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ABSTRACT 

Cell subtype proportional differences between samples significantly contribute to variation of 

functional genomic properties such as gene expression or DNA methylation.  Current analytical 

approaches typically deal with cell subtype proportion influences as a nuisance variable to be 

eliminated.  Here we demonstrate how harvesting information about cell subtype proportions from 

functional genomics data provides insights into the cellular events in human phenotypes.  We 

note a striking concordance between cell subtype proportions estimated from orthogonal genome-

wide assays, and demonstrate the potential for single-cell RNA-seq data to be used in tissues for 

which reference cell subtype functional genomic datasets are not available.  Taken together, our 
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results confirm the importance of estimating cell subtype proportions when testing a model of 

cellular reprogramming in human phenotypic association studies, and the value of simultaneously 

testing for systematic cell subtype proportional alterations as a separate phenotypic association, 

gaining extra insights from functional genomic studies. 

 

INTRODUCTION 

Assays that test how the genome functions are used to understand the cellular basis for 

differences in phenotypes between individuals.  In human disease studies, we invariably test 

samples that are composed of mixed populations of cell subtypes.  Commonly used functional 

genomic assays include gene expression profiling and assays testing DNA methylation.  DNA 

methylation can vary at a locus if it is methylated in one cell subtype but not another in the mixed 

sample tested, and if the proportion of these two cell subtypes differs between individuals.  This 

was systematically demonstrated by Houseman and colleagues in studies of peripheral blood 

leukocytes1.  He and others developed approaches to eliminate the influence of cell subtype 

proportional variation1–4, with the goal of eliminating an influence confounding the ability to detect 

changes of DNA methylation occurring in the cells studied, which have been described as cell-

intrinsic changes5.  While the same issue has been recognized to influence gene expression 

studies and has prompted some innovative approaches to identify cell-intrinsic changes in gene 

expression6–12, these approaches appear to be applied much less frequently in transcriptomic 

than in DNA methylation studies.   

We have recently described our interest in understanding phenotypic associations, not only in 

terms of cellular reprogramming consisting of cell-intrinsic functional genomic changes, as is 

typically studied, but also the generation of distinctive repertoires of cell subtypes in those with a 

distinctive phenotype, which we have described as polycreodism13.  As each can be distinctively 
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informative in understanding how a phenotype developed, they could both be considered valuable 

insights from functional genomic studies. 

We describe in this report how our re-analysis of several published studies discriminates between 

the separate outcomes of cell subtype changes and cell-intrinsic gene expression and DNA 

methylation differences associated with the phenotypes studied.  We also test how gene 

expression and DNA methylation studies perform in their prediction of cell subtype proportions, 

and their concordance with each other.  While we focus on studies of peripheral blood leukocytes 

in this evaluation, we show the potential for single cell RNA-seq to gain insights into less well 

characterized tissue types.  These reference-based approaches are compared with the 

commonly-used surrogate variable analysis (SVA) approach14,15, testing how SVA performs to 

adjust for cell subtype proportion effects and other sources of variability in the data studied.  We 

conclude that characterization of cell subtype proportions should be harvested as an outcome 

rather than discarded as merely a confounding influence, testing both the cellular reprogramming 

and polycreodism cellular models in phenotypic association studies. 

 

RESULTS 

Datasets used in this study 

We used publicly-available datasets from the Gene Expression Omnibus (GEO), focusing on 

studies of peripheral blood, for which reference datasets from cell subtypes of gene expression, 

DNA methylation and single cell RNA-seq are better developed than for other tissues.  A total of 

851 peripheral blood leukocyte gene expression results and 381 DNA methylation profiles were 

analyzed, studying disease phenotypes involving mediation by the immune system (asthma16,17 

and systemic lupus erythematosus (SLE)18), the physiological process of aging19, and a 

longitudinal study of gene expression in the same individual over 18 months20 (Table 1).  All 
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datasets were assessed for quality, including the elimination of samples from further analysis 

when there was evidence of misidentification (for example, supposedly female samples 

expressing genes from the Y chromosome).  We describe these results in detail in the 

Supplementary Note 1. 

Cell subtype proportions influence gene expression results 

Our first analysis was of gene expression profiles of peripheral blood leukocytes, in a study 

originally designed to compare individuals with severe and moderate asthma and healthy 

controls16.  As variation in gene expression levels between individuals can be due to a 

combination of alterations of gene activity within cells (cell-intrinsic changes) as well as alterations 

of the proportions of cell subtypes in the sample, our goal was to understand the degree to which 

each mechanism was influencing the gene expression changes observed by the authors. 

We took advantage of the availability of reference expression profiles for 22 different subtypes of 

leukocytes (LM22)21 and the CIBERSORT program, which uses a penalized multivariate 

regression approach to infer cell subtype proportions12, allowing us to estimate blood cell subtype 

proportions in samples from 422 individuals, both patients with severe asthma (204 females, 130 

males) and healthy controls (34 females, 53 males).  We then performed a principal component 

analysis (PCA) to estimate the contributions to gene expression variability from disease status as 

well as sex, smoking, and race, in addition to the influence of each estimated cell subtype 

proportion (Figure 1a).  To measure the contribution of each covariate, we used a linear modeling 

approach.  The principal components (PCs) of variation of the expression profiles were modeled 

as a linear function of cell subtype proportions.  Although disease status (severe asthma) was 

very weakly correlated with the first two PCs of gene expression variation (PC1 (20.9% of the 

variance), R2=0.0031 and p=0.25, PC2 (10.68% of variance) R2=0.041 and p=2.9*10-5), cell 

subtype proportion variation showed a much greater influence on gene expression 

(Supplementary Table 1).  These results indicate that for this asthma dataset, the major 
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determinant of gene expression variation was cell subtype proportion rather than the disease 

phenotype.  

