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ABSTRACT

Growing interest is devoted to understanding how brain signals recorded from scalp electroen-
cephalography (EEG) may represent unique fingerprints of individual neural activity. In this context,
the present paper aims to investigate the impact of some of the most commonly used techniques to
estimate functional connectivity on the ability to unveil personal distinctive patterns of inter-regional
interactions. Different metrics, commonly used to estimate functional connectivity and derived
centrality measures, were compared in terms of equal error rate. It is widely accepted that each
metric carries specific information in respect to the underlying interactions network. Nevertheless,
the reason why these metrics convey different subject specific information has not been investigated
yet. Experimental results on two publicly available datasets suggest that different functional connec-
tivity metrics define a peculiar subjective profile of connectivity and have different mechanisms to
detect subject-specific patterns of inter-channel interactions. It is important to consider the effects
that frequency content and spurious connectivity values may play in determining subject-specific
characteristics.

This manuscript has been submitted to Pattern Recognition
Letters.

1. Introduction

The interest towards the investigation of subject specific hu-
man characteristics that can be used to develop robust biomet-
ric systems still represents a big challenge. In this context,
growing interest is devoted to understanding how brain signals
recorded from scalp electroencephalography (EEG) may repre-
sent a unique fingerprint of individual neural activity. In the
last few years a huge number of works have investigated the
potential role of EEG signal characteristics as biometric sys-
tem (about 300 new papers in the last 10 years). A detailed
literature overview of the proposed methods is therefore quite
challenging and in any case out of the scope of the present pa-
per. Nevertheless, some attempts to summarize the state of the
art was previously proposed in (Campisi and La Rocca, 2014;
Khalifa et al., 2012; Del Pozo-Banos et al., 2014). In brief, it
is possible to consider the approaches proposed so far mainly
organized into two fundamental categories: (i) task based and
(ii) resting-state based EEG analysis. The first category is ori-
ented on experimental setups that allow to investigate proper-
ties of the EEG signal that are strictly related to the onset of a
specific stimulus. Motor (real and imagery) tasks (Yang et al.,
2018), visual evoked potentials (Das et al., 2015; Palaniappan
and Mandic, 2007; Armstrong et al., 2015), auditory stimuli
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(Light et al., 2010), imagined speech (Brigham and Kumar,
2010), eye blinking (Abo-Zahhad et al., 2016) and multiple
functional brain systems (Ruiz-Blondet et al., 2016) have been
proposed so far in order to elicit individual unique responses. In
contrast, the second category is mainly oriented to detect char-
acteristic patterns of induced brain activity at rest (both during
eyes-closed and eyes-open. In line with the extensive use of
tools from modern network science to understand brain com-
plex organization (Stam, 2014), measure of functional connec-
tivity (La Rocca et al., 2014; DelPozo-Banos et al., 2015; Han
et al., 2015; Garau et al., 2016) and network metrics have been
recently proposed (Crobe et al., 2016; Fraschini et al., 2015)
as EEG-based biometric traits. However, it seems still evident
that there exists a gap between current investigations of EEG
signal as neurophysiological marker and its application in per-
sonal verification systems. In particular, it is widely accepted
that each metric used to assess functional connectivity carries
specific information with respect to the underlying interactions
network (Kida et al., 2016). Nevertheless, the reason why these
metrics convey different subject specific information has not
been investigated yet. Following what reported in (Garau et al.,
2016; Fraschini et al., 2015), the present paper aims to inves-
tigate and compare the impact of some of the most commonly
used techniques to estimate functional connectivity on the abil-
ity to detect personal unique discriminative features based on
inter-regional interaction profiles. In order to answer this ques-
tion, we focused our attention on measures based on different
properties of the original signal. In particular, the following
measures were included in the present study: (i) the Corre-
lation Coefficient (CC); (ii) the Phase Lag Index (PLI) (Stam
et al., 2007), which quantifies the asymmetry of the distribu-
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tion of phase differences between two signals; (iii) the cor-
rected (after performing the orthogonalisation of raw signals)
and (iv) the uncorrected version of Amplitude Envelope Cor-
relation (AEC) (Hipp et al., 2012; Brookes et al., 2011), which
provides functional coupling without coherence or phase coher-
ence; (v) the corrected and (vi) the uncorrected version of the
Phase Locking Value (PLV) (Lachaux et al., 1999), which de-
tects frequency-specific transient phase locking independently
from amplitude. Each of the proposed metrics has different
properties and capture different characteristics of the EEG sig-
nal interactions which will be discussed in this paper. We hy-
pothesized that the choice of the metric may have a great im-
pact in highlighting subject specific patterns of functional in-
teractions, and that advantages and disadvantages of each tech-
nique should be correctly taken into account when interpreting
the corresponding results in terms of performance of a biomet-
ric verification system. Finally, the comparison was also per-
formed at the level of nodal relevance, as expressed using two
different network centrality measures, namely node strength
and eigenvector centrality.

