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To understand tissue architecture it is necessary to understand both which cell 10 

types are present and their physical relationships to one another. Single-cell 11 

RNA-Seq (scRNA-Seq) has made significant progress towards the unbiased and 12 

systematic characterization of cell populations within a tissue by studying 13 

hundreds and thousands of cells in a single experiment. However, the 14 

characterization of the spatial organization of individual cells within a tissue has 15 

been more elusive. The recently introduced ‘spatial transcriptomics’ method (ST) 16 

reveals the spatial pattern of gene expression within a tissue section at a 17 

resolution of a thousand 100 µm spots across the tissue, each capturing the 18 

transcriptomes of ~10-20 cells. Here, we present an approach for the integration 19 

of scRNA-Seq and ST data generated from the same sample of pancreatic cancer 20 

tissue. Using markers for cell types identified by scRNA-Seq, we robustly 21 

deconvolved the cell type composition of each ST spot to generate a spatial atlas 22 

of cell proportions across the tissue. Studying this atlas, we found that distinct 23 

spatial localizations accompany each of the cell populations that we identified. 24 

Our results provide a framework for creating a tumor atlas by mapping single-cell 25 

populations to their spatial region, as well as the inference of cell architecture in 26 

any tissue.  27 
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INTRODUCTION 28 

 29 

Tremendous technological advances have enabled a molecular view of cancer at 30 

unprecedented resolution1. Single-cell RNA-sequencing (scRNA-Seq) has emerged as 31 

a powerful tool, providing an unbiased and systematic characterization of the cells 32 

present in a given tissue2–4. Indeed, the application of scRNA-Seq to patient tumors has 33 

uncovered multiple cancer subtypes, cellular subpopulations, and has highlighted 34 

intercellular cross-talk within the tumor microenvironment5–12. Using a non-malignant 35 

cell transcriptome as a reference, large copy number variations across entire 36 

chromosomes can also be inferred from the transcriptomes of malignant cells7. 37 

However, due to the necessity of cellular dissociation prior to sequencing of individual 38 

cells, the spatial context for each cell is lost thus limiting insight into the manner by 39 

which they compose a tumor.  40 

 41 

Recently, methods have been introduced that provide spatially resolved transcriptomic 42 

profiling13–16 on the basis of a limited set of genes (typically less than 20 genes). These 43 

methods are incredibly useful for the integration spatial information with scRNA-Seq 44 

data. For example, in situ hybridization (ISH) gene expression atlases have made for 45 

useful references for cellular localization17,18. Using the ISH atlas as a guide, these 46 

groups were able to accurately map rare subpopulations in two different organisms 47 

using a small subset of genes. However, such atlases do not exist for solid tumors 48 

which have an unpredictable tissue architecture and gene expression patterns. Thus, 49 

high-throughput and comprehensive mapping of single-cells onto tissue requires robust 50 

integration of multiple methods.  51 

 52 

The recently developed Spatial Transcriptomics (ST) method is unique in its potential 53 

for seamless integration with scRNA-Seq data. ST enables spatially resolved 54 

transcriptomic profiling of tissue sections using spatially barcoded oligo-deoxythymidine 55 

(oligo-dT) microarrays, allowing for unbiased mapping of transcripts over entire tissue 56 

sections19 (Figure 1). Stahl et al. applied ST to characterize unique histological features 57 

of the mouse olfactory bulb and breast cancer tissue, distinguishing genes expressed in 58 
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invasive cancer versus ductal cancer in situ19. However, as is the case of previously 59 

reported spatially resolved transcriptomic tools13,20,21, a main limitation of the ST method 60 

is its lack of cellular resolution: each spot captures the transcriptomes of ~10-20 61 

neighboring cells. In order to extract the full potential of ST, it would be necessary to 62 

combine its data with a distinct data modality such as scRNA-Seq. 63 

 64 

Here, we present an integration of scRNA-Seq with the ST method. In our method, a 65 

single-cell tumor suspension is generated and processed using the inDrop platform to 66 

identify clusters and to infer the cellular identity of each one by studying the differentially 67 

expressed genes. From the same tumor, tissue sections are also cryosectioned and 68 

processed using the ST method to provide an unbiased map of all expressed transcripts 69 

across the tissue section. Because each ST spot is a mosaic of transcripts from the 70 

cells present within the spot, we computationally deconvolve each spot to precisely 71 

estimate cell type proportions across the tissue using the scRNA-Seq-identified cell type 72 

markers. We used this approach to study tissue from the same pancreatic ductal 73 

adenocarcinoma (PDAC) tumor (Figure 1). We identified six cell types and used them to 74 

deconvolve the ST data on the PDAC tissue section. We find that different cell types 75 

occupy distinct regions within the tissue that can be matched with the tissue histology. 76 

Our analysis demonstrates the plausibility of using two powerful technologies to 77 

construct a comprehensive cellular atlas for any heterogeneous tissue.  78 

 79 

RESULTS 80 

 81 

Identifying cell populations in pancreatic cancer with single-cell RNA-Seq 82 

  83 

Two hours after tumor resection, the PDAC tissue arrived in our lab where it was 84 

immediately processed for scRNA-seq and ST (see Methods). We processed the 85 

single-cell suspension using the inDrop platform22, collecting approximately 4,000 cells. 86 