Cell subtype proportion changes in asthma 

We then performed a further PCA to identify the factors in the phenotypic data and metadata that 

were most associated with the cell subtype proportions observed.  The input in this case was the 

matrix of estimated cell subtype proportions across samples, and the objective was to find the 

biggest contributors to the variance in cell subtype proportions between samples.  We tested 

these correlations and the significance of the contribution of each phenotypic variable to each PC 

of the expression profiles.  We found no significant correlation with disease status (R2=0.00023, 

p=0.75) and a small but significant contribution of sex (R2=0.01557, p=0.011) to the first principal 

component of the estimated cell subtype proportions (16.54% of variance) (Figure 1b, 

Supplementary Table 2).  We observed that the proportion of neutrophils was significantly 

increased in severe asthma patients compared to healthy controls (p= 0.02, Mann-Whitney test), 

with a decrease in the proportion of CD8+ T cells (p=0.07, Mann-Whitney test) (Figure 1c).  These 

results are consistent with several prior studies that have reported associations between 

neutrophils and asthma severity22–26.  Less is known about the role of CD8+ cells in asthma.  While 

some studies have reported fewer CD8+ T cells in allergic asthma27, others have found higher 

numbers of CD8+ cells in asthmatics that correlated with asthma severity but not with atopy.  

Since atopy is associated with fewer CD8+ T cells28, and most participants in this study were 

atopic (of the 334 severe asthmatics, atopy information was available for 308, of whom 234 were 

positive (76.0%); of the 87 controls, atopy information was available for 76, of whom 32 were 

positive (42.1%)), their atopic status rather than their asthma may explain the reduced CD8+ 

proportions.  Our re-analysis of functional genomics data associates severe asthma in atopic 

individuals with higher neutrophil and lower CD8+ T cell proportions, which offers potential 

insights into the cellular events occurring in these individuals.  These results suggest that the 
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variation of cell subtype proportions may not be merely a confounding variable in gene expression 

studies, but can potentially contribute useful insights into the biological processes occurring in a 

disease. 

Cell-intrinsic gene expression changes in asthma 

When the effects of cell subtype proportional changes are eliminated, the changes in gene 

expression that remain are more likely to represent altered levels of gene transcription within the 

cells tested.  We borrow a term used in the study of DNA methylation to refer to these as cell-

intrinsic gene expression changes5, reflecting what we have described as cellular 

reprogramming13.  Including and adjusting for sex as a covariate in our analyses, we identified 

405 differentially-expressed genes (DEGs) without adjusting for cell subtype proportions (FDR-

adjusted p-value <0.05, >1.2-fold change in expression, Figure 1d, genes listed in 

Supplementary Data 1).  When we performed an adjustment for cell subtype proportions 

including each of the individual cell proportion values in our linear model, as is typically performed 

in studies of DNA methylation17,29,30, only 142 genes remained categorized as DEGs (listed in 

Supplementary Data 2).  However, this approach is not ideal, as it introduces a large number of 

covariates into a multi-variable linear regression model, and these covariates are collinear with 

each other (as one cell subtype proportion goes up, other proportions have to go down).  We 

therefore used the alternative approach of regression on PCs of cell subtype proportions31,32 using 

the PCs that most strongly reflected the cell subtype proportion effects on expression variation 

(those with a p<0.01 and explaining >1% of variation of cell subtype proportions: PCs 1-5 and 9 

in Supplementary Fig. 1).  We thus reduced the dimensions of the covariates and eliminated 

their collinearity.  This PC-based approach now defined 338 genes to be differentially-expressed 

(Figure 1d, genes listed in Supplementary Data 3), eliminating 80 of the 405 DEGs originally 

identified prior to cell subtype adjustment, and adding a further 13 genes not previously 

recognized as differentially expressed (Figure 1e).   
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Intra-individual cell subtype changes over time 

The above example shows that gene expression differences between individuals studied using a 

cross-sectional design can be influenced by cell subtype proportions.  A question that arises is 

whether these cell subtype proportions are stable within an individual, and the contribution of 

intra-individual fluctuation of cell subtype proportions to gene expression variation is minimal, or 

whether these proportions vary between sampling times in the same individual, with substantial 

effects on gene expression variation.  We took advantage of an unusual study that tested 

peripheral blood mononuclear cells (PBMCs) sampled from the same individual over an 18 month 

period20.  We again applied CIBERSORT deconvolution and observed substantial variation in cell 

subtype proportions within this individual over time (Supplementary Fig. 2).  Once again (after 

adjustment for RNA integrity number (RIN) variation) we observed a strong cell subtype effect on 

expression variation, observed in principal components 1-3 and 5 (Figure 2).  Based on a multiple 

linear regression model, the estimated contribution of cell subtype proportions to the principal 

components of gene expression (PC1 to PC5, >5% proportion variance) was 22.28% 

(Supplementary Note 1, section 2-4).  We therefore estimate that intra-individual cell subtype 

proportion variation may account for more than 20% of the gene expression variation in blood. 

