
Bioinformatics, YYYY, 0–0 

doi: 10.1093/bioinformatics/xxxxx 

Advance Access Publication Date: DD Month YYYY 

Manuscript Category 

 

Subject Section 

Base-pair resolution detection of transcription 
factor binding site by deep deconvolutional 
network 
Sirajul Salekin1, Jianqiu (Michelle) Zhang1 and Yufei Huang1,2,* 

Electrical and Computer Engineering Department, University of Texas at San Antonio, 1 UTSA Circle, San 
Antonio, TX 78249, USA., 2Department of XXXXXXX, Address XXXX etc. 

*To whom correspondence should be addressed. 

Associate Editor: XXXXXXX 

Received on XXXXX; revised on XXXXX; accepted on XXXXX (Version: August 31, 2017 submitted to Bioinformatics) 

Abstract 
Motivation: Transcription factor (TF) binds to the promoter region of a gene to control gene expres-
sion. Identifying precise transcription factor binding sites (TFBS) is essential for understanding the 
detailed mechanisms of TF mediated gene regulation. However, there is a shortage of computational 
approach that can deliver single base pair (bp) resolution prediction of TFBS.  
Results: In this paper, we propose DeepSNR, a Deep Learning algorithm for predicting transcription 
factor binding location at Single Nucleotide Resolution de novo from DNA sequence. DeepSNR 
adopts a novel deconvolutional network (deconvNet) model and is inspired by the similarity to image 
segmentation by deconvNet. The proposed deconvNet architecture is constructed on top of 'Deep-
Bind' and we trained the entire model using TF specific data from ChIP-exonuclease (ChIP-exo) ex-
periments. DeepSNR has been shown to outperform motif search based methods for several evalua-
tion metrics. We have also demonstrated the usefulness of DeepSNR in the regulatory analysis of 
TFBS as well as in improving the TFBS prediction specificity using ChIP-seq data.  
Availability: DeepSNR is available open source in the GitHub repository 
(https://github.com/sirajulsalekin/DeepSNR) 
Contact: yufei.huang@utsa.edu 
Supplementary information:  

 

 

1 Introduction  

Transcription factor binding sites are specific DNA sequences that control 
gene expression through interaction with transcription factor proteins. 
Revealing the dynamic regulatory systems by transcription factors (TFs) 
signifies one of the major challenges in biological research. Precise map-
ping of TFBSs on a genomic scale plays a pivotal role in delineating 
transcription regulatory network and remains a long sought goal in ge-
nomic annotations (J.-t. Guo, Lofgren, & Farrel, 2014; Salekin, Bari, 
Raphael, Forsthuber, & Zhang, 2016, 2017). Chromatin immunoprecipita-
tion (ChIP) that yields a set of statistically enriched high occupancy bind-
ing regions is the most widely used method to recognize protein-DNA 
binding locations (Peng, Alekseyenko, Larschan, Kuroda, & Park, 2007; 

Tuteja, White, Schug, & Kaestner, 2009). However, incongruent size of 
randomly clipped DNA fragments in ChIP technology largely limits the 
resolution of ChIP-seq data. To overcome this limit, ChIP-exo technique 
was developed that uses λ phage exonuclease to digest the 5′ end of TF-
unbound DNA after ChIP (Rhee & Pugh, 2011). In ChIP-exo, λ exonu-
clease digestion leaves homogenous 5′ ends of DNA fragments at the 
actual two boundaries of TFBS, and after sequencing and mapping reads 
to the reference genome two borders of TFBS could be defined. The λ 
exonuclease treatment augments signal-to-noise ratio by eliminating 
unwanted DNA, which allows the discovery of low affinity binding sites. 

With the advent of rapidly increasing genomic sequences, sequence-
based computational methods have been developed and proven to be 
valuable in predicting TFBS (J.-t. Guo et al., 2014; Stormo, 2000). The 
computational methods generally scrutinizes user provided input sequenc-
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es in order to identify TF binding motifs that are statistically over-
represented in binding sites with respect to background sequence. Predict-
ing the binding location based on motif suffers from several shortcom-
ings. First, motifs are typically short 10-15 bp sequences and therefore 
prediction using binding motifs is unlikely to generate predictions with 
high specificity. Moreover, motifs represent only the enriched binding 
sequence patterns and thus cannot explain all possible bindings of a TF. 
Finally, even if the motif search methods succeed in determining the 
anchor position of a putative binding site, they cannot predict the actual 
width of TFBS. The specificity of protein-DNA binding does not depend 
only on DNA sequence, but it also depends on the 3D structures of DNA 
and TF protein macromolecules (Rohs et al., 2010) which explains the 
failure of motif searches in predicting true TFBS. 