After sequencing, initial analysis, and filtering, 820 transcriptomes remained for analysis 87 

with an average of approximately 4,000 unique molecular identifiers (UMIs) and 1,800 88 

unique genes per cell (Figure S1). Because cells are computationally filtered based on 89 
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the percentage of ribosomal and mitochondrial transcripts (where a high expression of 90 

mitochondrial genes is an indicator of cell stress), we suspect that the large drop-out in 91 

cells can be attributed to the conditions used for dissociation of the tissue, and the 92 

potentially apoptotic nature of the tumor following surgery.  93 

 94 

We next sought to infer the cell type identities of the 820 cells. To reduce the overall 95 

noise inherent to scRNA-Seq data23, we applied our recently developed k-nearest 96 

neighbor smoothing algorithm 24. We then explored the data using multidimensional 97 

scaling (MDS, Figure 2a) and expression heatmaps (Figure 2b). In combination, these 98 

visualizations allowed us to identify six main clusters representing 758 of the 820 cells. 99 

We deliberately left 62 cells unclassified that likely corresponded to rarer cell types and 100 

were difficult to identify given the limited number of cells. 101 

 102 

To infer the cell types of each cluster, we examined the expression profile of individual 103 

marker genes (Figure 2c). The identified T-cell cluster exhibited high expression of 104 

CD8A and CD8B, which are known T-cell receptor genes. The macrophage cluster was 105 

identified by expression of CD14, FCGR3A, HLA-DPA1 (MHC class genes). The 106 

stromal cells likely contain multiple cell types such fibroblasts, endothelial cells, and 107 

pericytes. The cancer cells express TMFSF1, a gene associated with pancreatic cancer 108 

progression25,26, and metabolism associated genes such as NNMT and IGF2. 109 

Interestingly, over half of our cells represented ductal cells expressing KRT19 and 110 

SPP1. However, we identified two sub-populations of this cell type, which are quite 111 

similar overall yet cluster distinctly in the MDS-analysis (Figure 2a).  112 

 113 

In order to detect differentially expressed genes across the cell types, we performed 114 

pairwise t-tests. This analysis led us to detect genes that are consistently more highly 115 

expressed in one cell type relative to all other cell types, and we identified between 26 116 

to 171 cell type specific genes. 117 

 118 

Spatial transcriptomics (ST) of pancreatic cancer tissue 119 

 120 
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To generate unbiased gene expression maps of the tissue sections, we mounted 10 µm 121 

cryosections of unfixed, OCT-embedded PDAC tissue (originating from the same tumor 122 

used to generate a single-cell suspension) onto the spatially barcoded microarray slides 123 

(see Methods). After staining the tissue with hematoxylin and eosin (H&E), the slide was 124 

presented to a pathologist (C.H.H.) to annotate distinct histological features across the 125 

tissue (Figure 3a-d). We thus defined four regions: (1) high in cancer cells and 126 

desmoplasia, (2) the duct epithelium, (3) normal pancreatic tissue, and (4) inflamed 127 

tissue. The slide was then processed with the ST protocol: involving cDNA synthesis, in 128 

vitro transcription amplification, library construction, and sequencing19. Analyzing the 129 

sequence reads, we demultiplexed the reads and identified their spatial location within 130 

the tissue using the ST spatial-specific barcodes of the array. We detected 131 

approximately 2,000 UMIs and approximately 1,000 unique genes per spot. Mapping 132 

the distribution of UMIs and unique genes over the tissue spots indicates they are 133 

uniformly distributed (Figure S2a-b).   134 

  135 

We next asked if the ST spot transcriptomes can be clustered into co-expressed 136 

regions. For this, we performed principal components analysis (PCA) on the 1,339 most 137 

dynamically expressed genes across all spots. Figure 3e illustrates the scores of the 138 

first three PCs mapped to the tissue showing distinct tissue regions. The regions 139 

demarcated by these PCs confirm the annotated histological features of the tissue 140 

(Figure 3a). For example, PC1 and PC2-high spots correspond to the cancerous region 141 

of the tissue, whereas PC3-high spots spatially localize to the duct epithelium of the 142 

tissue section. Genes with high loadings for each PC demonstrate similar localization 143 

according to which PC each gene contributes most (PPDPF and PC1; LAMC2 and PC2; 144 

PIGR and PC3, Figure 3f). 145 

  146 

The genes with the highest loadings for each PC enriched for Gene Ontology (GO) 147 

terms reflective of each tissue region. Both the cancerous and inflamed region of the 148 

tissue demonstrated a high PC1 score, which enriched for GO terms related to the 149 

interferon response, as would be expected both in response to inflammation27 and, in 150 

some cases, in response to tumor growth28 (Figure S2c). PC2 enriched GO terms 151 
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included extracellular matrix (ECM) organization and collagen catabolic processes, 152 

perhaps indicating the stromal remodeling taking place in response to, or in support of, 153 

the growth of the tumor36. The GO terms enriched in PC3 are highly reflective of the 154 

transport and release of digestive enzymes of the exocrine pancreas, as expected in the 155 

ductal epithelium.   156 

 157 

Deconvolution of spatial transcriptomic data using single-cell transcriptomic data  158 

 159 

In our previous work on characterizing human and mouse pancreata at single-cell 160 

resolution, we learned cell type-specific expression profiles from single-cell RNA-Seq 161 

data, and used these profiles to estimate individual cell type proportions from bulk gene 162 

expression data29. Since the expression profile measured by each spot on the spatial 163 

transcriptomics array can represent a mixture of different cell types, we reasoned that 164 

we could apply an analogous approach here to estimate cell type proportions at each 165 

location in the tissue. However, we found that the limited number of unique transcripts 166 

obtained for most spots made the deconvolution more challenging compared to bulk 167 