Figure 1 
Deconvolution shows a strong effect of cell subtype proportions on gene expression variation in a study of blood 
leukocytes from asthmatics.  (a) Principal components for gene expression with significance of association of 
different factors shown as a heat map.  The disease status of severe asthma (ASTHMA) was very weakly associated 
with the variability in gene expression, accounting for only 0.31% of the first PC (which accounts for 20.9% of the 
variance, p=0.25) and 4.1% of the second PC (10.68% of the variance, p=2.9*10-5) of expression variation.  (b) The 
same kind of analysis was performed but this time testing the contributions to the cell subtype proportional 
variability, with small contributions to principal component 1 (accounting for 16.54% of variance) of disease status 
(0.023%, p=0.75) and sex (1.56%, p=0.01).  (c) Looking into why the cell subtypes were so influential in altering 
gene expression, we find the proportions of two cell types to be significantly different in patients with severe asthma, 
an increased proportion of neutrophils (p= 0.021, Mann-Whitney test) and a decreased proportion of CD8+ T cells 
(p=0.072, Mann-Whitney test).  In (d) we show two volcano plots, the upper showing 405 differentially-expressed 
genes (DEGs, FDR-adjusted p value <0.05, >1.2 fold change in expression) in red, representing those identified 
without cell subtype proportion adjustment.  The lower volcano plot shows the 166 DEGs following adjustment for 
cell subtype proportions using the PCs most strongly reflecting the cell subtype effects on expression variation. (e) 
The Venn diagram shows the overlap between the genes identified as differentially-expressed when adjusted for 
sex (red) and after additional adjustment for cell subtype proportional variation (green).  
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Validation of reference-based deconvolution methods 

Our next focus was on a study of aging that measured both gene expression and DNA methylation 

in the same PBMC samples, comparing 146 nonagenarians with 30 young controls19.  These 

authors performed flow cytometry to measure the CD4/CD8 ratio of T cell subtypes in these 

samples, providing a reference against which we could compare our in silico predictions of cell 

subtype proportions. To quantify cell subtypes using DNA methylation data, we used the 

reference-based approach developed by Houseman and colleagues1 that uses reference DNA 

methylation profiles from 6 blood cell subtypes, including CD4 and CD8 T cells.  To generate a 

CD4+ T cell quantification from the LM22 reference gene expression data21, we summed the 

values for naïve, resting memory and activated CD4+ T cells.  We show these results in 

Supplementary Fig. 3.  Cell subtype quantification based on DNA methylation estimates 

 
Figure 2  
Variable cell subtype proportion profiles were observed in peripheral blood samples collected over 18 months from 
the same individual.  We show a heat map depicting the influences on the variability of gene expression in each 
principal component.  Cell subtype effects are observed in principal components 1-4 and 6 in particular.  A multiple 
linear regression model allows an estimate of the contribution of cell subtype proportion variation to the first principal 
component (PC) of gene expression which accounts for 24.5% of the variance, finding 53.87% of this PC to be 
attributable to cell subtypes (model p-value = 0.0083, multiple R2=0.5387, adjusted R2=0.343). 
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CD4/CD8 ratios exceptionally well (R2=0.66, root-mean-square error (RMSE)=1.42) while the 

estimates based on gene expression are also well correlated with the flow cytometry results 

(R2=0.36, RMSE=2.14).  

Concordance of cell subtype predictions by orthogonal assays 

We tested the performance of the cell subtype deconvolution approaches a second way, by 

comparing the concordance of predictions of the proportions of cell subtypes by the orthogonal 

gene expression and DNA methylation assays performed on the same samples.  As the DNA 

methylation approach tests only 6 cell types1, fewer than the 22 tested by gene expression 

studies12, we restricted our comparisons to the 6 cell types in common (Supplementary Note 2).  

We observed a general strong correlation between the estimates of cell subtype proportions 

based on deconvolution of DNA methylation and gene expression data (r=0.48~0.77, Figure 3a).  

We replicated this analysis using data from an independent study that compared 97 atopic 

asthmatic and 97 non-atopic/non-asthmatic children17.  Again, we observed similar linear 

correlations between the estimates based on DNA methylation and gene expression 

deconvolution (r=0.38~0.75) (Supplementary Fig. 4).   

We then explored the correlations between principal components of cell subtype proportions 

estimated from DNA methylation profiles and principal components of cell composition estimated 

from gene expression profiles using a linear regression modeling approach.  As expected, we 

observed positive correlations (r=0.24~0.63) between these principal components (Figure 3b).  

