	defined	as	its	maximum	Tanimoto	distance	to	any	

of	 the	 training	 compounds.	 The	 predicted	 ranking	 of	 the	 known	 target	 for	 each	

compound	 is	 shown	on	 the	 y-axis.	Orange	and	blue	points	 represent	 the	 ranking	pre-	

and	post-	structural	filtering.	
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4.	SI	Tables	

	

Table	S1.	Performance	of	target	prediction	using	different	features	and	methods	on	29	

FDA-approved	drugs.	DIR:	direct	 correlation	 feature;	 IND:	 indirect	 correlation	 feature;	

CS:	cell	selection	feature;	MAX:	maximum	differential	expression	feature;	MEAN:	mean	

differential	expression	feature;	LR:	logistic	regression;	RF:	random	forest.	Values	are	for	

the	ranking	of	the	top	known	target	for	each	drug.		

	

Drug	 Random	 DIR	 IND	 CS	 MAX	 MEAN	 LR	 RF	

vinorelbine	 310	 126	 128	 1318	 1690	 425	 28	 88	

dexamethasone	 1498	 1891	 284	 943	 315	 1143	 757	 157	

dasatinib	 2325	 1009	 94	 222	 290	 2621	 182	 532	

vincristine	 1979	 473	 439	 386	 2231	 2196	 456	 37	

mycophenolate-mofetil	 564	 1100	 1263	 2986	 100	 301	 3064	 3086	

amlodipine	 995	 1338	 2439	 1801	 1875	 974	 3037	 650	

lovastatin	 1712	 72	 811	 2078	 1124	 1068	 1334	 55	

clobetasol	 2194	 820	 21	 157	 74	 15	 38	 65	

calcitriol	 2514	 1059	 2938	 221	 125	 1814	 1299	 252	

flutamide	 919	 2604	 69	 2806	 463	 298	 702	 647	

prednisolone	 2382	 1439	 206	 787	 402	 1068	 257	 23	

nifedipine	 940	 1225	 1465	 1285	 88	 322	 3037	 2249	

vemurafenib	 1042	 1	 82	 1	 1149	 1403	 22	 2	

glibenclamide	 29	 1415	 2028	 409	 1059	 740	 1300	 366	

digoxin	 2376	 73	 1470	 118	 828	 567	 732	 44	

bortezomib	 1882	 1	 1	 2	 2546	 2513	 24	 5	

vinblastine	 1612	 515	 56	 100	 224	 377	 38	 2	
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digitoxin	 573	 89	 430	 216	 521	 653	 79	 50	

losartan	 645	 489	 988	 770	 636	 31	 735	 1931	

pitavastatin	 1855	 1976	 1036	 1117	 90	 527	 1632	 373	

digoxin	 69	 521	 776	 194	 127	 559	 208	 64	

hydrocortisone	 303	 312	 72	 58	 93	 122	 29	 17	

paclitaxel	 2299	 74	 121	 47	 371	 1862	 79	 19	

lovastatin	 988	 1	 735	 1587	 1698	 1484	 128	 100	

irinotecan	 1742	 1023	 20	 236	 128	 1886	 46	 160	

vincristine	 1394	 96	 74	 17	 1272	 69	 28	 9	

vinblastine	 1359	 490	 75	 1383	 373	 1735	 35	 2	

raloxifene	 2080	 2883	 1818	 1172	 1064	 479	 1114	 2520	

digoxin	 1005	 102	 1066	 112	 2096	 2027	 252	 167	

Mean	Ranking	 1365	 800.6	 724.3	 776.9	 794.9	 1009.6	 712.8	 471.4	

Top	100	 2	 8	 10	 6	 5	 3	 11	 16	
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Table	S2.	Results	of	testing	our	random	forest	classifier	on	the	123	FDA	approved	

drugs	profiled	in	4-6	LINCS	cell	lines,	after	having	trained	our	model	on	the	29	FDA	

approved	drugs	profiled	in	all	7	LINCS	cell	lines.	The	rank	of	the	highest-ranking	known	

target	for	each	compound	is	listed	next	to	their	LINCS	ID.	We	achiece	top-100	

predictions	for	32	drugs,	a	26%	success	rate.		