2. Material and methods

2.1. EEG datasets

The analysis was performed using two different EEG
datasets. The first one (DS01) is a freely available EEG
dataset containing 64 channels scalp recordings from 109 sub-
jects with eyes-closed and eyes-open resting-state conditions,
each lasting 1 minute of spontaneous brain activity. The
full dataset was created and contributed to PhysioNet (Gold-
berger et al., 2000) by the developers of the BCI2000 in-
strumentation system. A detailed description of the original
system can be found in (Schalk et al., 2004) and access to
the raw EEG recording is possible at the following website:
https://www.physionet.org/pn4/eegmmidb/. For the purpose of
the present paper our analysis was applied to resting state eyes-
closed condition. The second dataset (DS02), including eyes-
closed anonymized EEG from 11 subjects, is freely available
without restriction and was released of the authors of a previous
study (Sockeel et al., 2016). The EEG acquisitions were carried
out with a 62-channel BrainAmp cap with sampling frequency
of 5 kHz. The reference electrode was located on Cz channel,
the ground electrode below Oz and the electrode impedance did
not exceed 10kOhm. As for the original work, only the last 300
seconds were considered for the subsequent analysis.

2.2. Preprocessing

For both the datasets, original raw data were band-pass fil-
tered in the common frequency bands: delta (1 - 4 Hz), theta (4
- 8 Hz), alpha (8 - 13 Hz), low-beta (13 - 20 Hz), high-beta (20
- 30 Hz) and gamma (30 - 45 Hz). Successively, each single
EEG recording was organized into five different epochs (with-
out overlap) of 12 seconds (Fraschini et al., 2016).

3. Connectivity metrics

From the preprocessed EEG signals, separately for each sub-
ject, each epoch and each frequency band, a connectivity matrix
was computed. Each single entry of the connectivity matrix,
which represents the weight of the functional interaction, was
evaluated by using the following different metrics.

3.1. Correlation

The Correlation Coefficient (CC) represents the simpler
method to estimate statistical relationship between two random
variables and it is widely used in fMRI studies (Friston et al.,
1994). However, since scalp EEG signals contain electric fields
derived from common current sources, CC does not represent
the optimal metric to estimate functional interactions in this
context. In this study, CC was mainly applied in order to quan-
tify the possible effect of spurious patterns of connectivity on
the definition of subject specific EEG traits.

3.2. Phase lag index

The phase lag index (PLI) (Stam, 2014) is a technique that
quantify the asymmetry of the distribution of phase differences
between two signals and removes the effect of amplitude infor-
mation. Furthermore, PLI is less affected by the influence of
common sources and thus defines more reliable interactions be-
tween the underlying signals. The PLI is computed as the asym-
metry of the distribution of instantaneous phase differences be-
tween two signals:

PLI = |〈sign[∆φ(tk)]〉| (1)

3.3. Amplitude Envelope Correlation

Band limited amplitude envelop correlation (AEC) (Hipp
et al., 2012; Brookes et al., 2011), using Hilbert transform, was
also used in this study. In particular, the envelope is obtained
by measuring the magnitude of the analytic signal and succes-
sively the Pearson’s correlation between envelopes is computed
as a metric of functional connectivity.

3.4. Amplitude Envelope Correlation, corrected version

It is well known that signal components that pick up the same
source at different sites (i.e., EEG channels) have an identical
phase. In this work, to overcome this possible limitation, we
used an orthogonalisation procedure performed in the spatial
domain (by removing the linear regression) before to compute
the AEC values. In the present paper, the corrected version of
AEC is reported as AECc.

3.5. Phase Locking Value

The phase locking value (PLV), introduced by (Lachaux
et al., 1999), allows to detect transient phase locking values
which are independent of the signal amplitude. The PLV there-
fore represents the absolute value of the mean phase difference
between the two signals:

PLV(i, j) = |
1
T

∑
e j[φk(i)−φk( j)]| (2)
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3.6. Phase Locking Value, corrected version
As for the AEC, PLV may still provide spurious zero-lag con-

nectivity between different EEG signals, therefore the same or-
thogonalisation procedure was also applied to PLV values. In
the present paper, the corrected version of PLV is reported as
PLVc.