RNA-Seq data. We therefore modified the Cibersort deconvolution method30 to operate 168 

on “metagenes”, which represent aggregates of genes that we determined to exhibit cell 169 

type-specific expression profiles based on our scRNA-Seq data (see Methods). 170 

Although we did not identify acinar cells in our scRNA-Seq data, we included previously 171 

identified acinar-specific marker genes to the deconvolution of the ST data37, for a total 172 

of seven cell populations.  173 

 174 

Deconvolving each spot transcriptome into individual cell types, we obtained clear 175 

spatial patterns for four cell populations: ductal cells (subtype A), acinar cells, stromal 176 

cells, and cancer cells (Figure 4a). Specifically, our results indicated a co-localization of 177 

cancer cells and stromal cells, whereas ductal cells and acinar cells dominated the 178 

remaining tissue areas. Looking at each population, the regionalization matches what is 179 

expected from the pathology. The cancer cells and stromal cells are restricted to the 180 

annotated cancer and desmoplastic region as expected, while ductal cells are restricted 181 

to the duct epithelium (Figure 4b). To obtain an unbiased view of the localization 182 
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patterns, we performed unsupervised clustering of the inferred cell type proportions, 183 

which resulted in cluster assignments that again matched the pathology annotations 184 

(Figure 4c). 185 

 186 

We evaluated quantified the robustness of the deconvolution method using a simulation 187 

study. The underlying notion that we sought to test is whether the results of the 188 

deconvolution are reproducible with a synthetic dataset generated using the cell type 189 

proportions obtained from our initial analysis (see Methods). We found that the model 190 

was generally able to reproduce abundance estimates within a margin of error within 191 

20%. Furthermore, we found that we were able to consistently estimate cell type 192 

proportions of the ductal A cell population (Figure S3). As expected, the more lowly 193 

abundant a cell type is, the more difficult it is to estimate its relative proportion in the 194 

spot (Figure S3). 195 

 196 

Interestingly, the ductal A and B cell subpopulations segregate to distinct spatial regions 197 

in our analysis atlas (Figure 4a). Staining for two markers of these sub-populations 198 

using immunohistochemistry for further validated the distinct spatial regionalization 199 

(Figure S4). Further work will be directed towards further characterizing the relationship 200 

between the spatial and function of these sub-populations. 201 

 202 

DISCUSSION 203 

 204 

As single-cell transcriptomics continues to develop, we are gaining a deeper 205 

appreciation for intratumoral heterogeneity. A long-standing question is how the 206 

composite cells organize themselves relative to each other and relative to the entire 207 

tissue. Here, we describe a method for the identification and mapping of distinct cell 208 

types within a heterogeneous sample onto tissue cryosections. We begin by identifying 209 

and characterizing the cell types present with scRNA-Seq, and in parallel produce 210 

unbiased, transcriptomic maps of the cryosectioned tissue with the ST method. We then 211 

computationally deconvolve the ST expression data across the tissue to map the 212 

identified cell types across tissue sections originating from the same tissue. By applying 213 
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this method to PDAC tissue, we identify distinct cell populations instrinsic to the tumor 214 

microenvironment (stromal, immune populations, malignant cells) and cell populations 215 

expected from the pancreas tissue itself (pancreatic ductal cells).  216 

 217 

When we deconvolve the ST spots and map the location of cell types across the tissue, 218 

we observe both the cancer and fibroblast cell populations to be restricted to the 219 

cancerous and desmoplastic region (Figure 4a-b). Mapping of these cell types onto the 220 

tissue offers a way to attribute cellular activity (illustrated by enriched GO terms in 221 

Figure 3f) to the cell populations mapped to a region of interest. For example, the PC2 222 

GO terms in particular likely reflect the recruitment of macrophages to the tumor (in the 223 

case of the complement pathway activation31) and the activity of fibroblasts (the main 224 

cell type involved in remodeling of the tumor stroma32).  Therefore, our integrative tumor 225 

atlas provides an in-depth view of the biochemical and physiologic activities underlying 226 

the cell-populations present.  227 

 228 

By integrating two largely orthogonal approaches, we extend existing single-cell 229 

transcriptomic analyses by spatially mapping the identified cell types onto tissue 230 

sections from the same sample. Other methods for mapping transcripts (ISH, FISH) or 231 

proteins (immunohistochemistry, IHC) are limited to a single antibody or in situ probe 232 

per tissue section. When multiplexing antibodies or probes, one is still limited by the 233 

number of targets to visualize simultaneously. The ST method allows for unbiased 234 

visualization of all expressed transcripts across the same tissue section. Because the 235 

ST method measures all transcripts across the tissue, it overcomes the limitation of a 236 

single target per tissue section. 237 

 238 

An added advantage of our integration is the mapping of cell-populations onto irregular 239 

tissue architectures. Other current approaches to spatially map scRNA-Seq data onto 240 

tissue requires the use of an ISH atlas of the tissue of interest in order to guide cell-241 

localization17,18. These approaches are therefore unsuitable for tissues without ISH 242 

maps to guide cell-location inference. Here, the ST method provides an unbiased map 243 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/254375doi: bioRxiv preprint 

https://doi.org/10.1101/254375
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

of all expressed transcripts regardless of tissue architecture33,34, allowing for seamless 244 

integration of scRNA-Seq and ST data for any tissue of interest.  245 

 246 

Despite the potential of this integrated method, there are a number of limitations. First, 247 

we are limited by some of the technical features of the current ST implementation. Each 248 

array is about 6 x 6 mm in size, comprised of just over 1000 spots, each spot being 100 249 

