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To understand the architecture of a tissue it is necessary to know both the cell 11 

populations and their physical relationships to one another. Single-cell RNA-Seq 12 

(scRNA-Seq) has made significant progress towards the unbiased and systematic 13 

characterization of the cell populations within a tissue, as well as their cellular states, by 14 

studying hundreds and thousands of cells in a single experiment. However, the 15 

characterization of the spatial organization of individual cells within a tissue has been 16 

more elusive. The recently introduced ‘spatial transcriptomics’ method (ST) reveals the 17 

spatial pattern of gene expression within a tissue section at a resolution of one thousand 18 

100 µm spots, each capturing the transcriptomes of ~10-20 cells. Here, we present an 19 

approach for the integration of scRNA-Seq and ST data generated from the same sample 20 

of pancreatic cancer tissue. Using markers for cell-types identified by scRNA-Seq, we 21 

robustly deconvolved the cell-type composition of each ST spot, to generate a spatial 22 

atlas of cell proportions across the tissue. Studying this atlas, we found that distinct 23 

spatial localizations accompany each of the three cancer cell populations that we 24 

identified. Strikingly, we find that subpopulations defined in the scRNA-Seq data also 25 

exhibit spatial segregation in the atlas, suggesting such an atlas may be used to study 26 

the functional attributes of subpopulations. Our results provide a framework for creating 27 

a tumor atlas by mapping single-cell populations to their spatial region, as well as the 28 

inference of cell architecture in any tissue. 29 

 30 

INTRODUCTION 31 

 32 
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Tremendous technological advances have enabled a molecular view of cancer at 33 

unprecedented resolution1. Single-cell RNA-sequencing (scRNA-Seq) has emerged as a 34 

powerful tool that provides an unbiased and systematic characterization of the cells present in a 35 

given tissue2–4. Indeed, the application of scRNA-Seq to patient tumors has uncovered multiple 36 

cancer subtypes, cellular subpopulations, and has highlighted intercellular cross-talk within the 37 

tumor microenvironment 5–12. Using a non-malignant cell transcriptome as a reference, large 38 

copy number variations across entire chromosomes can also be inferred from the 39 

transcriptomes of malignant cells7. However, due to the necessity of cellular dissociation prior to 40 

sequencing of individual cells, the spatial context for each cell is lost thus limiting insight into the 41 

manner by which they compose a tumor.  42 

 43 

Recently, methods have recently been introduced that provide spatially resolved transcriptomic 44 

profiling13–15 on the basis of a limited set of genes (typically < 20). In order to integrate spatial 45 

information with scRNA-Seq data, these methods are incredibly useful. For example, in situ 46 

hybridization (ISH) gene expression atlases16,17 have made for useful references for cellular 47 

localization. Using the ISH atlas as a guide, these groups were able to accurately map rare 48 

subpopulations in two different organisms using a small subset of genes. However, such atlases 49 

to guide the localization of each cell do not exist for solid tumors which have an unpredictable 50 

tissue architecture and gene expression patterns. Thus, high-throughput and comprehensive 51 

mapping of single-cells onto tissue requires robust integration of multiple methods.  52 

 53 

The recently developed Spatial Transcriptomics (ST) method is unique in its potential for 54 

seamless integration with scRNA-Seq data. ST enables spatially resolved transcriptomic 55 

profiling of tissue sections using spatially barcoded oligo-deoxythymidine (oligo-dT) microarrays, 56 

allowing for unbiased mapping of transcripts over entire tissue sections18 (Figure 1). Stahl et al. 57 

first used ST to characterize unique histological features of the olfactory bulb and breast cancer 58 

tissue, distinguishing genes expressed in invasive cancer versus ductal cancer in situ18. 59 

However, as is the case of previously reported spatially resolved transcriptomic tools13,19,20, a 60 

main limitation of the ST method is its lack of cellular resolution: each spot captures the 61 

transcriptomes of ~10-20 neighboring cells. Thus, in order to extract ST’s full potential, it would 62 

be necessary to combine its data with a distinct data modality such as scRNA-Seq. 63 