To enable precise prediction of TFBS, we designed in this paper a 
deep learning based model called DeepSNR. Deep learning, the most 
active field in machine learning, has been proven to achieve record-
breaking performances in image and speech recognition (Graves, 
Mohamed, & Hinton, 2013; Zeiler & Fergus, 2014), natural language 
understanding (Sutskever, Vinyals, & Le, 2014; Xiong, Merity, & Socher, 
2016), and most recently, in computational biology (Alipanahi, Delong, 
Weirauch, & Frey, 2015; Hassanzadeh & Wang, 2016; Quang & Xie, 
2016; Zhou & Troyanskaya, 2015). The two recent methods, DeepBind 
(Alipanahi et al., 2015) and DeepSEA (Zhou & Troyanskaya, 2015), 
successfully applied deep learning to model the sequence specificity of TF 
binding with a performance superior to the best existing shallow learning 
methods. Convolutional neural network (CNN) was adopted by these 
methods to capture the features essential for accurate characterization of 
motifs for target TFs. DeeperBind (Hassanzadeh & Wang, 2016) and 
DanQ (Quang & Xie, 2016) employed recurrent neural network (RNN) 
along with CNN to learn the spatial dependencies of detected motifs and 
yielded improved prediction performance in comparison to DeepBind and 
DeepSEA respectively. In spite of their success in determining the pres-
ence of binding site in a given DNA sequence, these approaches cannot 
report the precise binding location. Our proposed method intends to 
bridge the gap by identifying transcription factor binding location at sin-
gle nucleotide resolution from 100 bp long input DNA sequence that is 
known to contain TFBS (e.g. ChIP-seq regions). DeepSNR is inspired by 
the similarity between ascertaining the TF binding location from 100 bp 
long sequences and image segmentation method. Similar to pixel-level 
image segmentation where each pixel is categorized as belonging to target 
object (e.g. dog, car, human) or background, DeepSNR classifies each 
nucleotide in a DNA sequence as putative binding site or background 
sequence and thereby achieves base pair resolution prediction. Recently, 
deconvNet (Noh, Hong, & Han, 2015) has achieved remarkable success in 
semantic image segmentation that aims to predict a category label for 
every image pixel. In that study, the authors built the deconvNet on top of 
the CNN obtained from VGG 16-layer net. Comparatively, the multi-layer 
deconvolution network in DeepSNR is composed of convolution layers 
adopted from DeepBind, deconvolution, unpooling, and rectified linear 
unit (ReLU) layers (Fig. 1). Instead of relying on the similarity of binding 
sequences for deriving the binding preference of a transcription factor, 
DeepSNR accurately captures the inherent complex interactions between 
TF and DNA and thus enables it to precisely locate the binding site. 

The entire deconvNet is trained using the data generated by ChIP-exo 
experiment and can be applied to individual sequences to pinpoint the 
TFBS location. When tested, DeepSNR attained outstanding result that 
substantially surpasses binding motif based algorithms in terms of preci-
sion, recall, F-Score and IoU. For instance, the trained DeepSNR model 
for CTCF achieved 83% median F-Score over 19,600 test sequences 
while MatInspector managed to record only 58%. We further discovered 

 

Fig. 1.  DeepSNR model architecture 

that the trained model automatically detects the location of motif sequence 
in pursuit of identifying binding site. When we applied DeepSNR on  
ChIP-seq data, it rendered us with unique display of distribution of TF 
binding motif over the ChIP-seq binding area which has been possible to 
visualize because of the base-pair resolution prediction of DeepSNR 
(Supplementary figure S2). We have also demonstrated the capacity of 
DeepSNR in improving the specificity of ChIP-seq peak calling results by 
an independent motif enrichment analysis that confirms the presence of 
highly enriched motif sequence in DeepSNR predicted binding region 
(Table 1). Moreover, the capability of DeepSNR in pinpointing the motif 
sequence in ChIP-seq data makes the model suitable for playing a role in 
regulatory analysis of TFBS.  

2 Methods 
This section discusses the architecture of DeepSNR model and describes 
the overall TFBS discovery algorithm. 

2.1 Model Design/Architecture 

Fig. 1 illustrates the detailed configuration of DeepSNR which is com-
posed of three parts – convolutional, deconvolutional and output net-
works. The input of DeepSNR is a one-hot encoded 100 bp long DNA 
sequence that is known to contain a binding site of the TF of interest. 
While the convolutional network corresponds to feature extractor that 
learns the inherent features imperative for TF-DNA binding, the deconvo-
lution network is a shape generator that locates the binding site using the 
feature extracted from the convolution network. The output network of 
the model is used to generate a 100 bit binary sequence, indicating wheth-
er each nucleotide belongs to binding site (1) or background sequence (0). 