	

LINCS	ID	 Rank	of	known	target	

BRD_0x2D_K38775274	 29	

BRD_0x2D_A82238138	 23	

BRD_0x2D_A22032524	 66	

BRD_0x2D_A92177080	 86	

BRD_0x2D_K46137903	 1245	

BRD_0x2D_A82371568	 1472	

BRD_0x2D_A97437073	 18	

BRD_0x2D_K28307902	 1206	

BRD_0x2D_A35108200	 1402	

BRD_0x2D_A23770159	 605	

BRD_0x2D_A81233518	 850	

BRD_0x2D_A01643550	 155	

BRD_0x2D_K56343971	 611	

BRD_0x2D_K36927236	 1163	

BRD_0x2D_K76723084	 394	

BRD_0x2D_K56851771	 564	

BRD_0x2D_A76528577	 1260	
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BRD_0x2D_K47635719	 1441	

BRD_0x2D_K76205745	 2887	

BRD_0x2D_A16998493	 496	

BRD_0x2D_K18194590	 1046	

BRD_0x2D_A75144621	 79	

BRD_0x2D_A78391468	 2697	

BRD_0x2D_A26711594	 1942	

BRD_0x2D_K55395145	 1196	

BRD_0x2D_K73999723	 606	

BRD_0x2D_K77554836	 565	

BRD_0x2D_A23637604	 2015	

BRD_0x2D_A65449987	 135	

BRD_0x2D_K28936863	 2	

BRD_0x2D_K15108141	 131	

BRD_0x2D_K77175907	 2294	

BRD_0x2D_A20126139	 2356	

BRD_0x2D_K18135438	 23	

BRD_0x2D_A69512159	 1123	

BRD_0x2D_A23723433	 547	

BRD_0x2D_K31627533	 69	

BRD_0x2D_K82109576	 2607	

BRD_0x2D_A79672927	 3188	

BRD_0x2D_K72238567	 266	

BRD_0x2D_A70155556	 909	

BRD_0x2D_K84937637	 2088	
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BRD_0x2D_K84036904	 225	

BRD_0x2D_A90131694	 2	

BRD_0x2D_A02180903	 2596	

BRD_0x2D_A68723818	 1784	

BRD_0x2D_A27887842	 316	

BRD_0x2D_K56429665	 70	

BRD_0x2D_A79768653	 77	

BRD_0x2D_K32821942	 7	

BRD_0x2D_K60511616	 499	

BRD_0x2D_K38003476	 15	

BRD_0x2D_A63894585	 377	

BRD_0x2D_K88510285	 589	

BRD_0x2D_K28143534	 2390	

BRD_0x2D_K02637541	 2822	

BRD_0x2D_K00824317	 1164	

BRD_0x2D_A48720949	 59	

BRD_0x2D_K97810537	 367	

BRD_0x2D_A83237092	 2513	

BRD_0x2D_K32744045	 2041	

BRD_0x2D_K67174588	 2716	

BRD_0x2D_A46186775	 137	

BRD_0x2D_K49328571	 190	

BRD_0x2D_A77824596	 382	

BRD_0x2D_A23359898	 1193	

BRD_0x2D_K27721098	 80	
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BRD_0x2D_A69636825	 2513	

BRD_0x2D_K60640630	 279	

BRD_0x2D_K33106058	 67	

BRD_0x2D_A30815329	 13	

BRD_0x2D_A29426959	 11	

BRD_0x2D_A49225603	 151	

BRD_0x2D_K10916986	 1191	

BRD_0x2D_K35483542	 1508	

BRD_0x2D_K43736954	 261	

BRD_0x2D_K23478508	 1547	

BRD_0x2D_K66296774	 357	

BRD_0x2D_A37780065	 3041	

BRD_0x2D_A81772229	 127	

BRD_0x2D_K65146499	 176	

BRD_0x2D_A15297126	 2623	

BRD_0x2D_K96354014	 238	

BRD_0x2D_A55393291	 40	

BRD_0x2D_K17674993	 270	

BRD_0x2D_A49765801	 2669	

BRD_0x2D_A62025033	 26	

BRD_0x2D_K23566484	 81	

BRD_0x2D_A94756469	 4	

BRD_0x2D_A07765530	 2555	

BRD_0x2D_A34299591	 719	

BRD_0x2D_K11129031	 45	
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BRD_0x2D_A36010170	 67	