 64 

Here, we present the integration of scRNA-Seq with the ST method. In our method, a single-cell 65 

tumor suspension is generated and processed using the inDrop platform to identify cell-types 66 
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present and to infer the cellular identity of each cluster using a set of marker genes. From the 67 

same tumor, tissue sections are also cryosectioned and processed using the ST method to 68 

provide an unbiased map of all expressed transcripts across the tissue section. Because each 69 

ST spot is a mosaic of transcripts from all cells present within the spot, we computationally 70 

deconvolve each spot to precisely estimate cell-type proportions across the tissue using the 71 

scRNA-Seq-identified cell-type markers. Finally, deconvolving each ST spot yields individual, 72 

spatially resolved transcriptomes for each identified cell-type, allowing for comparison of cells 73 

across spatially distinct regions of tissue.  74 

 75 

We used this approach to study a tissue from the same pancreatic ductal adenocarcinoma 76 

(PDAC) tumor (Figure 1). We found three distinct pancreatic cancer cell populations – among 77 

five other non-cancer cell-types – in the scRNA-Seq data. Deconvolving the ST data on the 78 

PDAC tissue section, we find that the three cancer cell populations occupy distinct physical 79 

regions. Our analysis demonstrates the plausibility of using two powerful technologies to 80 

construct a comprehensive cellular atlas for any heterogeneous tissue.  81 

 82 

RESULTS 83 

 84 

Identifying cell populations in pancreatic cancer with single-cell RNA-Seq  85 

Two hours after a tumor was resected from a patient, it cleared pathology and arrived in our lab, 86 

where it was immediately processed for scRNA-seq and ST (see Methods). We processed the 87 

single-cell suspension using the inDrop platform21, collecting approximately 4,000 cells. After 88 

sequencing, initial analysis, and filtering, 806 transcriptomes remained for analysis with an 89 

average of approximately 4,000 unique molecular identifiers (UMIs) and 1,800 unique genes per 90 

cell (Figure S1). 91 

 92 

A tSNE analysis of the 806 cells based upon 615 dynamically expressed genes revealed eight 93 

distinct clusters (Figure 2A). To characterize each cluster, we identified cluster-specific gene 94 

expression (see Methods). Figure 2B shows the expression of a set of markers across the 95 

individual cells that were influential in our cell-type inference. The detected cell-types include 96 

fibroblasts (expressing S100A422), macrophages (expressing of FCGR3A and CD1423), tuft cells 97 

(expressing AVIL and TRPM524), CD8 T-cells (expressing CD8A25), and red blood cells 98 

(expressing HBB, HBA2, HBA1, and HBD)26. We did not identify acinar or ductal cells perhaps 99 
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due to our procedure for making a single-cell suspension. However, from our previous analyses 100 

of human and mouse pancreata we already have strong markers for these cell types27. 101 

 102 

We inferred that three of the clusters correspond to cancer populations: (1) a cell population 103 

expressing DPCR1, CLDN4, CEACAM6, CA9, GABRP, and AGR2, all of which are upregulated 104 

in pancreatic cancer cells28–33 (henceforth, Cancer A), (2) a cell population that is exocrine-like 105 

based on the Moffitt et al. classification based on the expression of REG3A, REG1A, CFTR, 106 

SLC4A4, AQP3, and SPINK134–38 (Cancer B), and (3) a cell population that displays high 107 

expression of pancreatic cancer-associated genes including S100P, LAMC2, TM4SF1, GABRP, 108 

and NPM132,39–41 (Cancer C) (Figure 2B-C). Based on a recent classification of PDAC 109 

subtypes42, we infer that both the Cancer A and the Cancer B population are aligned most 110 

closely to the ‘pancreatic-progenitor’ subtype based on high expression of the transcription 111 

factors that define this class (Figure S2).  112 

 113 

Spatial transcriptomics (ST) of pancreatic cancer tissue 114 

We cryosectioned unfixed, frozen tissue sections for ST analysis, from the same pancreatic 115 

cancer tumor sample used to generate the scRNA-Seq data (Figure 2). The sections were 116 

mounted onto a spatially barcoded microarray slide (see Methods). After staining the tissue, the 117 

section was presented to a trained pathologist for histological annotation of distinct tissue 118 

features (Figure 3A-D). We thus defined four regions: (1) high in cancer cells and desmoplasia, 119 