The convolutional part of DeepSNR model is a replica of DeepBind 
(Alipanahi et al., 2015) network, which consists of one convolutional 
layer, followed by rectification and pooling operation, and one fully con-
nected network (FCN) augmented at the end to transform feature vectors 
into a scalar binding score. Our deconvolution network is a mirrored 
version of the convolution network, and has a series of unpooling, decon-
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volution, and rectification layers. Contrary to convolutional network that 
reduces the size of activations through feedforward step; deconvolutional 
network enlarges the activations through combinations of unpooling and 
deconvolution operations. The last layer, the sigmoid output layer, makes 
binary predictions for each of the 100 nucleotides. We get the maximum 
for each base pair over the output of deconvolution layer before employ-
ing the sigmoid function and then we apply a threshold to map the final 
output to 0/1. 

To implement max-unpooling and deconvolution operations, we fol-
lowed the similar procedure described in (Noh et al., 2015; Zeiler & 
Fergus, 2014). The model records the position of maximum activation 
while performing the pooling operation and later this information is used 
in unpooling procedure to assign each stimulus back into appropriate 
location. The unpooling layer is especially important because retaining the 
place of maxima assists in capturing the binding motif and the binding site 
associated 3D contextual information and proves to be critical for precise 
localization of TFBS. The output of deconvolution layer associates a 
single input activation with multiple outputs, as illustrated in (Noh et al., 
2015). The deconvolution layer employed in our model is fundamentally 
the reverse operation of convolution and used to learn the shape details of 
TFBS. Integrating this layer in the architecture helps DeepSNR to capture 
the overall breadth of a binding site, thus improving the completeness of 
the model. 

2.2 Training the DeepSNR Model 

The entire deconvolutional network is comprised of seven layers and 
contains a lot of associated parameters. In addition, the parameter search 
space for predicting binding location is enormous because TF-DNA bind-
ing is a very complicated phenomenon depending on DNA sequence, 3D 
structure of DNA and TF protein and their intrinsic complex interactions. 
Therefore, we trained DeepSNR in two stages as in (Noh et al., 2015), so 
that the model progressively learns the essential features to recognize 
TFBS and tunes to optimum set of parameters. For the first stage of train-
ing, we constructed the training set such that the binding sites were placed 
at the center of 100 bp long input sequence. By doing so, we limited the 
search space significantly and forced the model to learn the intricate de-
tails of TF-DNA binding. We initialized the weights in convolutional 
network using DeepBind pre-trained for specific transcription factor, 
while the weights in deconvolutional network were initialized with ran-
dom samples from zero-mean Gaussians. Initializing the weights with 
DeepBind convolutional network is very important because it assists the 
model to converge with minimum iterations and mitigates vanishing 
gradient problem. In the second stage, we imposed the model with more 
challenging training samples by placing the binding site in random loca-
tions within input sequence as described in the next section. Weights 
learned from the first stage of training were used to initialize all the layers 
in this stage and they were fine-tuned making the network robust to TF 
binding location. Another major challenge in training a deep network is 
the modification of weight distributions due to the parameter updates of 
preceding layers which amplifies through propagation across layers (Ioffe 
& Szegedy, 2015). Hence, we performed batch normalization at the out-
put of convolutional and deconvolutional layer to better optimize our 
network.  

To train the model, we minimized the sigmoid cross-entropy loss 
which essentially leads to binary logistic regression. The standard stochas-
tic gradient descent was employed for optimization, where the learning 
rate was set to 0.01. The stochastic gradient descent (SGD) method esti-
mates the training objective gradient using only a subset of training exam-

ples. The batch size determines how many training pairs to sample for 
each parameter update step. In our implementation, the batch size was 
equal to 100 samples. The network converges after approximately 15K 
and 20K iterations respectively in first and second stage and the training 
takes less than an hour in a single computer with 12G memory. We im-
plemented the proposed network based on tensorflow. Lastly, a threshold 
was set at the output layer of DeepSNR architecture to return binary out-
come that indicates whether a nucleotide belongs to binding site or not. 
We learned the threshold using validation set such that average F-Score 
(supplementary section S1) is maximized over the whole set and then, 
applied it on the test set for performance evaluation of DeepSNR. 