BRD_0x2D_K27316855	 705	

BRD_0x2D_K53790871	 82	

BRD_0x2D_K08547377	 1069	

BRD_0x2D_K47832606	 1678	

BRD_0x2D_A28746609	 2083	

BRD_0x2D_K09416995	 2646	

BRD_0x2D_K97514127	 1485	

BRD_0x2D_A60414806	 295	

BRD_0x2D_A22783572	 15	

BRD_0x2D_A46335897	 531	

BRD_0x2D_K81169441	 2764	

BRD_0x2D_K81709173	 680	

BRD_0x2D_A07440155	 643	

BRD_0x2D_K34776109	 203	

BRD_0x2D_K89626439	 2384	

BRD_0x2D_K49577446	 1516	

BRD_0x2D_A55594068	 35	

BRD_0x2D_A60571864	 16	

BRD_0x2D_A69951442	 4	

BRD_0x2D_K41260949	 1313	

BRD_0x2D_A07000685	 22	

BRD_0x2D_A13133631	 282	

BRD_0x2D_K90553655	 1655	

BRD_0x2D_A92439610	 2294	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/254367doi: bioRxiv preprint 

https://doi.org/10.1101/254367


	

	 81	

BRD_0x2D_M30523314	 242	

BRD_0x2D_K92428153	 807	

BRD_0x2D_A26095496	 122	

BRD_0x2D_K12994359	 2171	

BRD_0x2D_A96107863	 1110	

BRD_0x2D_K99369265	 7	
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Table	S3.	Predicted	CHIP-targeting	compounds	out	of	104	candidate	molecules.	‘CHIP	

RANK’	indicates	the	ranking	of	CHIP	in	the	random-forest	predicted	list	of	potential	

targets	for	each	compound.	‘CPD	RANK’	indicates	the	structure-based	ranking	of	the	

compound	after	docking	of	all	104	candidate	compounds	to	the	HSP90	binding	site	on	

the	CHIP-TPR	domain.	

	

Cpd	#	 NAME	 ID	 CHIP	

RANK	

CPD	

RANK	

2.1	 phenolphthalein	 BRD_K19227686	 2	 22	

2.2	 HSP90_inhibitor	 BRD_K65503129	 2	 4	

2.3	 axitinib	 BRD_K29905972	 8	 13	

2.4	 BRD_K59556282	 BRD_K59556282	 11	 92	

2.5	 SB_431542	 BRD_K67298865	 34	 17	

2.6	 MW_STK33_2B	 BRD_K78930611	 51	 16	
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Table	S4.	Comparison	of	our	pipeline	to	existing	drug-target	prediction	methods.	The	

average	ranking	of	 the	highest	 ranked	known	target	 is	 listed	 for	all	63	validation	 ‘hits’	

and	 for	 the	subset	of	53	hits	with	known	structures.	Rankings	are	compared	between	

the	 initial	 random-forest	 ranking	 (GEN),	 the	 structural	 re-ranking	 of	 the	 top	 100	 RF	

predicted	 targets	 (STR),	 the	 HTDocking	 server	 (HTD),	 and	 the	 PharmMapper	 server	

(PHM).	

	

	

	

Avg	#	top-100	

structures	available	 GEN		 STR		 HTD	 PHM	

All	hits	(n=63)	 69	 		22	 24	 56	 23	

Known	structures	(n=53)	 71	 		23	 13	 50	 12	
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Table	S5.	Structural	enrichment	of	random	forest	predictions	for	validation	hits	and	

comparison	with	existing	methods.	Our	63	`hits'	are	listed	with	their	LINCS	ID	and	the	

number	of	top-100	predicted	targets	that	had	structures	available	in	the	PDB.	The	

ranking	of	the	known	targets	are	shown	after	our	genomic	random	forest	target	

prediction	(GEN),	and	after	our	structural	re-ranking	(STR),	along	with	the	percentile	

rankings	produced	by	alternative	target	prediction	methods	HTDocking	(HTD)	and	

PharmMapper	(PHM).	STR,	HTD,	and	PHM	values	of	100	indicate	that	the	structure	of	

the	known	target	either	is	not	known	or	was	not	included	in	the	set	of	potential	targets	

used	by	the	method.		