(2) the duct epithelium, (3) normal pancreatic tissue, and (4) inflamed tissue. The slide was then 120 

processed with the ST protocol: involving cDNA synthesis, in vitro transcription amplification, 121 

library construction, and sequencing18. Analyzing the sequence reads, we demultiplexed the 122 

reads and identified their spatial location within the tissue using the ST spatial-specific barcodes 123 

of the array. We detected approximately 2,000 UMIs and approximately 1,000 unique genes per 124 

spot. Mapping the distribution of UMIs and unique genes over the tissue spots indicates they 125 

are uniformly distributed (Figure 3E).    126 

 127 

The ST data allows one to examine for a particular gene across the tissue. Figure 3G shows the 128 

spatial gene expression profiles of four genes. As shown, CRISP3 is localized to the duct 129 

epithelium region of the tissue section, while COL1A2 shows localized expression in the 130 

desmoplasia region. We next asked if the ST spot transcriptomes can be clustered into co-131 

expressed regions. For this, we performed principal components analysis (PCA) on the 1,339 132 

most dynamically expressed genes across all spots. Figure 3H indicates the scores of the first 133 
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three PCs mapped to the tissue showing distinct tissue regions. The regions demarcated by 134 

these PCs confirm the pathologist-annotated sections of the tissue (Fig. 3A). For example, the 135 

PC3-high spots spatially localize to the duct epithelium of the tissue section. The genes 136 

contributing the most (highest loadings) to PCs one through three showed enriched Gene 137 

Ontology terms for cell migration and collagen fibril organization (PC1); cell migration and 138 

collagen induced tyrosine kinase activity (PC2); and digestive processes (PC3).  139 

 140 

Deconvolution of spatial transcriptomic data using single-cell transcriptomic data  141 

In our previous work, we studied the transcriptomes of human and mouse pancreata at single-142 

cell resolution43. Using the cell-type specific markers that we identified by scRNA-Seq, we 143 

deconvolved previously reported bulk pancreas transcriptomic data using an algorithm we 144 

named Bseq-SC (Bulk-sequencing single-cell deconvolution analysis). Here, we apply the same 145 

algorithm to the deconvolution of the spatial transcriptome spots to understand the 146 

regionalization of each cell-type (Figure 4A). 147 

 148 

In order to test Bseq-SC’s accuracy in deconvolving cell-types, we assembled 46 artificial 149 

mixtures of cell-type specific transcriptomes at distinct proportions (Figure S3A). We then 150 

deconvolved the cell-type proportions using Bseq-SC and compared with the true proportions 151 

(Figure S3A). We found R2 values greater than 0.9 for each of the six examined cell-types, 152 

indicating Bseq-SC’s ability to accurately deconvolve cell-proportions (Figure S3B). 153 

 154 

A set of marker genes specific to each cell-type was compiled to form a basis matrix for 155 

deconvolution (Figure 4A). Although neither acinar nor ductal cells were detected in our scRNA-156 

Seq data, we added to our basis matrix the previously identified strong marker genes for these 157 

cell-types (Figure S3)44. Deconvolving each spot transcriptome into individual cell-type, 158 

proportions we depicted the fraction of cell-types composing each spot with pie-charts replacing 159 

the ST spots (Figure 4B). 160 

 161 

When plotting the relative proportions of each cancer population identified, we found that they 162 

spatially segregate across the tissue (Figure 4C). Interestingly, while the Cancer A cells are 163 

sparsely concentrated across the tissue, the Cancer B cells localized strongly to the duct 164 

epithelium and the Cancer C population strongly localized to the region high in cancer tubules 165 