µm in diameter and 100 µm apart; thus the array is neither large enough to cover the 250 

entire tissue, nor dense enough to provide single-cell resolution.. Additionally the tissue 251 

dissociated for scRNA-Seq comes from the biological sample but is not the same exact 252 

tissue used for ST. Thus, for reliable deconvolution of the ST data it is crucial to capture 253 

the most abundant cell types present in the tissue.  254 

 255 

The construction of a tumor atlas has far reaching impact, particularly with regard to the 256 

identification and classification of cell-populations that comprise such a heterogeneous 257 

tissue. The advent of scRNA-Seq has allowed for the identification of cancer subtypes 258 

and non-malignant cell subpopulations10,35; the framework for atlas construction 259 

described here can aid in assigning potential functional roles of cellular subtypes based 260 

on spatial localization (relative to the tissue, or relative to the other cells present). By 261 

applying scRNA-Seq and ST on the same biological sample as we describe here, rare 262 

subpopulations specific to the sample can be mapped to the same tissue of origin. In 263 

the case of tumors for which the precise composition of different tumor sub-264 

classifications are likely to vary from individual to individual, the subtype composition 265 

and spatial localization can be ascertained for a given patient, and can perhaps be 266 

correlated with patient outcome.   267 
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METHODS 268 

Tumor sample handling and dissociation to a single-cell suspension.  269 

The pancreatic ductal adenocarcinoma tumor was delivered in RPMI (Fisher Scientific) 270 

on ice directly from the operating room to the lab after clearing pathology (~2 hours). 271 

The tumor resection was rinsed in ice cold PBS and cut into ~4-5 mm3 pieces from 272 

which 1 mm thick slices were taken and set aside in ice-cold PBS. The remaining ~3-4 273 

mm3 pieces were embedded in chilled OCT and snap-frozen in isopentane cooled with 274 

liquid N2. The 1 mm tissue slices stored in PBS was further minced with scalpels to < 1 275 

mm3 . Tissue was rinsed from the dish with ice cold PBS and pelleted by centrifuging at 276 

300 x g for 3 minutes at 4 degrees. PBS was aspirated and 5 ml 0.25% pre-warmed 277 

trypsin-EDTA with 10 U/µl DNaseI (Roche) was added and put into a 37°C water bath 278 

for 30 minutes with gentle inversion every 5 minutes. The resulting suspension was 279 

filtered through a 100 µm cell strainer to remove larger chunks of undigested tissue. 280 

Enzymatic digestion was quenched with the addition of FBS to a final concentration of 281 

10%. Cells were pelleted by centrifuging the suspension at 300 x g for 3 minutes at 4 282 

degrees and washed twice with 5 ml ice-cold PBS. After a final spin at 300 x g for 3 283 

minutes, the cells were resuspended in PBS to a final concentration of 10,000 cells/ml. 284 

The resulting viability was >95% as shown by trypan blue exclusion.  285 

 286 

inDrop library preparation and scRNA-Seq.  287 

From the single-cell suspension, 4,000 cells were encapsulated using the inDrop 288 

platform and reverse transcription (RT) reaction was performed as previously 289 

described29. The number of PCR cycles performed for final library amplification ranged 290 

from 9-12 cycles. Libraries were diluted to 4 nM and paired end sequencing was 291 

performed on an Illumina NextSeq platform. Between 139 million and 145 million paired 292 

reads were generated for each library, corresponding to approximately 35,000 paired 293 

reads per cell.  294 

 295 

Processing of inDrop single-cell RNA-Seq sequencing data 296 

Raw sequencing data obtained from the inDrop method were processed using a 297 

custom-built pipeline, available online (https://github.com/flo-compbio/singlecell). Briefly, 298 
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the “W1” adapter sequence of the inDrop RT primer was located in the barcode read 299 

(the second read of each fragment), by comparing the 22-mer sequences starting at 300 

positions 9-12 of the read with the known W1 sequence 301 

(“GAGTGATTGCTTGTGACGCCTT”), allowing at most two mismatches. Reads for 302 

which the W1 sequence could not be located in this way were discarded. The start 303 

position of the W1 sequence was then used to infer the length of the first part of the 304 

inDrop cell barcode in each read, which can range from 8-11 bp, as well as the start 305 

position of the second part of the inDrop cell barcode, which always consists of 8 bp. 306 

Cell barcode sequences were mapped to the known list of 384 barcode sequences for 307 

each read, allowing at most one mismatch. The resulting barcode combination was 308 

used to identify the cell from which the fragment originated. Finally, the UMI sequence 309 

was extracted, and reads with low-confidence base calls for the six bases comprising 310 

the UMI sequence (minimum PHRED score less than 20) were discarded. The reads 311 

containing the mRNA sequence (the first read of each fragment) were mapped by STAR 312 

2.5.1 with parameter “—outSAMmultNmax 1” and default settings otherwise36. Mapped 313 

reads were split according to their cell barcode and assigned to genes by testing for 314 

overlap with exons of protein-coding genes. Only single-cell transcriptomes with > 1000 315 

UMIs, < 20% mitochondrial transcripts and < 30% ribosomal transcripts were kept, 316 

leaving 820 cells for analysis. 317 

 318 

Hierarchical clustering of single-cell RNA-Seq data 319 

For hierarchical clustering, we first excluded 13 protein-coding genes located on the 320 

mitochondrial chromosome from the data (MT-ATP6, MT-ATP8, MT-CO1, MT-CO2, 321 

MT-CO3, MT-CYB, MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-322 

ND6). We then applied k-nearest neighbor smoothing24 with k=15, and normalized 323 

(scaled) each expression profile to the median total transcript count (after smoothing). 324 