Next, we tested whether adjusting for cell subtype proportions based on the deconvolution results 

from gene expression or from DNA methylation assays influenced the same DEGs or 

differentially-methylated probes (DMPs).  We studied 126 individuals on whom both DNA 

methylation and expression profiles had both been generated as part of the study of aging19.  Our 

analysis, without adjusting for cell subtypes, identified 12,309 DMPs (FDR-adjusted p-

values<0.05, beta value differences between groups >10%).  After adjusting for cell subtype 
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proportions estimated from DNA methylation data, we identified 8,703 DMPs, and identified 5,739 

DMPs after adjusting for cell subtype proportions using gene expression data.  Of the 5,739 DMPs 

retained after the gene expression-based adjustment, 5,352 (93.3%) were concordantly predicted 

in the group of 8,703 identified after deconvolution using the DNA methylation data (Jaccard 

similarity index=0.59) (Figure 3c).  We performed the same kind of analysis for DEGs, identifying 

949 genes as differentially-expressed following deconvolution based on gene expression data 

(FDR adjusted p-value<0.05 and >1.5-fold difference between groups, Figure 3c), and 652 after 

adjustment for cell subtypes based on DNA methylation data, with 557 (85.4%) of the 652 DEGs 

in common (Jaccard similarity index=0.53).  The strong concordance of these functional genomics 

results, whether using gene expression or DNA methylation for deconvolution, indicates that the 

cell subtype proportions estimated by one assay can be used to test the influence of cell subtype 

proportional composition in results from a different functional genomic assay performed on the 

same samples.   

 

 
Figure 3  
The estimated cell subtype proportions from different genome-wide assays on same samples showed good 
correlations.  (a) The cell subtype proportions estimated by deconvolution of gene expression and DNA methylation 
data from the same samples are strikingly concordant for most cell types (r=0.48~0.77).  (b) A linear regression 
modelling approach measured the correlations between the principal components testing cell subtype proportion 
effects on gene expression and DNA methylation, with strong correlations (r=0.24~0.63) between the first four PCs.  
(c) We tested whether adjustment for cell subtype proportions using gene expression and DNA methylation-based 
deconvolution yielded comparable results. There were 5,739 differentially methylated probes (DMPs) (FDR-
adjusted p-values<0.05, beta value differences between groups >10%) after adjusting using gene expression data, 
and 8,703 after adjusting using DNA methylation data, with the majority (5,352) in common between the two groups.  
There were 949 DEGs (FDR adjusted p-value<0.05 and >1.5-fold difference between groups) after adjustment for 
sex and cell subtypes based on gene expression data, and 652 after adjustment based on DNA methylation data, 
with the large majority (557) of the cell subtype-adjusted DEGs in common between the two groups. 
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Cell subtype effects are dominant in SLE 

Systemic lupus erythematosus (SLE) is an autoimmune disease that involves numerous cell types 

of the immune system33.  Our cell subtype deconvolution revealed that the proportion of 

monocytes was significantly increased and the proportion of resting natural killer (NK) cells was 

significantly decreased in SLE, getting the same results using either DNA methylation and gene 

expression cell subtype deconvolution (Figure 4a, Supplementary Fig. 5a).  These cell subtype 

proportion changes revealed from functional genomic data are consistent with prior literature 

describing a lower proportion of NK cells and a higher proportion of monocytes in patients with 

SLE34.  In addition, 53.8% of the first principal component of DNA methylation variation (which 

accounted for 16.3% of variance, p=9.1e-14) and 94.9% of the second principal component (10.6% 

of variance, p=0.084) were attributable to cell subtype variation (Figure 4b).  Similar results were 

obtained from gene expression estimates of cell subtype proportions, with 78.9% of the first 

(accounting for 12.5% of variance, p=0.012) and 81.8% of the second principal component (9.1% 

of variance, p=0.005) attributable to cell subtype variation (Supplementary Fig. 5b).  When we 

re-analyzed gene expression differences between SLE and control subjects accounting for cell 

subtype variability (using gene expression information) we found that only 4 genes of the 485 

DEGs (false discovery rate (FDR)<0.05 and log2 fold-change (FC)>1.2, Supplementary Data 4) 

identified without adjusting for cell subtype proportions remained significant.  In the DNA 

methylation analysis, we identified 2,154 differentially methylated CGs (FDR<0.05, Dbeta(case-

control) ≥10%, at 1,366 genes) without adjusting for cell subtype, but just 40 CGs (at 27 genes) 

after adjusting for cell subtype proportions (Figure 4c-d, Supplementary Data 5).  This suggests 

that almost all significant differences can be attributed to systematic cell subtype proportion 

variation between individuals with SLE and healthy controls.  When we linked the 40 CGs with 

the 27 nearby genes (using the Illumina microarray design annotation) and tested gene ontology 

(GO) terms for enrichment, the list of most significantly enriched GO terms changed compared 
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with the unadjusted data (Figure 4e), revealing new terms including a strong enrichment for type 

I interferon signaling pathways (Figure 4f).  These results clearly indicate that almost all 

alterations observed between SLE cases and controls samples can be attributed to changes of 

cell subtype proportions. 