	

COMPOUND	 LINCS	ID	 Num	

Structs	

GEN	 STR	 HTD	 PHM	

alclometasone	 BRD-A90131694	 76	 15%	 7%	 54%	 3%	

beclometasone	 BRD-K97810537	 77	 20%	 3%	 49%	 1%	

betamethasone	 BRD-A02180903	 81	 3%	 1%	 9%	 0%	

betamethasone	 BRD-A92177080	 74	 24%	 1%	 9%	 0%	

betamethasone	 BRD-K39188321	 72	 26%	 1%	 9%	 0%	

bortezomib	 BRD-K88510285	 66	 19%	 33%	 100%	 100%	

budesonide	 BRD-A60571864	 72	 2%	 10%	 60%	 5%	

budesonide	 BRD-A82238138	 74	 1%	 11%	 60%	 5%	

budesonide	 BRD-A34299591	 70	 44%	 11%	 60%	 5%	

clobetasol	 BRD-A26095496	 73	 2%	 1%	 77%	 0%	

clobetasol	 BRD-A63894585	 58	 1%	 2%	 77%	 0%	

clocortolone	 BRD-K38003476	 72	 7%	 1%	 79%	 0%	
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cortisone	 BRD-K43736954	 62	 60%	 2%	 2%	 10%	

desoximetasone	 BRD-A49447682	 72	 59%	 1%	 39%	 0%	

dexamethasone	 BRD-A35108200	 79	 2%	 1%	 80%	 0%	

dexamethasone	 BRD-A10188456	 75	 5%	 1%	 80%	 0%	

dexamethasone	 BRD-K38775274	 75	 5%	 1%	 80%	 0%	

dexamethasone	 BRD-A93424738	 74	 1%	 1%	 80%	 0%	

dexamethasone	 BRD-K47635719	 71	 40%	 1%	 80%	 0%	

diflorasone	 BRD-K17674993	 78	 17%	 1%	 85%	 1%	

fludroxycortide	 BRD-K00824317	 75	 8%	 1%	 72%	 8%	

fludroxycortide	 BRD-A49765801	 75	 4%	 3%	 72%	 8%	

flunisolide	 BRD-A65449987	 74	 58%	 1%	 42%	 10%	

flunisolide	 BRD-K49577446	 61	 64%	 2%	 42%	 10%	

fluocinonide	 BRD-A15297126	 48	 19%	 2%	 86%	 2%	

fluorometholone	 BRD-A13133631	 77	 14%	 1%	 84%	 0%	

flutamide	 BRD-K28307902	 79	 47%	 29%	 49%	 1%	

fulvestrant	 BRD-A90490067	 75	 7%	 9%	 0%	 26%	

fulvestrant	 BRD-A83237092	 60	 4%	 10%	 0%	 26%	

halcinonide	 BRD-K81709173	 83	 5%	 1%	 75%	 1%	

hydrocortisone	 BRD-A46186775	 74	 25%	 3%	 60%	 3%	

hydrocortisone	 BRD-A65767837	 68	 24%	 3%	 60%	 3%	

irinotecan	 BRD-K08547377	 76	 95%	 1%	 0%	 100%	

lovastatin	 BRD-A70155556	 81	 30%	 32%	 15%	 10%	

medrysone	 BRD-A20126139	 75	 68%	 1%	 70%	 4%	

medrysone	 BRD-K56515112	 63	 2%	 2%	 70%	 4%	

mometasone	 BRD-K60640630	 63	 5%	 2%	 30%	 0%	
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paclitaxel	 BRD-A23723433	 72	 41%	 100%	 100%	 100%	