We then applied the Freeman-Tukey transformation y=sqrt(x) + sqrt(x+1) for variance 325 

stabilization, and selected the 1,000 genes with the largest variance. We then applied 326 

hierarchical clustering on both the genes and the cells, using the 327 

scipy.cluster.hierarchy.linkage function from scipy version 1.0.0. For clustering genes, 328 

we used the correlation distance metric, and for clustering cells, we used the Euclidean 329 
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distance metric. In both cases, we used average linkage. We used the gene and cell 330 

orderings obtained from these hierarchical clusterings to arrange the genes and cells in 331 

a heatmap of a matrix smoothed with k=31 (shown in Figure 2). 332 

 333 

Multidimensional scaling of single-cell RNA-Seq data 334 

 335 

Multidimensional scaling was performed on the data after smoothing (k=15), 336 

normalization, variance-stabilization, and filtering for the 1,000 most variable genes, as 337 

described above. The implementation used was the sklearn.manifold.MDS class from 338 

scikit-learn version 0.19.1, with settings max_iter=1000, n_init=10, and default 339 

parameters otherwise. 2.5% of jitter in both dimensions was added to improve the 340 

readability of the figure. 341 

 342 

Selection of genes with population-specific expression patterns based on single-343 

cell RNA-Seq data 344 

As described in the Results section, we manually defined clusters corresponding to 345 

individual cell populations, by inspecting the expression patterns of known marker 346 

genes in our heatmap and MDS visualizations. Based on these cluster assignments, we 347 

then systematically identified genes with population-specific expression patterns using 348 

the following strategy: We first merged our single-cell RNA-Seq data with acinar cells 349 

from human pancreatic islet sample 1 from Baron et al29. To ensure consistency, we 350 

downloaded the raw sequencing data from the NCBI Sequence Read Archive (SRA; 351 

accession SRX1935938) and processed them using the same pipeline that we used to 352 

process our single-cell RNA-Seq data (see above). We filtered for cells with at least 353 

1,000 unique transcripts (UMIs), resulting in a dataset containing 2,109 cells. We 354 

removed mitochondrial protein-coding genes (see above), and applied k-nearest 355 

neighbor smoothing with k=15. A set of 161 acinar was then easily identified by virtue of 356 

their high and specific expression of the known marker gene PRSS1 (i.e., above 5,000 357 

TPM, whereas the average expression in all other cells was 68 TPM). These cells were 358 

added to our single-cell RNA-Seq dataset, resulting in a dataset containing 359 

820+161=981 cells. We next applied the Freeman-Tukey transform (y=sqrt(x) + 360 
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sqrt(x+1) to this dataset as a variance-stabilizing transformation. To assess whether a 361 

gene was specifically expressed in a particular population (e.g., acinar cells), we 362 

compared the expression level of the gene in that population to that of each other 363 

population by calculating t-test statistics, one for each other population. We used the 364 

formula for the t-test statistic of an independent two-sample t-test (assuming equal 365 

variance), and retained the smallest (worst) test statistic across all pair-wise 366 

comparisons. We then used 2.392 as a threshold for the t-test statistic, as it represented 367 

the value that corresponded to a one-sided p-value of 0.01 for a comparison between 368 

the two populations with the smallest number of cells (T cells: n=19; macrophages: 369 

n=41; corresponding to a t-test with 41+19-2=58 degrees of freedom). For genes where 370 

the minimum t-test statistic exceeded this threshold, we then calculated the fold change 371 

in mean expression level for all other populations, retained the minimum value, and 372 

required this to be at least 1.2. 373 

 374 

Tissue preparation, cryosectioning, fixation, staining, and brightfield imaging 375 

Patients at NYU Langone Health consented preoperatively to participate in the study.  376 

PDAC tumor tissue arrived in RPMI (Fisher Scientific) on ice. Tissue was gently washed 377 

with cold 1X-PBS, and 4-5 mm3 cubes were removed with a scalpel for OCT-378 

embedding. Tissue was transferred from 1X PBS to a dry, sterile 10-cm dish and gently 379 

dried prior to equilibration in cold OCT for 2 minutes. The tissue was then transferred to 380 

a tissue-mold with OCT and snap-frozen in liquid nitrogen-chilled isopentane. Tissue 381 

blocks were stored at -80°C until further use.  382 

 383 

Prior to cryosectioning, the cryostat was cleaned with 100% ethanol, and equilibrated to 384 

an internal temperature of -18°C for 30 minutes. Once equilibrated, OCT embedded 385 

tissue blocks were mounted onto the chuck and equilibrated to the cryostat temperature 386 

for 15-20 minutes prior to trimming. ST slide was also placed inside cryostat to keep the 387 

slide cold and minimize RNase activity. Sections were cut at 10 µm sections and 388 

mounted onto the ST arrays, and stored at -80°C until use, maximum of two weeks.  389 

 390 
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Prior to fixation and staining, the ST array was removed from the -80C and into a 391 

RNase free biosafety hood for 5 minutes to bring to room temperature, followed by 392 

warming on a 37°C heat block for 1 minute. Tissue was fixed for 10 minutes with 3.6% 393 

formaldehyde in 1X PBS, and subsequently rinsed in 1x PBS. Next, the tissue was 394 

dehydrated isopropanol for 1 minute followed by staining with hematoxylin and eosin.  395 

Slides were mounted in 65 µl 80% glycerol and brightfield images were taken on a Leica 396 

SCN400 F whole-slide scanner 397 

at 40X resolution. 398 

 399 

Spatial Transcriptomics (ST) barcoded microarray slide information 400 

Library preparation slides used were purchased from the Spatial Transcriptomics team 401 

(https://www.spatialtranscriptomics.com; lot 10002). Each of the spots printed onto the 402 

array is 100 µm in diameter and 200 µm from the center-to-center, covering an area of 403 