3.7. Node centrality
In order to evaluate the node relevance within each network,

two different centrality measures were computed from each
connectivity matrix. The node strength (S), which represents
the sum of weights of links connected to the node, and the
eigenvector centrality (EC), which is a self-referential measure
of centrality where nodes have higher centrality if they are con-
nected to nodes that have high centrality.

4. Performance evaluation

The performance obtained by the application of the differ-
ent connectivity metrics for each of the two datasets have been
reported in terms of Equal Error Rate (EER). The EER refers
to the rate at which both acceptance error (that occurs when
the system accepts an impostor) and rejection error (that oc-
curs when the system rejects a genuine match) are equal. It
represents a quick way to compare the accuracy of different
systems and it is widely used in evaluating the performance of
biometric fingerprints. In short, the EER is the point where
false identification and false rejection rates are equal, thus the
lower the EER, the better the performance of the system. As
previously proposed (Fraschini et al., 2015), the system per-
formance is based on the computation of genuine and impos-
tor matching scores. The scores, computed separately for each
frequency band, represent the Euclidean distance (d) between
each pair of feature vectors. The feature vectors are represented
by the connectivity values extracted from the upper triangular
symmetrical connectivity matrix obtained by using the different
metrics. Thus, each feature vector contains (number of chan-
nels) x (number of channels - 1) / 2 elements, each representing
the corresponding statistical interdependence between pairs of
EEG channels. Finally, from the matching scores, the similarity
scores have been computed as 1 / (1 + d), where d represents
the Euclidean distance.

5. Results

The Results section is organized into three main sub-sections.
In the first sub-section (A), we reported the results obtained us-
ing the first dataset (DS01), the second sub-section (B) contains
the results from the replication analysis based on the second
dataset (DS02) and the third sub-section (C) deals with the anal-
ysis on the centrality measures extracted from the FC matrices.

5.1. Dataset: DS01
The results obtained on the first EEG dataset (DS01) are de-

picted in Figure 1 (which represents for each connectivity met-
ric the corresponding average matrix and standard deviation)
and summarized Table 1. These findings highlight a tendency

Table 1. The performance of different connectivity metrics expressed as
EER for each frequency band obtained using the first EEG dataset (DS01).
EER values lower than 10% were marked as bold.

AEC AECc CC PLI PLVc PLV
Delta 46.37 24.12 17.14 44.15 26.14 42.25
Theta 43.43 25.36 17.42 41.06 31.83 38.62
Alpha 40.30 23.40 15.10 31.22 26.69 31.49
Low Beta 25.82 11.66 9.04 16.61 21.15 15.21
High Beta 16.87 8.18 6.63 8.47 16.80 8.31
Gamma 13.86 9.77 6.88 5.70 11.02 5.91

Table 2. The performance of different connectivity metrics expressed as
EER for each frequency band obtained using the first EEG dataset (DS02).
EER values lower than 10% were marked as bold.

AEC AECc CC PLI PLVc PLV
Delta 42.31 49.80 33.07 47.04 48.16 28.76
Theta 33.75 45.56 30.38 47.91 49.13 33.11
Alpha 29.96 43.58 20.16 41.53 40.62 17.49
Low Beta 26.07 44.11 23.42 42.16 42.15 11.69
High Beta 22.18 45.20 12.91 42.35 42.40 6.62
Gamma 17.31 36.78 14.67 11.65 16.53 3.07

Table 3. The performance of different centrality measure for each connec-
tivity metric expressed as EER for the gamma frequency band. S refers
to strength and EC to eigenvector centrality. EER values lower than 10%
were marked as bold

AEC AECc CC PLI PLVc PLV
DS01 S 15.71 22.19 9.52 13.84 12.49 25.44
DS02 S 22.07 36.73 15.78 15.11 20.07 8.44
DS01 EC 10.72 14.63 8.98 7.02 6.83 11.01
DS02 EC 20.64 24.49 17.13 11.85 14.31 8.75

to obtain higher performance (lower EER) for the higher fre-
quency bands. This result confirms previous findings (Garau
et al., 2016; Fraschini et al., 2015) which suggested a potential
role of myogenic activity, which is known to affect high fre-
quencies (Muthukumaraswamy, 2013), on the definition of in-
dividual EEG characteristics. Moreover, these reported results
do not show any potential effect induced by the use of metrics
which correct for signal spread.