 

 

Single-cell RNA-seq data for cell subtype deconvolution 

The approaches described above require reference information about gene expression or DNA 

methylation profiles in the cell subtypes composing the tissue being studied.  Such reference 

 
Figure 4  
Disease status associated cell subtype proportion changes reflect the DNA methylation changes between SLE and 
control samples and the disease-related pathways were highlighted after the cell subtype proportion adjustment.  
(a) The cell subtype proportion changes in SLE were driven predominantly by two cell types.  The proportion of 
monocytes in increased in SLE (p=0.0093, t-test).  On the other hand, the proportion of natural killer (NK) cells is 
higher in patients with SLE (p=2.2e-08, t-test).  (b) Principal components for DNA methylation with significance of 
association of PCs for the estimated cell subtype proportions are shown as a heat map.  The first principal 
components were significantly associated each other. (c-d) Two volcano plots show differentially-methylated probes 
(DMPs). (c) shows the results of DMPs adjusted for age alone and (d) shows results also adjusted for cell subtype 
proportions.  Almost all DMPs were eliminated after the adjustment for cell subtype proportions. (e-f) GO analysis 
results are summarized as REVIGO scatterplots.  (e) shows the results of age-adjusted and (f) the results for age 
and cell subtype proportion adjusted terms. The x and y axes indicate the semantic similarity of each GO term.  The 
bubble color indicates log10 p-values, and size represents the percentage of genes annotated with the GO term in 
the human database.  
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profiles are well described for blood, but for most other tissues in the body such reference 

information will be unavailable.  We have proposed that single cell transcription analysis (scRNA-

seq) could be used in these situations13.  The scRNA-seq technique does not require a priori 

insights into cell subtypes present in the tissue studied, and it can be performed on relatively small 

numbers of cells.  To test the potential value of scRNA-seq as a way of generating reference 

expression data, we downloaded a publically available scRNA-seq data set of ~68,000 PBMCs 

(see Methods, details of the preprocessing procedures used provided in Supplementary Note 

3), analyzing these data using Seurat35.  We identified 21 clusters, indicating subtypes of PBMCs, 

based on expression patterns within each cell (Supplementary Fig. 6a).  By searching for 

expression of genes encoding canonical cell subtype markers, we matched the clusters to known 

PBMC subtypes (Supplementary Note 3).  We then identified 828 genes, each of which had an 

expression pattern that was highly cluster-specific and was expressed by at least 50% of cells in 

the cluster (Supplementary Data 6).  This allowed us to calculate a median expression value for 

these cluster-specific signature genes as the basis for a cell subtype signature profile for 

CIBERSORT analysis.  We tested the performance of this scRNA-seq reference data set using 

the CD4:CD8 ratios from the aging study.  Using known cell subtype-specific genes, we were able 

to test for their expression in each cluster (we list these genes in Supplementary Data 7).  Based 

on the expression status of those marker genes, we assigned clusters 0, 1, 2, 12 and 13 as CD4+ 

T cells and clusters 3, 4 and 6 as CD8+ T cells (Supplementary Data 7).  The result of CD4:CD8 

ratio analysis is shown in Supplementary Fig. 6b.  While the values of R2=0.26 and RMSE=2.64 

indicate less accurate performance compared with the reference-based approaches (Figure 3a), 

the scRNA-seq data are relatively predictive of these cell subtype proportions.  We also compared 

how the scRNA-seq approach performed in quantifying proportions of cell subtypes relative to 

reference-based approaches based on DNA methylation data, finding positive linear correlations 

(R=0.32 to 0.61) for all cell types except B lymphocytes (Supplementary Fig. 6c).  We tested the 

association of PCs of estimated cell subtype proportions using scRNA-seq results with the PCs 
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derived from DNA methylation (Figure 5a) and gene expression (Figure 5b) reference data.  We 

observed comparable correlation to PCs of cell subtype proportion from DNA methylation and 

LM22.  We also tested whether adjusting DEGs and DMPs based on cell subtype proportions 

inferred using the scRNA-seq signatures gave similar results to the other approaches, and found 

concordance of the genes and loci identified (Figure 5c).   

 

Finally, we tested the stability of the prediction of differentially-methylated positions (DMPs) 

following the different types of adjustments.  These cell subtype proportion adjustments were 

based on gene expression, DNA methylation or scRNA-seq reference data, either using the cell 

subtype proportions themselves or the PCs capturing this information, as described earlier.  To 

measure stability, we asked how many DMPs were retained in a list of the same number ranked 

either by significance (Figure 6a) or by the magnitude in change of beta value (Figure 6b).  We 

find that the 22 cell type gene expression and 6 cell type DNA methylation reference panels work 

better than the scRNA-seq gene expression reference panel, but that within a reference panel 

 
Figure 5  
Deconvolution of estimated cell subtype proportions using the signature profile from single-cell RNA-
seq (scRNA-seq) results shows comparable results to the estimations using reference profiles from 
purified cells.  A heatmap shows principal components for DNA methylation (a) or gene expression (b) 
with significance of association of PCs for the estimated cell subtype proportions using scRNA-seq gene 
signature profile.  Panel (c) shows how adjustment of DEGs and DMPs from the aging study based on 
cell subtype deconvolution using scRNA-seq/CIBERSORT generates similar results to the other 
approaches, showing a strong concordance. 
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approach the use of PCs is associated with more stable prediction of DMPs than when using 

unprocessed cell subtype proportion values.  In fact, there is a dramatic effect on stability of DMPs 

ranked by the magnitude of beta-value differences when using the large, collinear models based 

on cell subtype proportions, as these models grossly alter the beta values, an effect that no longer 

occurs when using the PC surrogates approach instead (Figure 6b).   