6.2 by 6.6 mm. Spots are printed with approximately 2 x 108 oligonucleotides containing 404 

an 18-mer spatial barcode, a randomized 7-mer UMI, and a poly-20TVN transcript 405 

capture region19 (Figure 1).  406 

 407 

On-slide tissue permeabilization, cDNA synthesis, probe release 408 

After brightfield imaging, the ST slide was prewarmed to 42°C and attached to a pre-409 

warmed microarray slide module to form reaction chambers for each tissue section. The 410 

sections were pre-permeabilized with 0.2 mg/ml BSA and 200 units of collagenase 411 

diluted in 1X HBSS buffer for 20 minutes at 37°C, and washed with 100 µl 0.1X SSC 412 

buffer twice. Tissue was permeabilized with 0.1% pepsin in HCl for 4 minutes at 42°C 413 

and washed with 100 µl 0.1X SSC buffer twice.  414 

 415 

Reverse transcription (RT) was carried overnight (~18-20h) at 42°C by incubating 416 

permeabilized tissue with 75 µl cDNA synthesis mix containing 1X First strand buffer 417 

(Invitrogen), 5 mM DTT, 0.5 mM each dNTP, 0.2 µg/µl BSA, 50 ng/µl Actinomycin D, 418 

1% DMSO, 20 U/µl Superscript III (Invitrogen) and 2U/µl RNaseOUT (Invitrogen) 419 

 420 
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Prior to removal of probes, tissue was digested away from the slide by incubating the 421 

tissue with 1% 2-mercaptoethanol in RLT buffer (Qiagen) for one hour at 56°C with 422 

interval shaking. Tissue was rinsed gently with 100 µl 1X SSC, and further digested with 423 

proteinase K (Qiagen) diluted 1:8 in PKD buffer (Qiagen) at 56°C for 1 hour with interval 424 

shaking. Slides were rinsed in 2X SSC with 0.1% SDS, then 0.2X SSC, and finally in 425 

0.1X SSC.  426 

 427 

Probes were released from the slide by incubating arrays with 65 µl cleavage mix 428 

(8.75 μM of each dNTP, 0.2 μg/μl BSA, 0.1 U/μl USER enzyme (New England Biolabs) 429 

and incubated at 37 °C for 2 hours with interval mixing. After incubation, 65 µl of cleaved 430 

probes was transferred to 0.2 ml low binding tubes and kept on ice.  431 

 432 

ST library preparation and sequencing 433 

Libraries were prepared from cleaved probes as previously described, with the following 434 

changes. Briefly, after RNA amplification by in vitro transcription (IVT) and subsequent 435 

bead clean-up, second RT reaction was performed using random hexamers, eliminating 436 

the need for a primer ligation step37 437 

 438 

To determine the number of PCR cycles needed for indexing, 2 μl of the purified cDNA 439 

was mixed with 8 μl of a qPCR mixture [1.25x KAPA HiFi HotStart Readymix (KAPA 440 

Biosystems), 0.625 μM PCR lnPE1 primer, 12.5 nM PCR lnPE2 primer, 0.625 μM PCR 441 

Index primer, 1.25xEVA green (Biotium). Reactions were amplified on a Bio-Rad qPCR 442 

using the following program: 98 °C for 3 minutes, followed by 25 cycles of 98°C for 20 s, 443 

60°C for 30 s and 72°C for 30 s. Optimal cycle number approximated to be the number 444 

of cycles required to reach saturation of signal minus 3-4 cycles to reach the 445 

exponential phase of the amplification. 446 

 447 

The remaining purified cDNA was indexed and using the same program described 448 

above, except amplified at the pre-determined number of cycles and with the inclusion 449 

of a final 5 minute extension at 72°C. Average lengths of the indexed, purified libraries 450 

were assessed using a 2100 Bioanalyzer (Agilent) and concentrations were measured 451 
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using a Qubit dsDNA HS Assay Kit (Life Technologies), according to the manufacturer’s 452 

instructions.  453 

 454 

Libraries were diluted to 4 nM and paired-end sequencing was performed on an Illumina 455 

NextSeq sequencer with 31 cycles for read 1, and 46 cycles for read 2. Between 100 456 

and 125 million raw read-pairs were generated for each sequenced library.  457 

 458 

Primer sequences: 459 

PCR InPE 1: 460 

 5’-461 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT462 

CT-3’ 463 

PCR InPE 2: 464 

 5’-GTGACTGGAAGTTCAGACGTGTGCTCTTCCGATCT-3’ 465 

Cy3 anti-A probe: 466 

[Cy3]AGATCGGAAGAGCGTCGTGT 467 

Cy3 anti-frame probe: 468 

[Cy3]GGTACAGAAGCGCGATAGCAG 469 

 470 

ST spot selection and image alignment 471 

Upon removal of probes from ST slide, the slide is kept at 4°C for up to 3 days. The 472 

slide was placed into a microarray cassette and incubated with 70 µl of hybridization 473 

solution (0.2 µM Cy3-A-probe, 0.2 µM Cy3 Frame probe, in 1X PBS) for 10 minutes at 474 

room temperature. The slide was subsequently rinsed in 2X SSC with 0.1 % SDS for 10 475 

minutes at 50°C, followed by 1 minute room temperature washes with 0.2X SSC and 476 

0.1X SSC. Fluorescent images were taken on a Hamamatsu NanoZoomer whole-slide 477 

fluorescence scanner. Brightfield images of the tissue and fluorescent images were 478 

manually aligned with Adobe Photoshop CS6 to identify the array spots beneath the 479 

tissue.  480 

 481 

ST library sequence alignment and annotation 482 
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Reads with long stretches of poly A/T/C/G (15 or more) were removed, followed by 483 

BWA-based quality trimming. Remaining reads with less than 28 bp were removed. 484 