2.3 Data for Training DeepSNR 

We employed published human CTCF ChIP-exo data (accession number: 
SRA044886) for training and testing the proposed DeepSNR. Engaging 
the highly sensitive ChIP-exo experimental data is imperative to train 
DeepSNR because it aids our model to learn essential contextual infor-
mation to precisely locate TFBS. We applied MACE (Wang et al., 2014) 
to the ChIP-exo data to identify genome-wide mapping of CTCF binding 
sites. MACE identified total 110,183 CTCF binding sites across the whole 
genome. After investigating the size distribution of those sites, we ob-
served that 59,425 sites’ width was equal to 49 bp in accordance with the 
previously studied results (Rhee & Pugh, 2011; Wang et al., 2014). 
Hence, we utilized these 49 bp long TFBSs and added 51 bp flanking 
regions from two sides to make each sample 100 bp long. The flanking 
regions provide extra contextual information about TFBS to the model. 
The test set contains 19,600 randomly selected samples and the rest of the 
samples were used for training (34,925 sites) and validation (5000 sites). 
The training, testing and validation samples are strictly non-overlapping. 

Each training sample consists of a 100 bp sequence from the human 
hg19 reference genome and is paired with a label vector of same size 
indicating TFBS location. To construct training samples, we used the 
same training and validation set in both training stages with only one 
difference. While in the first stage, we placed the 49 bp long binding 
region at position 26-74 bp of a 100 bp input sequence for all the training 
and validation samples, the binding sites were positioned contiguously 
anywhere between 10-90 bp for the second stage of training. For the 
19,600 samples of test set, the input sequences were generated in the same 
procedure as second stage and we utilized it to assess the performance of 
DeepSNR only after both stages of training were completed. 

We also trained separate DeepSNR models to predict binding location 
of androgen receptor (AR) and glucocorticoid receptor (GR) transcription 
factors. Table S1 summarizes the dataset information of these transcrip-
tion factors. 

3 Results 
MatInspector (Cartharius et al., 2005) and MATCH (Kel et al., 2003) are 
two of the widely used DNA sequence based computational approaches 
for determining the location of TFBS. These methods scan input DNA 
sequences using position weight matrix (PWM) model of the desired 
transcription factor and assign matrix similarity score (MSS) for each K-
mer. After assigning MSS, a cut-off threshold is set to decide putative 
binding site. In order to evaluate the effectiveness and efficiency of our 
proposed approach, we compare the performance of DeepSNR with Mat-
Inspector on the CTCF dataset derived from ChIP-exo experiment. 
MATCH was not considered for the comparison analysis because MatIn-
spector and MATCH perform quite similarly because both the methods 
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rely on motif search for predicting TFBS. There are several methods that 
also provide base pair resolution prediction of TFBS using ChIP-seq data 
such as GEM (Y. Guo, Mahony, & Gifford, 2012), PeakZilla (Bardet et 
al., 2013) and PICS (Zhang et al., 2011). However, all of these methods 
require ChIP-seq read distribution information to predict binding location. 
Since, DeepSNR is not a peak calling method and is designed to identify 
TF binding region using DNA sequences only; we did not compare the 
prediction performance with those methods. 

3.1 Performance Evaluation Scheme 

The goal of the proposed algorithm is to precisely identify the TFBS 
location from 100 bp long DNA sequence at single bp resolution. That is, 
for each nucleotide of input sequence, we aim to determine whether the 
base-pair categorizes to putative binding site or contextual sequence. 
Hence, we employed Intersection-over-Union (IoU) between ground-truth 
and predicted location as one of the evaluation metric to assess perfor-
mance. IoU is very popular in the field of pixel-level image segmentation 
since it discerns a proposed solution with respect to the ground truth in 
perceptually meaningful way. We have also compared the performance of 
DeepSNR and MatInspector in terms of precision, recall and F-Score 
(supplementary section S1). 

To assess the efficacy of DeepSNR in regard to the metrics mentioned 
above, we distinctly tested the performance of each independently trained 
DeepSNR model for CTCF, GR and AR transcription factors. Since, our 
method yields 1/0 for each nucleotide in a sequence, we calculated preci-
sion, recall, F-Score and IoU for each of the input sequences individually 
for further analysis. For CTCF, the whole test set which comprises 19,600 
distinct DNA sequences of 100 bp length each was used to estimate the 
performance of DeepSNR. On the other hand, the performance of MatIn-
spector was assessed slightly differently. When we run MatInspector over 
19,600 test sequences with all the parameters set to optimized values as 
determined by the algorithm, we found that the method was able to detect 
TFBS only in 2,942 sequences. We investigated the missed sequences 
using MEME (Machanick & Bailey, 2011) and FIMO (Grant, Bailey, & 
Noble, 2011) and learned that those sequences contain highly enriched 
CTCF motifs, albeit a degenerate version. This maybe explains the failure 
of MatInspector in discovering any binding site for those sequences. 
However, we used these 2,942 sequences to measure the performance of 
MatInspector and compared the results with DeepSNR which were calcu-
lated based on 19,600 test sequences, though it is advantageous for Mat-
Inspector algorithm. 