paclitaxel	 BRD-A28746609	 77	 5%	 100%	 100%	 100%	

prednicarbate	 BRD-K46137903	 54	 45%	 11%	 65%	 4%	

prednisolone	 BRD-A27887842	 78	 45%	 4%	 8%	 0%	

prednisolone	 BRD-A01643550	 78	 17%	 4%	 8%	 0%	

rimexolone	 BRD-K31627533	 77	 2%	 1%	 84%	 0%	

simvastatin	 BRD-A81772229	 62	 33%	 44%	 0%	 3%	

sirolimus	 BRD-A79768653	 60	 5%	 82%	 45%	 15%	

sirolimus	 BRD-K89626439	 53	 29%	 83%	 45%	 15%	

sirolimus	 BRD-K84937637	 62	 26%	 87%	 45%	 15%	

temsirolimus	 BRD-A62025033	 67	 24%	 15%	 12%	 3%	

testosterone	 BRD-K90553655	 68	 30%	 1%	 1%	 5%	

testosterone	 BRD-A48720949	 74	 27%	 3%	 1%	 5%	

testosterone	 BRD-A55393291	 70	 30%	 3%	 1%	 5%	

toremifene	 BRD-K67174588	 73	 8%	 1%	 54%	 2%	

toremifene	 BRD-K51350053	 72	 12%	 3%	 54%	 2%	

triamcinolone	 BRD-A37780065	 67	 68%	 1%	 51%	 21%	

vemurafenib	 BRD-K56343971	 70	 11%	 1%	 84%	 0%	

vinblastine	 BRD-A22783572	 60	 1%	 100%	 100%	 100%	

vinblastine	 BRD-A55594068	 60	 1%	 100%	 100%	 100%	

vincristine	 BRD-K82109576	 53	 46%	 100%	 100%	 100%	

vincristine	 BRD-A60414806	 64	 4%	 100%	 100%	 100%	

vincristine	 BRD-A76528577	 59	 1%	 100%	 100%	 100%	

vinorelbine	 BRD-M30523314	 51	 25%	 100%	 100%	 100%	

vinorelbine	 BRD-K97514127	 54	 24%	 100%	 100%	 100%	
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vinorelbine	 BRD-K10916986	 62	 17%	 100%	 100%	 100%	
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Table	S6.	Symbols	and	notations	

Symbol	 Meaning	

d	 Index	for	a	drug	

c	 Index	for	a	cell	line	

g	 Index	for	a	gene	

ND	 Total	number	of	genes	

NC	 Total	number	of	cell	lines	

Cd	 The	set	of	cell	line	indeces	for	drug	d	

Pd	 The	set	of	protein	target	indeces	for	drug	d	

Gc	 The	set	of	knockdown	gene	indeces	for	cell	line	c	

Td	 The	intersection	of	knockdown	gene	indeces	Gc	for	all	cell	lines	in	Cd	

Ndc	 Number	of	experiments	for	applying	drug	d	to	cell	line	c	

Ngc	 Number	of	experiments	for	knocking	down	gene	g	in	cell	line	c	

Ng	 Neighbors,	or	protein-protein	interaction	partners,	of	gene	g	

Δ	 Drug-response	data	

Γ	 Gene-knockdown	data	

Ψ	 Control	data	

Ω	 Full	feature	data	

Xd	 Training	data	derived	from	drug	d	

yd	 Training	label	derived	from	drug	d	

νd	 Negative	(non-target)	genes	for	drug	d	
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Table	 S7.	 Summary	 of	 constructed	 feature	 sets.	 Note	 that	 different	 feature	 sets	 can	

have	 different	 dimensions	 (some	 contain	 values	 for	 each	 of	 the	 cell	 lines,	 etc…).	 The	

exact	dimension	and	content	of	each	feature	set	is	discussed	in	the	text.	

	

Feature	Name	 Symbol	 Meaning	

Direct	

Correlation	
fcor	

Correlation	between	a	drug	treatment	experiment	and	

a	gene	knockdown	experiment	

Indirect	

Correlation	
fPC	

Fraction	of	the	known	binding	partners	of	a	gene	in	

the	top	X	correlated	knockdown	experiments	

Cell	Selection	 fCS	
Correlation	between	a	drug	treatment	experiment	and	

the	control	experiment	for	the	cell	line	

PPI	Expression	 fPE	 The	average	or	the	max	(absolute	value)	expression	for	
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the	known	binding	partners	of	a	gene	
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Table	S8.	Enrichment	compound	names.	The	names	and	LINCS	IDs	of	the	validation	

compounds	shown	in	Figure	3.	