Reads were then mapped against the human genome (Ensembl GRCh38) with STAR 485 

v2.4 with default parameters, and counted using HTseq (count mode: union).  Each 486 

mapped, annotated read was demultiplexed by pairing with its corresponding forward 487 

read containing the spatial barcode ID. Paired reads with a spatial barcode not present 488 

in the reference barcode file were discarded, as were duplicates based on UMI 489 

information.  490 

 491 

Analysis of ST data 492 

UMI counts in each spot were normalized by the total number of transcripts per spot 493 

and then multiplied by a scale factor equivalent to the median number of transcripts per 494 

spot (TPM). A pseudocount of 1 was added prior to log10 transformation. For PCA of 495 

spots, the ~1300 most variable genes were selected (defined by the Fano factor above 496 

a mean-dependent threshold). PC scores for the first three components was then 497 

plotted for each spot corresponding to PDAC tissue.  498 

 499 

Gene Ontology enrichment analysis 500 

Genes were determined to have a high loading for a PC if the coefficient > √(1/N), 501 

where N = number of genes. To get Gene Ontology (GO) terms enriched for each gene 502 

set, the genes were first converted the ‘ENTREZ_GENE_ID’ format (default option) with 503 

DAVID 6.8 (https://david.ncifcrf.gov/). After format conversion, the appropriate species 504 

was then selected and annotated with DAVID 6.8. After functional annotation clustering, 505 

GO terms with p values > 0.05 were considered. 506 

 507 

Deconvolution of spatial transcriptomics expression profiles into cell type 508 

proportions using a modification of the Cibersort method 509 

To overcome the noisiness of individual gene expression measurements inherent in the 510 

spatial transcriptomics data, we used the genes with population-specific expression 511 

patterns (see above) to define seven “metagenes”, one per population. Each population 512 

metagene simply corresponds to the average expression values of all genes specifically 513 
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expressed in that population. We then calculated a “metagene basis matrix”. Similarly, 514 

we calculated the metagene expression matrix for our spatial transcriptomics data, and 515 

then used both matrices as the basis for deconvolution with Cibersort30. Cibersort 516 

applies support vector regression with a linear kernel to estimate cell type proportions. It 517 

implicitly assumes that all cell populations are represented in the basis matrix, and 518 

rescales the inferred cell type coefficients so that they sum to one, setting negative 519 

coefficients to zero in the process. We used our own Python implementation of the 520 

method, which mirrors the R implementation provided by Newman et al. and relies on 521 

the sklearn.svm.NuSVR class from scikit-learn 0.19.1. 522 

 523 

Evaluation of the robustness of the metagene deconvolution approach using 524 

synthetic data 525 

To evaluate the extent to which our metagene-based deconvolution approach was able 526 

to reliably quantify cell type abundances, we applied a strategy in which we first 527 

generated synthetic spatial transcriptomics data using the cell type proportions 528 

estimated in our deconvolution analysis, and the re-apply the deconvolution method, 529 

testing whether it is able to reproduce the same abundance estimates from these data 530 

(inspired by modeling work in the field of neurobiology38. If our method was unreliable 531 

(as an extreme case, imagine that its abundance estimates were random), then it would 532 

not be able to produce consistent estimates, and consequently fail this test. To generate 533 

the synthetic data, we first calculated “true” expression profiles for each population from 534 

our single-cell RNA-Seq data, by averaging the expression profiles of all cells assigned 535 

to one population, and then created mixture profiles for each spot by combined the true 536 

profiles according to the proportions estimated in our devonlution analysis. To account 537 

for the fact that each spot on the spatial transcriptomics array only produced a few 538 

thousands transcripts, we sampled matching numbers of transcripts using the Poisson 539 

distribution, following the same strategy we have described previously24 for simulated 540 

single-cell RNA-Seq data. We then calculated metagene expression patterns for the 541 

sampled data, and then re-applied Cibersort on this synthetic data. We repeated this 542 

simulation 15 times independently. 543 

 544 
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Deconvolving ST spots into cell type proportions 545 

To deconvolve each ST spot into cell type proportions, we used an R implementation of 546 

the Bseq-SC algorithm (https://github.com/shenorrLab/bseqsc) that takes as input: the 547 

raw ST and scRNA-Seq UMI count matrices, a vector of cell type labels for each cell in 548 

the scRNA-Seq count matrix, and a list of marker genes (chosen using the criteria 549 

described above). The output is a matrix of proportions of each cell type identified by 550 

scRNA-Seq in each ST spot.  551 

 552 

Immunohistochemical staining 553 

Tissue blocks were cryosectioned at a thickness of 5 µm prior to mounting onto 554 

SuperFrost slides (ThermoFisher). Sections were fixed with cold 100% methanol for 10 555 

minutes at -20°C. Slides were washed twice with 1X TBS for 5 minutes prior to 556 

incubation with 3% H2O2 for 10 minutes at room temperature. Next, slides were blocked 557 

with blocking solution(0.3%Triton-X 100 and 5% goat serum (Cell Signaling Technology, 558 

Cat. 5425) diluted in 1X TBS ) for 1 hour at room temperature. Slides were incubated 559 

with the AQP3 primary antibody (1:200, Abcam cat. ab85903) or CA9 primary antibody 560 

(1:1000 Novus Biologicals, cat. NB100-417) for 30 minutes at room temperature. Goat 561 

anti-rabbit secondary antibody (Abcam, cat no. ab6721) was added to the slides and 562 

incubated at room temperature for 30 minutes. Secondary antibody was removed and 563 

slides were washed three times in 1X TBS for 5 minutes each. After washes 400 µl ABC 564 

reagent (Vectastain ABC Kit,  cat. PK-6100)  was added to slides and incubated at room 565 

temperature for 30 minutes. The ABC reagent was removed and slides were washed 566 

three times in 1X TBS for 5 minutes each. To monitor staining 400 µl of DAB reagent 567 