 

Evaluation of a reference-free deconvolution approach 

The alternative to reference-based deconvolution is to use a reference-free approach, of which 

surrogate variable analysis (SVA) is probably the most commonly used in DNA methylation 

studies36. SVA is an attractive approach, as it should allow not only the effects of cell subtype 

proportion heterogeneity but also influences like batch effects to be eliminated as confounding 

when looking for cell-intrinsic changes in functional genomics properties.  We explored how SVA 

performs when insights are available from deconvolution into cell subtype composition.  We 

studied the DNA methylation data from the aging study, testing how each surrogate variable was 

influenced by each of the metadata variables.  In Figure 7a we show that SVA does indeed predict 

 
Figure 6 
Testing stability of calling differentially methylated probes using different cell subtype proportion adjustment 
methods shows that PC-based methods improve stability for DMPs ranked either by significance or effect size 
(adjusted beta-value differences).  The plot shows the concordance of the proportion of the top DMPs using the 
different adjustment methods.  We ranked the DMPs either by significance or by degree of difference of beta values, 
and calculated the overlapping fraction of DMPs prior to adjustment.  We show results of stability of DMPs ranked 
by significance levels (a) and by effect sizes (b). 
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cell subtype proportions as surrogate variables, as well as picking up a strong influence of 

experimental batch.  However, despite defining age as the phenotype of interest, we find that the 

SVA is also recognizing this as a source of variability, which would result in an unrecognized loss 

of the signal sought in these studies.  To simulate a situation in which cell subtype proportion and 

batch effects are not major confounding influences in an experiment, we re-processed the aging 

data to remove batch effects on their own or in combination with cell subtype proportion effects.  

In those situations, the effect of SVA to influence the phenotype of interest gets progressively 

stronger (Figure 7b-c), disproportionately penalizing what would be better-executed studies.    
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Figure 7 
The SVA approach may lead to elimination of true positive results.  Heatmaps show the influences on each 
surrogate variable (SV) of known covariates and estimated cell subtype proportions.  We performed SVA on the 
unadjusted data (a), and on data after removal of batch effect (b) and after further adjustment for cell subtype 
proportion variability (c).  We performed multiple linear regression models to estimate the contribution of covariates 
to surrogate variables.  The step-wise analysis revealed that the SVA approach has effects on the phenotype of 
interest, especially as we eliminate some of the sources of experimental artefact. 
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DISCUSSION 

By using assays that test expression of genes or microRNAs, methylation of DNA, chromatin 

states or other indicators of genomic function, we are generally trying to understand the innate 

characteristics of the cells tested.  Such cell-intrinsic changes can reflect responses to 

environmental perturbations or genetic mutations, and can be used as clues to the pathogenesis 

of an associated phenotype.  We have referred to this as cellular reprogramming13, the alteration 

of the molecular characteristics of a canonical cell type.  The possibility that cell subtype 

proportional heterogeneity could be contributing to the variability in the results of the functional 

genomics assay is not always considered, but when addressed is generally treated as a 

confounding variable with the focus on cell-intrinsic changes of functional genomic properties. 

We have pointed out that the systematic alteration of cell fate decisions and the repertoire of cell 

subtypes in a tissue is a potential outcome of transcriptional regulatory perturbations, potentially 

contributing to the development of specific phenotypes, an alternative cellular epigenetic model 

that we have called polycreodism13.  In the current study, we sought to understand the relative 

contribution of each cellular epigenetic model, reprogramming and polycreodism, in different 

types of phenotypes, from physiological studies of aging and serial sampling from a single 

individual, through the disease phenotypes of asthma and systemic lupus erythematosus.  Our 

focus was on studies of peripheral blood leukocytes, not only because of the technical advantages 

they offered for our cell subtype deconvolution approaches, but also because many transcriptomic 

studies and most published large-scale epigenome-wide association studies (EWAS) testing DNA 

methylation have been performed on blood cells.  By gaining insights into the relative contributions 

of cellular reprogramming and polycreodism in blood cells, we could provide insights into the 

interpretability of these kinds of prior studies that were focused on testing the cellular 

reprogramming model alone. 
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Our studies were based on the ability to estimate cell subtype proportions from gene expression 

or from DNA methylation data.  It was helpful to have an orthogonal quantification of the CD4/CD8 

T lymphocyte ratio for comparison in the aging study19, allowing us to show that both the gene 

expression and DNA methylation-based deconvolution approaches were reasonably concordant 

with these flow cytometry-based results.  The concordance of cell subtype proportions in the same 

samples predicted by the separate gene expression and DNA methylation assays also provided 

reassurance that these proportions are likely to be reasonably accurate.  We note that in tissues 

other than blood such reference gene expression and DNA methylation data are unlikely to be 

readily available, prompting us to explore whether scRNA-seq data could be used in these 

deconvolution studies.  While the results were not as accurate as the use of reference data from 

purified cells, they were positively correlated with the CD4/CD8 ratios and with several of the cell 

subtype proportions predicted from reference-based deconvolution using DNA methylation data.  

This strongly suggests that generating and using a scRNA-seq reference for a less well-

characterized tissue will be overall a helpful way of understanding the cell subtype proportion 

source of variation in functional genomic assays of that tissue. 