3.2 Performance Analysis of DeepSNR and MatInspector 

In this section, we comprehensively analyze the performance of Deep-
SNR and MatInspector using the ground truth TFBSs locations derived 
from CTCF ChIP-exo dataset. Since, ChIP-exo reports TFBS location at 
single nucleotide sensitivity, using it as ground truth helps eliminating 
any ambiguity in performance comparison between different methods. 
The box plots in Fig. 2(a) show median values of evaluation metrics 
when calculated over all sequences as described in the previous section. 
It is clear that DeepSNR outperforms MatInspector to a large extent. The 
median recall of DeepSNR over all test sequences is 91% and it achieves 
sensitivity greater than 98% for at least 25% of the sequences under 
consideration. On the other hand, the best recall recorded by MatInspec-
tor for any sequence is merely 55%. The large difference in recall score 
between two methods emphasizes that DeepSNR is very sensitive in  
locating TFBS at base-pair resolution and it can successfully predict the 
total width of binding site instead of identifying just the anchor position. 

   (a) 

 
   (b) 

Fig. 2. (a) Performance comparison of DeepSNR and MatInspector, (b) Distribution of 

the distance of center nucleotide for DeepSNR and MatInspector from that of ground 

truth binding sites  

The median specificity of our system against false positives seems to be 

lower than MatInspector. However, DeepSNR demonstrates a precision 

higher than 73% for at least 10,000 test sequences whereas the median 

precision of MatInspector is 81% despite the fact that the statistics was 

measured across 2,947 sequences only. Combining the precision and 

recall evaluation metrics in the F-Score measure shows that DeepSNR 

significantly improved the prediction performance of locating TFBSs by 

25% compared with MatInspector. Furthermore, DeepSNR accomplishes 

the F-Score as high as 98% for some of the test sequences. Finally, the 

DeepSNR has IoU greater than 68% on half of the test sequences while 

MatInspector achieves a median IoU score of only 40%. The higher IoU 

of DeepSNR indicates that the method is sensitive enough to recognize 

nucleotides belonging to true TFBSs without conceding to precision, 

which is a remarkable feat. 

This pattern extends to the remaining transcription factors as 

DeepSNR outperforms MatInpector by 23.8% and 48.5% respective 

improvement of IoU for GR and AR (Supplementary Fig S1). The center 

position of TFBS is also important for downstream analysis. Hence, we 

also investigated distance between the centers for predicted sites and the 

centers of ground truth binding sites of test dataset. As evident from Fig. 

2(b), the distance density plot for DeepSNR predicted center binding 

region is highly focused at the vicinity of zero in comparison to MatIn-

spector. We found that DeepSNR displayed distance mean 0.69 bp and 

SD 10.23 bp while the mean and SD for MatInpector were found to be 

1.95 bp and 20.37 bp respectively (p-value = 2e-5).The narrower peak of 
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DeepSNR illustrates that the center nucleotide of predicted binding sites 

mostly coincide with the center of true binding site. Overall, these results 

demonstrate that the proposed deep learning model successfully captures 

TF-DNA binding interactions and improves the prediction of binding 

location. 

3.3 DeepSNR precisely locates binding motif 

To rigorously understand the significance of the results predicted by the 
trained DeepSNR model, we investigated the output of max-pooling 
layer at output network for 19,600 CTCF test sequences. The max-
pooling layer yields 100 scaler numbers (scores) upon which the sigmoid 
function and a threshold is applied to produce binary outcome corre-
sponding to each base-pair of an input sequence. We surmised that the 
base-pairs having higher scores may indicate biologically significant 
nucleotides for transcription factor (TF) binding. Hence, mutation map 
scheme (Alipanahi et al., 2015) was deployed to identify the most signif-
icant nucleotide (Ntms) for TF binding (see supplementary section S2). 
Then we assessed distance of Ntms from the nucleotide having maxi-
mum score (Ntmax) as computed by DeepSNR or (Ntms - Ntmax). Fig-
ure 3a shows the histogram of distances measured across 19,600 CTCF 
test sequences. It is evident from the histogram that in a large portion 
(57%) of test sequences the nucleotide whose mutation predominantly 
impacts the binding affinity is positioned at 10-18 bp apart from Ntmax. 
Interestingly, it has been shown in a previous study that nucleotides 4-8 
and 10-18 within core motif of a CTCF binding site (CBS) are the most 
critical determinant for CTCF binding (Plasschaert et al., 2014; Renda et 
al., 2007). Since the nucleotides maximally influencing the CTCF bind-
ing because of point mutations are commonly placed at a distance of 10-
18 bp from Ntmax, we deduced that the base achieving maximum score 
according to DeepSNR (Ntmax) marks the first nucleotide of CTCF 
binding motif in CBS. 