and desmoplasia. 166 

 167 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2018. ; https://doi.org/10.1101/254375doi: bioRxiv preprint 

https://doi.org/10.1101/254375
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Figure 4D shows the cell-type proportions for all of the examined spots. As the earlier PC 168 

analysis suggested, the annotated histological features correspond to areas with distinct cell-169 

type compositions. The region described as high in cancer tubules and desmoplasia was 170 

deconvolved predominantly into the cancer C population and fibroblasts (Figure 4D, light blue 171 

and dark blue, respectively). The duct epithelium region was enriched for Cancer B cells and 172 

ductal cells (Figure 4C, light green). Also as expected, the normal pancreatic tissue was 173 

enriched for acinar cells (Figure 4C, light green). Interestingly, the Cancer A cells were found to 174 

be localized in multiple regions of the tissue (Figure 4D, light green).  175 

 176 

Intra-cell population spatial relationships 177 

While the Bseq-SC algorithm deconvolves a given bulk ST spot to its relative cell proportions 178 

(Figure 4), we added a second step to further infer the full transcriptome of each of the 179 

composing cell-types (Figure 5A). Using these fully deconvolved spatial transcriptomes, we 180 

hypothesized that we could detect subpopulations of a particular cell-type across space. We 181 

started with a PCA on the deconvolved Cancer B spot transcriptomes (Figure 5B). To ask 182 

whether there is a correspondence between the Cancer B spot transcriptomes and their spatial 183 

position on the tissue, we annotated each spot with a specific color, using a two dimensional 184 

color map (Figure 5B). Mapping these colors back to the tissue we found that the PCA clusters 185 

of spots co-segregate spatially on the tissue (Figure 5C). In particular, spots located in the 186 

ductal epithelium region are clustered in PC space, while spots in the normal pancreatic area of 187 

the also cluster in PC space (Figure 5B). 188 

We next asked whether the same genes that contribute to subpopulations in the ST 189 

deconvolved spots, also delineate subpopulations amongst the scRNA-Seq clusters. For 190 

several genes we indeed found such co-separation (Figure 5D-F, Table S1-S2). For example 191 

REG1A – a gene implicated in the ductal to acinar transition45 – is one of the top 30 contributors 192 

to PC1 (Figure 5D). Its expression in the tissue also showed a distribution that is skewed to the 193 

ductal epithelium. Notably, this subpopulation structure is validated by the scRNA-Seq data 194 

where REG1A also shows subpopulation structure (Figure 5F). As another example, APOL1 195 

shows a separation in both the ST data and the scRNA-Seq data (Figure S5) (Figure 5F-I). 196 

Finally Table S1 indicates additional genes with co-separation in both the ST and scRNA-Seq 197 

data for both the Cancer B and Cancer C deconvolved transcriptomes. 198 

 199 

 200 

 201 
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DISCUSSION 202 

Here we describe the first application of scRNA-seq (using the inDrop system) and ST on the 203 

same tumor sample. By integrating these two orthogonal methods we extend existing analyses 204 

for studying spatial transcriptomics data by deconvolving the spot transcriptomes to individual 205 

cell-types using the scRNA-Seq-defined cell-type markers (Figure 1).  Previous scRNA-Seq 206 

studies cluster cells and then annotate each cluster based upon its uniquely expressed genes. 207 

Our approach of coupling scRNA-Seq and spatial transcriptomics offers another method for 208 

annotating an scRNA-Seq cluster: since there are histological features within the tissue section 209 

that can be visually distinguished and annotated, it is possible to match the location of an 210 

scRNA-Seq cluster after our deconvolution step with the histological region where they localize 211 

to guide cell-type inference (Figure 4).  212 

 213 

Here we identify three populations of cancer cells that we distinguish using their gene 214 

expression profiles. Past work using integrative gene expression analyses34,42,46 or virtual 215 

microdissections47 defined subtypes of PDAC that largely overlap between studies. Here, two of 216 

the three identified cancer cell populations (Cancer A and Cancer B) appear to align strongly to 217 

the ‘pancreatic progenitor’ subtype previously described based on high expression of the 218 

transcription factors characteristic of this subtype (Figure S2)42,46. Interestingly, the third cancer 219 

cell population (Cancer C) displays a gene expression program that was not defined in past 220 

molecular characterizations of pancreatic cancer. This cluster of cancer cells is enriched for the 221 

expression of TM4SF1 and CLDN1, genes associated with invasive traits48–50, and as well as 222 

the expression of other genes known to be associated with pancreatic cancer progression 223 