5.2. Dataset: DS02

The results obtained on the second EEG dataset (DS02) are
summarized Table 2. These findings tend to confirm the re-
sults obtained on the first EEG dataset (DS01). In particular,
this replication analysis still shows a strong effect of the fre-
quency content on the system performance, as the better results
(lower EER) are obtained for high frequency bands (high-beta
and gamma). Furthermore, these findings suggest that the FC
metrics robust to the effect of linear mixing/signal spread, in
particular AECc and PLVc, show worse performance even for
high frequency bands.

5.3. Centrality

The results obtained from the centrality measures as assessed
by using the node strength (S) and eigenvector centrality (EC)
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Fig. 1. Connectivity patterns for each metric and corresponding between subjects variation expressed as standard deviation.

are shown in Table 3 for both DS01 and DS02 dataset. The re-
sults refer only to the gamma band since this was the frequency
content that shows the best results in terms of EER over all the
other frequencies.

6. Discussion

The present paper aimed to investigate and compare the im-
pact of common techniques used to estimate functional con-
nectivity on their capacity to detect personal discriminative fea-
tures. In summary, the results of the present paper show, as
expected, that different metrics, each characterized by different
mechanisms of functional interaction, define a peculiar subjec-
tive profile of connectivity. In our opinion, two main points
deserve particular attention. The first important point is related
to a marked association between the frequency content and the
ability to discriminate among different subjects (as reported us-
ing the EER). Indeed, for both the EEG datasets the best per-
formance (lower EER) were obtained for the higher frequency
bands (high beta and gamma). It is interesting to note that this
finding represents a confirmation of previously reported results
using different approaches (Crobe et al., 2016; Fraschini et al.,
2015). In this context, it is not possible to rule out the hypothe-
sis that muscle artifacts, particularly evident at high frequencies
(Muthukumaraswamy, 2013), may play a key role in the defi-
nition of discriminative (individual) characteristics. The sec-
ond point is related to the different performance obtained using
the different connectivity estimators. It is evident that some of
connectivity metrics, namely AEC (corrected and uncorrected
versions) and the corrected PLV, give the worst performance
even for the higher frequency bands. This phenomenon is still
more clear from the results obtained using the second dataset
(DS02), where the corrected versions of AEC and PLV do not
exceed respectively 35% and 16% of EER, where their coun-
terparts (not corrected versions) show much lower EER, with
values respectively up to 17% and 3%. Furthermore, this latest
result represents the best performance obtained over the entire
analysis. These findings are also confirmed when the centrality
measures were extracted from the connectivity metrics. Again,
the worst results were obtained for AEC metrics. In general,

the second dataset (DS02) shows worst results if compared with
the first dataset (DS01). However, it is important to note that,
as it is evident from visual inspection of EEG traces, the second
dataset is certainly less affected by EEG artifacts. This aspect,
in our opinion, strengthen the reported results since the first
dataset (which is particularly noisy) better represents real-life
EEG acquisitions, thus giving a better simulation of possible
real biometric applications.

Moreover, considering the inherently different characteristics
of the used EEG datasets, this study shows that some connec-
tivity metrics, namely non-corrected version of PLV, are more
prone to pick up distinctive EEG features even when the orig-
inal signals are particularly free from artifacts and contamina-
tions. The other way around, it should be noted that PLV is a
connectivity metrics that is deeply influenced by mechanisms of
volume conduction, signal spread and common sources. There-
fore, caution should be used when interpreting the reported re-
sults. In particular, it is still possible that the distinctive patterns
of connectivity, as highlighted by PLV, may be strongly influ-
enced by spurious connectivity values generated by the previ-
ously cited sources of noise (i.e., volume conduction, signal
spread and common sources).

7. Conclusions

Future works should investigate if the results reported so far
at scalp level still hold when the EEG signals are reconstructed
(by resolving the inverse problem) at source level where the ef-
fects due to spurious connections, at least in part, attenuated.
Finally, this work suggests that different functional connectiv-
ity metrics have different mechanism to detect subject specific
patterns of inter-channel interactions, that it is important to con-
sider the effect of the frequency content and that spurious con-
nectivity values may play an important role in this context.
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