  
   (a) 

Motif E-score 

 

 

 
4.0e-042 

   (b) 

Fig. 3. (a) Probability distribution of distance of the most significant nucleotide (Ntms) 
for TF binding identified by DeepBind from the nucleotide having maximum score 
(Ntmax) according to DeepSNR. (b) CTCF motif found as highly present after perform-
ing motif enrichment analysis on all test sequences for very short region, only 20 bp 
downstream from Ntmax 

To further validate our implication that Ntmax truly indicates the 
first nucleotide of CTCF core motif within CBS, we performed motif 
enrichment analysis using MEME within 20 bp downstream from 
Ntmax. CTCF binding motifs are known to be ~20 bp long (Plasschaert 
et al., 2014; Rhee & Pugh, 2011). Hence, we selected 20 bp only to 
impose the most stringent criteria in the motif enrichment analysis and 
we found the CTCF motifs to be highly enriched even with such a short 
input sequence (Figure 3b). The result demonstrates that Ntmax indeed 
denotes the first nucleotide of CTCF motif in a binding site.   

3.4 Increasing the resolution of ChIP-seq data using Deep-
SNR 

Chromatin immunoprecipitation (ChIP) has emerged as the most widely 
used assay over the last decade for genome-scale mapping of TF-DNA 
footprints and gene regulation. Although ChIP-seq method is an effective 
approach to decode regulatory relationships, it cannot resolve TF-DNA 
binding interactions at basepair resolution. Generally, size of the binding 
regions determined from ChIP-seq data are on the order of hundreds of 
base pairs. Taking advantage of single nucleotide resolution prediction 
capability of DeepSNR, the specificity of ChIP-seq data can be improved 
to base pair resolution. Notably, the deep learning model trained for one 
cell line of a particular TF is feasible to be applied on any other cell 
lines. 

To exhibit the performance of DeepSNR on ChIP-seq data, 
we collected human CTCF ChIP-seq peak calling result for CD4 cell line 
published in (Martin et al., 2011). The dataset reports 20,272 peak re-
gions each of which is 400 bp wide. When we applied DeepBind and 
DeepSNR concurrently on ChIP-seq data (see supplementary section 
S3), DeepBind confirmed CTCF binding in 11,750 peak regions (58% of 
all peaks). Hence, we restricted our further analysis to these peaks only. 
For each predicted binding site location by DeepSNR, we calculated the 
distance between Ntmax (described in previous section) and center of 
ChIP-seq binding region, the histogram of which is plotted in supple-
mentary Fig S2. As evident, peak of the histogram is centered around -10 
bp which implies that the first nucleotide of CTCF motif and therefore, 
the binding motif coincides with the ChIP-seq summit for most of the 
sites. Considering that CTCF motif is ~20 bp long, center nucleotide of 
the motif detected by DeepSNR overlaps with ChIP-seq peak. However, 
for a significant number of ChIP-seq binding region, the binding motif 
(or binding site) is located far apart from ChIP-seq summit. This precise 
display of motif distribution within ChIP-seq peak region came into 
picture owing to the base pair resolution prediction of DeepSNR, which 

Table 1. Motif enrichment analysis result of DeepSNR prediction on 
ChIP-seq data. CTCF motifs are significantly enriched where DeepSNR 
predicted binding site within ChIP-seq peak in comparison to locations 
where it didn’t. 

 E-Score where DeepSNR predicted 

Motif found TFBS (1) NO TFBS (0) 

 

 

3.6e-1241 

 

Not enriched 

 

 

1.7e-1132 

 

3.8e-002 

 

 

8.5e-795 

 

1.2e-047 
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is otherwise not possible to visualize. Since, ChIP-seq summit doesn’t 
necessarily represent TF-DNA binding location as shown in Fig S2, 
DeepSNR can significantly reduce false positives/negatives in the analy-
sis of ChIP-Seq data that results from consistently choosing the peak 
center as the putative TFBS. Besides, application of DeepSNR on ChIP-
seq data delivers an unprecedented knowledge of the span of binding site 
which is not possible to attain using any motif search based methods.  

To verify the credibility of DeepSNR prediction results on ChIP-
Seq peaks, we performed independent motif enrichment analysis using 
nucleotide sequences where DeepSNR predicted ‘1’ and the sequences 
where it predicted ‘0’ within 400 bp wide ChIP-seq binding region. 
Table 1 shows the motifs derived from this analysis for CTCF. The strik-
ing difference in E-value (estimated statistical significance of a motif) 
between the CTCF motifs for positions where DeepSNR predicted pro-
tein-DNA binding (column 2) and those where it didn’t predict any bind-
ing (column 3) advocates for the efficacy of DeepSNR in pinpointing the 
binding location. While the CTCF motifs were identified as significantly 
enriched (E-values: 10-1132, 10-795) in DeepSNR predicted binding 
sequences, the enrichment scores were comparatively negligible in rest 
of the regions (E-values: 10-47, 10-2) demonstrating that DeepSNR is 

truly effective in predicting putative TF-DNA binding position. Thus,  

DeepBind and DeepSNR can be applied subsequently on ChIP-seq peak 

calling result to accomplish base pair resolution detection of TFBS 

which eventually leads to fewer false positive/negative rates. 