(S100P, LAMC2, NPM1)39–41. In our analysis we did not identify any acinar or ductal cells, 224 

perhaps due to the nature of the cell suspension preparation (see Methods). Although a defining 225 

characteristic of pancreatic cancer is a dense desmoplastic reaction – which consists of 226 

fibroblasts, stellate cells, endothelial cells, and immune cells51 – only fibroblasts and immune 227 

cells were identified in our scRNA-Seq data (Figure 2). Our inability to fully capture the cells 228 

present in the stroma likely reflects the specific preparation of the single-cell suspension 229 

necessary for scRNA-Seq, suggesting that perhaps additional steps need to be taken to fully 230 

dissociate the stromal and endothelial compartments of the desmoplasia.  231 

 232 

Interestingly, when we localize each of the observed cancer populations onto the ST spots 233 

based on their deconvolved proportions, only the Cancer C population is spatially restricted to 234 

the cancerous and desmoplastic region. When we map the fibroblast population onto the tissue, 235 
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we also find them to be strongly restricted to the cancerous and desmoplastic region and not 236 

highly concentrated around the pancreatic tissue. Both pancreatic cancer cells and stromal cells 237 

secrete factors and cooperate to promote the aggressive nature of the disease51–53. Because 238 

the fibroblasts identified in this scRNA-Seq dataset localize to the desmoplasia region with the 239 

Cancer C population and not to the fibrotic region surrounding the normal pancreatic tissue, this 240 

particular fibroblast population perhaps represents a population of cells in the stroma that is 241 

acting to promote the growth of these cancer cells.  242 

 243 

An advantage of our integration is the mapping of populations onto irregular tissue 244 

architectures. With the fully deconvolved ST data, we identify spatially segregated 245 

subpopulations of the Cancer A and Cancer B populations (Figures 5 and S5). In the case of the 246 

REG1A enriched Cancer cell B subpopulation, this may potentially represent a subset of cells 247 

that have transitioned from an acinar cell phenotype to a ductal cell phenotype based on a 248 

report suggesting the involvement of REG1A in this process45.  249 

 250 

The construction of a tumor atlas has far reaching impact, particularly with regard to the 251 

identification and classification of cell-populations that comprise such a heterogeneous tissue. 252 

The advent of scRNA-Seq has allowed for the identification of cancer subtypes and non-253 

malignant cell subpopulations10,54; the framework for atlas construction described here can aid 254 

in assigning potential functional roles of cellular subtypes based on spatial localization (relative 255 

to the tissue, or relative to the other cells present). Additionally, by applying scRNA-Seq and ST 256 

on the same biological sample as we describe here, rare subpopulations specific to the sample 257 

can be mapped to the same tissue of origin. In the case of tumors for which the precise 258 

composition of different tumor sub-classifications are likely to vary from individual to individual, 259 

the subtype composition and spatial localization can be ascertained for a given patient, and can 260 

perhaps be correlated with patient outcome.  261 

 262 

Our approach for integration has a number of limitations. First, the number of spots with the 263 

current implementation of ST is just over 1,000 spots that span a ~6 mm x ~6 mm array. 264 