	

Num	 Compound	Name	 LINCS	ID	

1	 dexamethasone	 BRD-A93424738	

2	 clobetasol	 BRD-A63894585	

3	 budesonide	 BRD-A82238138	

4	 dexamethasone	 BRD-A35108200	

5	 rimexolone	 BRD-K31627533	

6	 clobetasol	 BRD-A26095496	

7	 medrysone	 BRD-K56515112	

8	 budesonide	 BRD-A60571864	

9	 betamethasone	 BRD-A02180903	

10	 fludroxycortide	 BRD-A49765801	

11	 fulvestrant	 BRD-A83237092	

12	 halcinonide	 BRD-K81709173	

13	 dexamethasone	 BRD-A10188456	

14	 dexamethasone	 BRD-K38775274	

15	 mometasone	 BRD-K60640631	

16	 sirolimus	 BRD-A79768653	

17	 clocortolone	 BRD-K38003476	

18	 fulvestrant	 BRD-A90490067	

19	 fludroxycortide	 BRD-K00824317	

20	 toremifene	 BRD-K67174588	

21	 vemurafenib	 BRD-K56343971	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/254367doi: bioRxiv preprint 

https://doi.org/10.1101/254367


	

	 93	

22	 toremifene	 BRD-K51350053	

23	 fluorometholone	 BRD-A13133631	

24	 alclometasone	 BRD-A90131694	

25	 diflorasone	 BRD-K17674993	

26	 prednisolone	 BRD-A01643550	

27	 fluocinonide	 BRD-A15297126	

28	 bortezomib	 BRD-K88510285	

29	 beclometasone	 BRD-K97810537	

30	 betamethasone	 BRD-A92177080	

31	 hydrocortisone	 BRD-A65767837	

32	 temsirolimus	 BRD-A62025033	

33	 hydrocortisone	 BRD-A46186775	

34	 betamethasone	 BRD-K39188321	

35	 sirolimus	 BRD-K84937637	

36	 testosterone	 BRD-A48720949	

37	 sirolimus	 BRD-K89626439	

38	 testosterone	 BRD-K90553655	

39	 testosterone	 BRD-A55393291	

40	 lovastatin	 BRD-A70155556	

41	 simvastatin	 BRD-A81772229	

42	 dexamethasone	 BRD-K47635719	

43	 budesonide	 BRD-A34299591	

44	 prednisolone	 BRD-A27887842	

45	 prednicarbate	 BRD-K46137903	

46	 flutamide	 BRD-K28307902	
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47	 flunisolide	 BRD-A65449987	

48	 desoximetasone	 BRD-A49447682	

49	 cortisone	 BRD-K43736954	

50	 flunisolide	 BRD-K49577446	

51	 medrysone	 BRD-A20126139	

52	 triamcinolone	 BRD-A37780065	

53	 irinotecan	 BRD-K08547377	

	

	

	 	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/254367doi: bioRxiv preprint 

https://doi.org/10.1101/254367


	

	 95	

Table	S9.	The	cellular	localization	of	successful	and	unsuccessful	drug	targets	enriched	

by	gene	ontology.	

	

	

	 	

		 Cellular	Component	 p-value	

Successful	

Targets	

proteasome	core	complex	 7.81E-37	

proteasome	core	 1.10E-28	

proteasome	alpha-subunit	 5.68E-18	

cytosol	 7.53E-12	

protein	complex	 1.88E-11	

Failed	

Targets	

transmembrane	transporter	complex	 7.77E-15	

sodium-exchanging	ATPase	complex	 4.42E-14	

cation-transporting	ATPase	complex	 8.74E-13	

plasma	membrane	part		 2.19E-11	

chloride	channel	complex	 2.33E-09	
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Table	S10.	Seven	cell	lines	were	included	in	the	validation	dataset.	The	number	of	drugs,	

knockdown	 genes,	 and	 control	 experiment	 are	 shown.	 For	 a	 given	 cell	 line,	 we	 only	

include	drugs	that	have	their	target	knockdown	experiments	available	in	that	cell	line.	

	 	

Cell	Line	 Drugs	 Knockdowns	 Controls	

A549	 188	 11947	 52	

MCF7	 180	 12031	 54	

VCAP	 175	 13225	 56	

HA1E	 172	 11968	 53	

A375	 143	 11696	 58	

HCC515	 129	 7828	 52	

HT19	 96	 10185	 52	
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