3.5 DeepSNR recognizes functionally active regulatory se-
quence 

Transcription factor (TF) proteins and DNA interacts with each other to 
regulate the transcription. One of the major impediments in unravelling 
the function of TF binding sites is to complement TFBS predictions with 
a high-throughput experimental approach that directly validates the 
functional contribution made by transcriptional regulatory motifs 
(Elnitski, Jin, Farnham, & Jones, 2006). In (Whitfield et al., 2012), the 
authors carried out a large-scale systematic functional analysis, at base-
pair resolution, of predicted TF binding sites in four immortalized human 
cell lines (K562, HT1080, HCT116 and HepG2) by performing transient 
transfection assays on promoters. 

There are 168 functionally verified 16 bp short regulatory sequenc-
es reported along with their genomic coordinates across four cell lines 
for CTCF. We wanted to investigate whether DeepSNR is sensitive 

enough to recognize these short controlling sequences when it is con-
cealed inside 100 bp long genomic sequence. Therefore, combining 
adjacent nucleotides from human genome we extended each of these tiny 
sequences to the length of 100 bp for three instances such that they were 
placed in three different locations (27 - 42 bp, 42 - 57 bp and 58 – 73 
bp). Next, we applied trained DeepSNR model of CTCF transcription 
factor on 168 sequences of each separate cases and recorded the nucleo-
tide position of maximum score at the output of second max-pooling 
layer (Ntmax of previous section). The histogram of Ntmax across 168 
sequences of each scenario are plotted in Fig. 4 depicting that DeepSNR 
responds actively to the change of locations of the most critical segment 
of input sequence required for TF regulation. The peak of histogram 
plots follows the positioning of the regulatory sequence which illustrates 
that DeepSNR is very accurate in recognizing the controlling sequence 
from noisy background sequence.  

More intriguingly, the distance between histogram peak and the 
first nucleotide of regulatory sequence is 10 bp for all the cases which is 
reminiscent of the result discussed in previous section. In the process of 
determining transcriptional activity of a regulatory sequence the nucleo-
tides making the greatest contribution to the TF-DNA binding were  

mutated such that it abolishes the binding (Whitfield et al., 2012) and 
transient transfection promoter activity assays were performed later on 
both wildtype and mutant sequences in order to determine substantial  
differences in transcriptional mechanism. It implies that the nucleotides 
pivotal for TF-DNA binding also govern the regulation orchestration of 
the transcription factor binding site. These nucleotides are eventually 
part of the binding motif and for CTCF, they are mostly located at 10 bp 
onwards within the motif sequence. Since, DeepSNR responds very 
sensitively to the positioning of regulatory (or motif) sequence, the mod-
el can play a role in the analysis of TF regulation scheme by locating the 
regulatory sequence in promoter region. 

4 Conclusion 

Computational prediction of transcription factor binding location from a 
genomic sequence remains a substantial challenge for the research com-
munity. While in previous decades genetic analyses focused on experi-
mentally discovering TF-DNA binding (ChIP-seq, ChIP-exo etc.), due to 
the availability of deep sequencing the search using computational meth-
ods has meanwhile become a research focus. We developed DeepSNR, a 
deep learning framework to identify TFBS which performs better than 
sequence based approaches because it automatically learns the depend-

 
                                                  (a)                                                          (b)              (c) 

Fig. 4. Histograms of distances of 168 experimentally verified 16 bp long regulatory sequences from Ntmax when they were concealed between (a) 27-42 bp, (b) 42-57 bp and (c) 58-

73 bp. As evident, histogram peak follows the regulatory sequence validating that DeepSNR is very effective in discerning it from noisy background sequence. 
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encies between nucleotides at different positions within the binding site 
description. DeepSNR is accomplished by successfully combining sever-
al technologies such as deconvNet, DeepBind and ChIP-exo that have 
been proved to achieve ground-breaking performance in their respective 
domain. The proposed model determines TFBS at base-pair resolution 
with high precision and recall which makes it suitable to discover regula-
tory sequences and to improve the specificity of ChIP-seq data. Current-
ly, the state-of-the art methods for determining functional importance of 
TF utilize position weight matrices (PWMs) to identify regulatory (or 
motif) sequence as one of the initial procedures (Whitfield et al., 2012). 
It is not surprising that regulatory sequences derived using such tech-
nique exhibit highly different success rates in modelling TF-DNA bind-
ing. We have shown that DeepSNR responds very sensitively to the 
position of regulatory sequences when hidden at various places inside 
noisy background sequence. Therefore, instead of relying on PWM, 
DeepSNR can be applied to identify the location of regulatory sequence. 
In addition, this is the first application of deconvNet to address a compu-
tational biology problem.   