Second, the resolution is low; each spot is 100 µm in diameter, thus capturing roughly 10-20 265 

cells depending on cell types captured and the thickness of the tissue section (generally ranging 266 

from 8 to 20 µm). Additionally, the distance between the center of two adjacent spots is 200 µm, 267 

therefore the array of ST spots does not cover the entire area of the tissue. At this scale there is 268 

insufficient resolution, for example, to study the architecture of pancreatic islets which have a 269 
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diameter similar to that of the ST spots. Despite these limitations we observed interesting 270 

cellular architectures within the tumor and it would be interesting to apply this approach beyond 271 

cancer, for example to organs such as the testes, embryonic stages where the entire organism 272 

can fit on the slide, and dynamic processes such as bacterial infection. 273 

 274 

 275 

  276 
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METHODS 277 

 278 

Tumor sample handling and dissociation. The pancreatic ductal adenocarcinoma tumor was 279 

delivered in RPMI (Fisher) on ice directly from the operating room to the lab after clearing 280 

pathology (~2 hours). The tumor resection was rinsed in ice cold PBS and cut into ~4-5 mm3 281 

pieces from which 1 mm thick slices were taken and set aside in ice-cold PBS. The remaining 282 

~3-4 mm3 pieces were embedded in chilled OCT and snap-frozen in isopentane cooled with 283 

liquid N2. The 1 mm tissue slices stored in PBS was further minced with scalpels to < 1 mm3 . 284 

Tissue was rinsed from the dish with ice cold PBS and pelleted by centrifuging at 300 x g for 3 285 

minutes at 4 degrees. PBS was aspirated and 5 ml 0.25% pre-warmed trypsin-EDTA with 10 286 

U/µl DNaseI (Roche) was added and put into a 37 degree water bath for 30 minutes with gentle 287 

inversion every 5 minutes. The resulting suspension was filtered through a 100 µm cell strainer 288 

to remove larger chunks of undigested tissue. Enzymatic digestion was quenched with the 289 

addition of FBS to a final concentration of 10%. Cells were pelleted by centrifuging the 290 

suspension at 300 x g for 3 minutes at 4 degrees and washed twice with 5 ml ice-cold PBS. 291 

After a final spin at 300 x g for 3 minutes, the cells were resuspended in PBS to a final 292 

concentration of 10,000 cells/ml. The resulting viability was >95% as shown by trypan blue 293 

exclusion.  294 

 295 

inDrop library preparation and scRNA-Seq. From the single-cell suspension, 4000 cells were 296 

encapsulated using the inDrop platform and reverse transcription (RT) reaction was performed 297 

as previously described43. The number of PCR cycles performed for final library amplification 298 

ranged from 9-12 cycles. Paired end sequencing was performed on an Illumina NextSeq500 299 

sequencer. 300 

 301 

Clustering of single-cell data and marker gene selection. tSNE was applied to the single-cell 302 

RNA-Seq data using only highly expressed (fraction of total TPM above 0.5) and highly variant 303 

genes (Fano-factor above mean-dependent threshold). To define cell-types from the tSNE 304 

analysis we used a density-clustering method, DBscan55. This approach revealed 8 cell types, 305 

from which we used the top preferentially expressed genes (p < 10-5, Kolmogorov Smirnov test) 306 

to infer the cluster identity.  307 

 308 

Spatial Transcriptomics of PDAC tissue. Approximately 3-4 mm3 sized pieces of the tumor 309 

tissue were embedded in cold OCT and snap frozen in isopentane prior to cryosectioning. 310 
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Sections were cut to a thickness of 10 µm and mounted onto the spatially barcoded arrays. 311 

Tissue fixation, staining, imaging, and subsequent Spatial Transcriptomics library preparation 312 

was performed as previously described56 with the following changes: after RNA amplification by 313 

in vitro transcription (IVT) and subsequent bead clean-up, second RT reaction was performed 314 

using random hexamers, eliminating the need for a primer ligation step57. The number of PCR 315 

cycles to amplify the final libraries ranged from 9-13 cycles. Paired end sequencing was 316 

performed on an Illumina NextSeq500 sequencer. FASTQ files were processed using an 317 

adapted version of the celseq2 pipeline to demultiplex the spots to their spatial location.  318 