There were other observations made that are of technical importance when performing functional 

genomics studies.  We are concerned that using the SVA approach has the potential to mask 

some of the genuinely phenotype-associated effects, especially in better-executed studies.  We 

note the strong concordance of results when adjusting for cell subtype proportions using gene 

expression and DNA methylation data, indicating that deconvolution using results of one 

functional genomics assay can be used to adjust for cell subtype proportions when analyzing a 

completely different kind of assay of the same samples.  We were also careful to avoid using the 

individual cell subtype proportions in the multi-variable linear regression model, as they can be 

numerous and are inherently collinear, instead using regression on PCs31,32, choosing the PCs 

capturing most of the effects of cell subtype variability.  These insights should be generally useful 
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when performing and analyzing epigenetic association studies in particular and functional 

genomic assays in general. 

Instead of focusing on the cellular reprogramming model, we generated two outputs from the 

functional genomics studies.  The first was a high-confidence set of genes or loci undergoing 

alterations in gene expression or DNA methylation, manifesting changes that could not be 

attributed to cell subtype proportional variability, indicating cellular reprogramming effects.  The 

second was the difference in cell subtype proportions between the comparison groups.  This is 

not typically an output of analytical approaches used for gene expression or DNA methylation 

studies, but was an explicit output of our analytical approach, and revealed systematic changes.  

It should be relatively straightforward to modify excellent software packages such as minfi37 to 

allow this additional output to be generated routinely.  In particular, the study of SLE was striking 

for having an overwhelming effect of cell subtypes on gene expression and DNA methylation 

variation.  While this might currently be considered a negative result, treating cell subtype effects 

purely as a confounding variable, we note that the SLE patients had distinctive NK cell and 

monocyte proportions, which represents the use of functional genomic data to gain an insight into 

cellular events contributing to the disease process.  These cellular changes had already been 

recognized independently in SLE, with decreased NK cell activity correlating with active disease 

and observed to a greater extent among those with renal involvement38–41.  Conversely, more 

activated monocytes have been found in individuals with SLE42,43, which are associated with 

disease complications such as atherosclerosis in these patients44.  This SLE example represents 

the value of looking simultaneously for cellular reprogramming and cell repertoire changes in 

functional genomics studies, as each can be harvested from the functional genomics data 

generated and can be valuable in providing insights into the condition being studied.  Reference-

free approaches, on the other hand, will eliminate this useful information, another reason for 

caution in choosing approaches such as SVA. 
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We conclude that, while it should not be surprising that cell subtype effects need to be taken into 

account in the interpretation of functional genomics studies, it is probably worth paying more 

attention to the characterization of the variability of cell subtypes as an insight into the phenotype 

being tested, rather than discarding the information as merely confounding1,45–47.  Phenotypes 

may indeed result from cellular reprogramming, but it is highly plausible that the polycreodism 

model of altered cell repertoires in a tissue is another potentially very powerful mechanism for 

mediation of phenotypic changes.  By testing simultaneously for the cellular models of 

reprogramming and polycreodism, we increase our capacity for discovery of new insights into 

pathogenesis of diseases or the development of other phenotypes.   
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METHODS  

Dataset used in this study and preprocessing data 

All datasets used in this study are published and publically available through the Gene Expression 

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), from which we downloaded the datasets.  

The GEO accession numbers and study designs are described in Table 1.  Phenotypic data were 

extracted from the matrix tables provided by the authors on the GEO website.  Before our re-

analyses, we tested the quality of data, including batch effects and possible sample swapping, 

excluding samples when the information about sex provided by the authors was discordant with 

the data obtained from the sex chromosomes.  For the DNA methylation datasets, we first filtered 

out poor quality samples by testing detection p-value distributions to see background noise level 

and eliminating samples with high background (average detection p-values >0.01), and by 

performing PCA, which found a single sample to cluster very distinctly from all of the others, 

causing us to remove it from further analysis.  We then performed quantile normalization using 

the preprocessQuantile() function in the minfi R package37, and filtering out probes (a) have failed 

to hybridize (detection p-values >0.01), (b) probes overlapping with and around known SNPs and 

1000G SNPs (MAF>0.1), (c) probes that have been shown to be cross-reactive48, and (d) probes 

on sex chromosomes (except study 4, for which we only used female samples).  For expression 

datasets, we aggregated each transcript value by HUGO gene symbol to calculate mean 

expression values for each gene.  The details of the studies and the preprocessing procedures 

are provided in the Supplementary Note 1.  

Reference-based estimation of cell subtype proportions  

We estimated cell subtype proportions based on gene expression and DNA methylation data.  

From the DNA methylation profiles, we estimated the proportions of CD8+ T cells, CD4+ T cells, 

NK cells, B cells, monocytes and granulocytes using the estimateCellCounts() function from the 

minfi R package37, which is modified from the original Houseman reference-based approach1.  
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From gene expression profiles, we ran CIBERSORT12 using two different signature gene files, the 

CIBERSORT default file based on expression profiles from 22 leukocyte subtypes (LM22)21, and 

a signature gene profile generated from publicly-available scRNA-seq results from 68,000 

PBMCs49 using the Seurat R package35.  

Associations between cell subtype proportions and phenotype 

We performed principal component analysis (PCA) on the cell subtype proportion estimates 

obtained.  We tested for possible confounding influences using metadata provided by the study 

authors as a matrix table, including technical (RIN, sample collection date) and biological (age, 

sex, phenotype) influences, using a linear modeling approach.  We identified significant 

confounding covariates using ANOVA. 