(DAB Substrate Kit, Abcam cat no. ab64238) was added until sections developed. 568 

Slides were then immersed in dH2O and washed twice for 5 minutes each. Sections 569 

were dehydrated in 95% ethanol two times for 10 seconds, twice in 100% ethanol for 10 570 

seconds, and twice in xylene for 10 seconds.  571 

 572 

  573 
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FIGURE CAPTIONS 574 

 575 

Figure 1. A schematic for the integration of scRNA-Seq and ST. A surgically 576 

resected PDAC tumor sample was split and processed in parallel by scRNA-Seq and 577 

ST. scRNA-Seq was performed using inDrop22 to produce a gene expression matrix. 578 

After clustering, the cell type of each cluster is inferred according to specifically 579 

expressed genes. A cryosection of an OCT embedding of the rest of the sample was 580 

used for ST19 analysis to produce a gene expression matrix where each column is a 581 

spot transcriptome. Integrating the two datasets allows us to deconvolve each spot into 582 

its comprising cell types  583 

 584 

Figure 2. Identifying cell types present in a PDAC tumor sample. 585 

(a) Multidimensional scaling analysis on the 820 single-cell RNA-Seq transcriptomes. 586 

The analysis is shown for the 1,000 most dynamically expressed genes. The cells 587 

are colored according the hierarchical clustering (see Text). 588 

(b) Heatmap showing the gene expression of the 1,000 dynamically expressed genes 589 

across the 820 cells. The bottom bar indicates the cell clusters generated by 590 

hierarchical clustering. Expression values are standardized by gene such that the 591 

mean and standard deviation are 0 and 1, respectively. 592 

(c) Same as (b) for the indicated cell type marker genes. 593 

 594 

Figure 3. Pancreatic cancer spatial transcriptomics analysis 595 

(a) Annotated H&E staining of a section of PDAC tumor tissue on the ST slide. The 596 

annotations indicate a region high in cancer cells and desmoplasia (red), normal 597 

pancreatic tissue (blue), normal duct tissue (yellow), and inflammation (green). Note 598 

the spots in the background. 599 

(b) Inset of pancreatic tumor tubules and surrounding desmoplasia. White arrowheads 600 

point to tumor cells organizing around tubules. Black arrowheads show the 601 

surrounding stroma and desmoplasia. 602 

(c) Inset of healthy pancreatic tissue. Arrowheads indicate the acini.  603 
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(d) Inset of duct epithelium and inflamed tissue. White arrowheads indicate the 604 

pancreatic ducts and the black arrowheads point to inflammatory cells with smaller 605 

nuclei.  606 

(e) Principal components analysis on the spot transcriptomes. Color in each plot 607 

indicates the score for the PC. Note the regional localization of expression.  608 

(f) Spatial gene expression profiles for the indicated three genes. Each gene was 609 

picked on the basis of high loadings for a particular PC.  610 

 611 

Figure 4. Deconvolution of spatial transcriptome data with scRNA-Seq-defined 612 

cell type markers.   613 

(a) Heat maps indicating the cell type proportions for each of the studied cell types. For 614 

each map the color indicates the proportion of that cell type in the location. 615 

(b) Cell type proportions across the entire studied tissue section. Each pie-chart 616 

indicates the cell type proportions at the particular spatial location. 617 

(c) Unsupervised clustering of spot proportions. Using the proportions of each cell type 618 

across the spots, spots were clustered by k-means clustering to delineate four 619 

distinct spot clusters. The pie charts indicate average proportion of each cell type 620 

within each spot cluster.  621 

 622 

SUPPLEMENTARY FIGURES 623 

 624 

Figure S1. inDrop statistics.  625 

(a) Histogram of unique transcripts per cell (log10). 626 

(b) Histogram of unique genes per cell.  627 

 628 

Figure S2. Spatial Transcriptomics (ST) statistics.  629 

(a) Histogram of unique transcripts detected per spot (top), heatmap of unique 630 

transcripts plotted over ST spots (bottom). 631 

(b) Histogram of unique genes detected per spot (top), heatmap of unique genes plotted 632 

over ST spots (bottom). 633 
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(c) Gene Ontology terms for genes with high loadings. Genes contributing most to the 634 

first three PCs were annotated using DAVID 6.839.  635 

 636 

Figure S3. Robustness of metagene deconvolution approach tested using 637 

synthetic data. For each spot, a new synthetic spatial transcriptomics profile was 638 

generated using the cell type proportions inferred by the original deconvolution analysis 639 

(see Methods). Then, the metagene expression profiles was calculated for the synthetic 640 

profile and deconvolution was applied again. Shown is the error for the obtained 641 

abundances relative to the original abundance estimates, for individual populations. 642 

Spots are binned by abundance, and bars and error bars show mean and standard 643 

deviations across all spots in each bin.  644 

 645 

Figure S4. Immunohistochemical staining of ductal cell sub-population markers. 646 

(a) AQP3 immunohistochemical staining of pancreatic cancer tissue. From the same 647 

tissue block used for ST analysis (Figure 3), 5 µm frozen tissue sections were 648 

stained for AQP3, a marker for the ductal A population (Figure 2).  649 

(b) Inset of ductal epithelium lining. Black arrows indicate positive AQP3 staining.  650 

(c) Same as a) for CA9 immunohistochemical staining for the ductal B population.  651 

(d) Inset of the ductal epithelium lining (left inset) and cancerous region (right inset) of 652 

tissue section. Black arrows indicate positive CA9 staining, white arrows indicate 653 

negative/weak CA9 staining.    654 
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