 319 

Statistical deconvolution and cell-type specific expression estimation. In order to calculate 320 

the cell type proportions, we generated a basis matrix of for each cell type using a list of specific 321 

marker genes to generate a signature for each cell type as previously described43. This basis 322 

matrix was then used to estimate cell type proportions for each individual ST spot using 323 

CIBERSORT58. Additionally, with the full single cell data for over 19,000 genes we calculated 324 

the “cell type specificity” as the likelihood a particular gene would be expressed in each of the 325 

cell types. The specificity was then factored alongside the cell type proportions to estimate the 326 

cell type specific expression of each gene in each spot according to the following 327 

formulas. 328 

�� � ��� � ��� � 	
 �
B

�����
 

E���	 � Σ��� � ��� � 	
 

Where n is the cell type, En is the expression of a gene in cell type n, B is the raw UMI count for 329 

that given gene in a single spot, Pn is the proportion of cell type n in that single spot, S is the cell 330 

type specificity for the given gene, and Espot is the sum of expression estimates for the gene 331 

over n cell types.   332 
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FIGURE CAPTIONS 333 

 334 

Figure 1. A schematic for the integration of scRNA-Seq and ST. A surgically resected 335 

PDAC tumor sample was split and processed in parallel by scRNA-Seq and ST. scRNA-Seq 336 

was performed using inDrop - a microfluidic implementation of CEL-Seq2 - to produce a gene 337 

expression matrix. After clustering, each cluster is defined as a particular cell-type according to 338 

their transcriptomes. A cryosection of an OCT embedding of the rest of the sample was used for 339 

ST analysis to produce a gene expression matrix where each column is a spot transcriptome. 340 

Integrating the two datasets allows us to deconvolve each spot into its comprising cell-types  341 

 342 

 343 

Figure 2. Identifying cell-types present in a PDAC tumor sample. 344 

(A) tSNE plot of scRNA-Seq data produced from a part of the PDAC tumor sample studied 345 

here. After sequencing and filtering, 806 cells were analysed (see Methods). The tSNE 346 

analysis is based on 615 dynamically expressed genes (see Methods). Colors indicate 347 

cell-types characterized by marker expression (B). 348 

(B) Heatmap indicating the expression of cell-type specific markers used to infer cell-type 349 

identity. 350 

(C) For four clusters, separate tSNE plots are shown with colors indicating the expression of 351 

levels of the noted marker genes. Expression values are scaled by the k-nearest 352 

neighbors smoothed expression described by Wagner et al (bioRxiv 2017).  353 

(D) PCA on the Cancer A and Cancer B populations using 742 and 543 dynamically 354 

expressed genes, respectively.  355 

 356 

Figure 3. Pancreatic cancer spatial transcriptomics analysis 357 

(A) Annotated H&E staining of a section of PDAC tumor tissue on the ST slide. The 358 

annotations indicate a region high in cancer cells and desmoplasia (red), normal 359 

pancreatic tissue (blue), normal duct tissue (yellow), and inflammation (green). Note the 360 

spots in the background. 361 

(B) Inset of pancreatic tumor tubules and surrounding desmoplasia. White arrowheads point 362 

to tumor cells organizing around tubules. Black arrowheads show the surrounding 363 

stroma and desmoplasia. 364 

(C) Inset of healthy pancreatic tissue. Arrowheads indicate the acini.  365 
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(D) Inset of duct epithelium and inflamed tissue. White arrowheads indicate the pancreatic 366 

ducts and the black arrowheads point to inflammatory cells with smaller nuclei.  367 

(E) Histogram of the number of detected transcripts (left) and genes (right) for each spot.  368 