Contribution of cell subtype proportion to functional genomic data  

We performed PCA on gene expression values (aggregated expression values) and DNA 

methylation values (quantile normalized M values), then we tested the contribution of cell subtype 

proportions to each principal component (PC) using a linear modeling approach.  The degree of 

contribution to each PC was estimated by the R-squared of the regression model and the 

significance of each was tested using ANOVA. 

Identifying gene expression and DNA methylation changes 

To identify differentially methylated probes (DMPs) and differentially expressed genes (DEGs), M 

values of DNA methylation data and log-transformed values of expression data were used in the 

regression models with the lmFit function of the limma R package50.  We selected biological 

covariates provided by the authors to be included into the model based on data from each PCA 

(the covariates used for each study are described in the Supplementary Note 1).  We built 

models with and without cell subtype proportion adjustments to test the effects of variability of cell 

subtype proportions.  To avoid collinearity and high dimensionality of cell subtype estimates51, we 
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used a principal component regression instead of a linear regression approach using the actual 

cell proportions.  The PCs we included in the linear model are those with significant associations 

with DNA methylation or expression variation (p-value <0.01) and which explain >1% of the 

variation of the cell subtype estimate.  To identify significant DMPs, we retained the CpGs with 

FDR<0.05 and absolute beta value changes >10%.  The DEGs were defined as the genes with 

FDR<0.05 and absolute fold changes of expression for studies 1-4 of >log2(1.2) and >log2(1.5) 

for study 5 using the same fold-difference threshold as the original publications.  The proportional 

Venn diagrams were plotted using BioVenn52. 

Gene ontology analyses 

To identify the enriched gene ontology (GO) terms in the DMPs, we performed GO analysis using 

the Bioconductor package GOseq1.  We used DMP corresponding gene symbols for searching 

enriched GO terms in the human hg19 database.  We selected the terms which false discovery 

rate (FDR) adjusted p-values were less than 5% as significant GO terms.  We performed the 

analysis on both with and without adjusting for cell subtype proportions.  The significant GO terms 

were visualized using REVIGO1, using the program’s default settings (Homo sapiens database). 

Single cell RNA-seq analyses 

We downloaded the 68,000 PBMC scRNA-seq data set from the 10X Genomics website49 and 

analyzed the scRNA-seq data using the Seurat R package35.  The data contains 32,738 genes in 

68,579 cells, with a median number of detected genes per cell of 525 (range 153 to 2,740).  After 

filtering out the genes with fewer than 3 cells expressing the gene and cells in which fewer than 

200 genes were found to be expressed, we were left with 17,787 genes in 68,262 cells.  The 

median percent of mitochondrial DNA gene representation was 0.016.  After adjusting for the 

number of unique identifiers per cell and the percent of mitochondrial genes, we performed PCA 

for linear dimensional reduction.  We identified 21 clusters in total, corresponding to 828 signature 

genes with distinctive expression status compared to other clusters, with on average at least 2-
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fold differences between the cluster compared with other clusters, and with at least 50% of the 

cells in the cluster expressing the gene using the FindAllMarkers function of the Seurat R 

package35.  We calculated the median expression values of the signature genes in each cluster 

to generate a cell subtype signature profile for CIBERSORT analysis.  We provide the list of 

signature genes in Supplementary Data 6 and candidate cell types of each cluster based on the 

expression status of known genes in Supplementary Data 7. 

Surrogate variable analysis 

We performed surrogate variable analysis (SVA) using the R package sva14,15.  We selected the 

phenotype of interest information (young control or nonagenarians) for the analysis.  We obtained 

17 surrogate variables (SVs) on raw data, 19 SVs after the batch effect adjustment, and 34 SVs 

after adjustment for batch and cell subtype proportion effects (Supplementary Note 4).  We 

tested the correlations to known and estimated cell subtype proportions using a mixed linear 

regression analysis.  We included the SVs in the linear model to test the effects on DNA 

methylation status.  To identify significant DMPs, we retained the CpGs with FDR<0.05 and 

absolute beta value changes >10%.  

Data availability 

All datasets used on this study were downloaded from the Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/geo/, Table 1).  All the customized code used in this study are 

publicly available at our GitHub server: https://github.com/GreallyLab/PBMC_Kong_2017  
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TABLE 

Table 1: A description of the data sets used in this study. 

 

SLE, systemic lupus erythematosus; N.A., not analyzed; PBMC, peripheral blood mononuclear cell; WB, whole blood; PMID, PubMed identi

Study 1 GSE69683 Cross-sectional Severe asthma/healthy 422 WB Affymetrix HT HG-U133+ PM Array N.A.
Study 2 GSE58122 Longitudinal Healthy 48 PBMC RNA-seq N.A.
Study 3 GSE40736 Cross-sectional Asthma/nonasthmatic 194 PBMC NimbleGen Homo sapiens Expression Array PBMC Illumina 450k infinium
Study 4 GSE82221 Cross-sectional SLE/healthy 33 PBMC Illumina HumanHT-12 V4.0 expression beadchip WB Illumina 450k infinium

Study 5 GSE65219, 
GSE58888

Cross-sectional Nonagenarian/young 154 PBMC Illumina HumanHT-12 V4.0 expression beadchip PBMC Illumina 450k infinium

Study 
number

GEO 
project 

identifiers
Study design Case/control

Sample 
numbers 
used in 

this 
study

Analyzed sample type

Expression DNA methylation
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