Because of the limited availability of ChIP-exo data and to ensure 
wide applicability of DeepSNR, we focused on training the model with 
lone transcription factor on every occasion. However, predicting the 
binding location of multiple transcription factors simultaneously is an 
area that worth exploration in future. It can be expected that prediction of 
multiple TFs’ altogether might lead us to fully understand gene regula-
tion and concurrent expression of genes as observed in expression array 
analysis. 
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Supplementary Document for DeepSNR 
 

S1. Performance Evaluation Scheme 

IoU is very popular in the field of pixel-level image segmentation since it discerns a proposed solution with 

respect to the ground truth in perceptually meaningful way. Precision (P) quantifies the correctness of a 

system i.e., the capacity to predict known binding sites accurately (true positives) while decreasing the 

number of wrongly predicted binding sites (false positives). Recall (R) measures the entirety, i.e., the 

ability of an algorithm to detect binding sites properly while minimizing the number of known binding sites 

that are erroneously missed (false negatives). Finally, F-Score (F), the harmonic mean of precision and 

recall, were calculated to have a measure of both methods’ efficiency in discovering putative TFBS. 

Mathematical definitions of these metrics are as follows: 

IoU = TP / (TP + FN + FP) 

Precision (P) = TP / (TP + FP) 

Recall (R) = TP / (TP + FN) 

F-Score = 2*P*R / (P + R) 

S2. Discovering the Most Significant Nucleotide 

DeepBind’s mutation map scheme was deployed to evaluate the significance of each nucleotide on TF 

binding. Briefly, we mutated each nucleotide in a sequence with every possible point mutation and 

measured the change in affinity score for each mutation with respect to the affinity score of unaltered 

sequence using DeepBind. The average change in binding scores were evaluated for each base-pair and 

the nucleotide having the maximum average change in binding affinity was deemed to be the most 

important for TF binding. 

S3. Applying DeepBind and DeepSNR concurrently on ChIP-seq data 

The DeepSNR model for CTCF transcription factor was trained using 100 bp long DNA sequences from 

ChIP-exo data of HeLa cell line. Therefore, to apply trained DeepSNR model on 400 bp wide ChIP-seq 

binding region, we divided the entire region into 5 bins of 100 bp each using a sliding window of 75 bp. 

Next, we fed each bin into DeepBind to determine the presence of putative binding site in the input 

sequence. If DeepBind confirms TF-DNA binding in a bin then we applied DeepSNR to predict the binding 

location in that bin. In case of DeepBind predicting no binding, we moved to the next bin to repeat the 

same process and finally the binary outcome through DeepSNR for all the bins were combined as OR 
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operation to achieve the base pair resolution prediction result of whole ChIP-seq binding region. 

DeepSNR was employed in conjunction with DeepBind because DeepSNR is trained such that its input 

sequence is known to contain a binding site. Therefore, applying DeepSNR on a sequence that doesn’t 

contain binding site may lead to erroneous result. 

 

 

Supplementary Tables and Figures 

Table S1. Information of dataset used for predicting binding location of Androgen Receptor (AR) 

and Glucocorticoid Receptor (GR)  

TF name Total no of samples 

(training,validation,testing) 

Binding 

length  

Input sequence 

length 

Source 

Androgen receptor (AR) 402472 (272472, 30000, 100000) 58 bp 100 bp GSE43785 

Glucocorticoid receptor (GR) 28865 (22865, 1000, 5000) 79 bp 200 bp GSE79432 

 

Table S2. Performances of DeepSNR and MatInspector in predicting AR and GR binding sites 

TF name Method Median precision Median recall Median F1-score Median IoU 

 

AR 
DeepSNR 0.871 0.931 0.9 0.812 

MatInspector 0.894 0.327 0.493 0.327 

 

GR 
DeepSNR 0.507 1.0 0.669 0.503 

MatInspector 0.482 0.177 0.152 0.265 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2018. ; https://doi.org/10.1101/254508doi: bioRxiv preprint 

https://doi.org/10.1101/254508
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

(a) 

 

(b) 

Figure S1. Similar to CTCF transcription factor, DeepSNR has shown better performance than 

MatInspector in predicting binding locations of (a) AR and (b) GR transcription factors. 
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Figure S2. Probability distribution of distance between CTCF motif (determined by DeepSNR) and ChIP-

seq peak centre  
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