(F) The maps show the detected transcripts (left) and genes (right) in the indicated spatial 369 

location. 370 

(G) Spatial gene expression profiles for the indicated four genes. 371 

(H) Principal components analysis on the spot transcriptomes. Color in each plot indicates 372 

the score for the PC. Note the regional localization of expression. Below, enriched gene 373 

ontology terms for genes with high loadings for the PC. 374 

 375 

Figure 4. Deconvolution of spatial transcriptome data with scRNA-Seq-defined cell-type 376 

markers.   377 

(A) A schematic of ST deconvolution using the Bseq-SC algorithm. Using a set of marker 378 

genes for each cell-type (left), the Bseq-SC algorithm deconvolves bulk transcriptomes 379 

into individual cell-type proportions.  380 

(B) The pie-charts indicate the deconvolved proportions of cell-types in the specified tumor 381 

region.  382 

(C) Heat maps of select cell-type proportions over the ST spots.  383 

(D) Cell-type proportions across the entire studied tissue section.  384 

 385 

Figure 5. Subpopulation spatial mapping. 386 

(A) Schematic of the full deconvolution of bulk Spatial Transcriptomics data into individual 387 

cell-type spatial transcriptomes 388 

(B) PCA of the deconvolved Cancer B gene expression. Only spots with a proportion of 389 

Cancer B cells >10% are selected for analysis. Spots are colored by a two-dimensional 390 

color map. 391 

(C) ST spots, colored as in B. Note the clustering of similar color shades. 392 

(D) Same as B, colored according to the deconvolved expression levels of the REG1A gene. 393 

(E) Same as C, colored according to the deconvolved expression levels of the REG1A gene. 394 

(F) Subpopulations in the inDrop data. PCA of Cancer B population (Figure 2D), colored 395 

according to the expression levels of REG1A.  396 

 397 

SUPPLEMENTARY FIGURES AND TABLES 398 

 399 
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Figure S1. inDrop statistics. On the left, histogram of unique transcripts per cell (log10). Right, 400 

histogram of unique genes per cell.  401 

 402 

Figure S2. Expression of pancreatic progenitor subtype TFs in Cancer A cells and  403 

Cancer B cells. Expression of transcription factors defining of the ‘pancreatic progenitor’ 404 

subtype described in (30).  405 

 406 

Figure S3. Testing Bseq-SC accuracy.  407 

(A) Comparing known cell-type proportions with the deconvolved proportions for simulated bulk 408 

samples. 46 bulk mixtures were assembled from our previous pancreas data43 by two 409 

different strategies. In the first strategy (1-36), we generated mixes comprised of equal 410 

combinations of three cell types, two cell types and one mixture of equal amounts of all six 411 

cell types. The transcriptome of each cell-type was derived from 150 cells annotated to that 412 

cell type. In the second strategy (37-46), 150 cells are randomly selected from the ~7,000 413 

single-cell matrix. Note that the 10 mixtures are nearly identical and reflect biological 414 

proportions of the single cell data.  415 

(B) A strong correlation was detected between the deconvolved and true proportions.  416 

 417 

Figure S4. Basis matrix of marker genes for deconvolution of ST data. 418 

 419 

Figure S5. Subpopulation spatial mapping. 420 

(A) PCA of the deconvolved Cancer A gene expression. Only spots with a proportion of 421 

Cancer A cells >10% are selected for analysis. Spots are colored by a two-dimensional 422 

color map. 423 

(B) ST spots, colored as in A. Note the clustering of similar color shades. 424 

(C) Same as A, colored according to the deconvolved expression levels of the APOL1 gene. 425 

(D) Same as B, colored according to the deconvolved expression levels of the APOL1 gene. 426 

(E) Subpopulations in the inDrop data. PCA of Cancer A population (Figure 2D), colored 427 

according to the expression levels of APOL1.  428 

 429 

  430 
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Table S1. Additional genes showing co-separation for the Cancer B and C deconvolved 431 

transcriptomes. 432 

 433 

Genes co-separating Cancer A Genes co-separating Cancer B 

TFF2 CLDN2 

TFF3 TIMP1 
DUOX2 TGM2 

SERPING1 KRT19 
CD74 DDIT4 
SOD1  
MUC1  
PRSS8  
MCL1  
PLAT  

 434 
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Figure S1
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Figure S2
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Figure S3
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Figure S4
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Figure S5
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