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Abstract: How random fluctuations impact on biological systems and what is their relationship
with complexity and energetic cooperativity are challenging questions that are far from being
elucidated. Using the stochastic differential equation formalism, we studied analytically the
effect of fluctuations on a series of oligomerization processes, in which several molecules of the
same or different species interact to form complexes, without interaction with the environment.
The conservation of the total number of molecules within the systems imposes constraints on
the stochastic quantities, among which the negativity of the covariances and the vanishing
of the determinant of the covariance matrix. The intrinsic noise on the number of molecules
of each species is represented by the Fano factor, defined as the variance to mean ratio. At
the equilibrium steady states, the sum of the Fano factors of all molecular species is equal to
the rank of the system, independently of the parameters. The Fano factors of the individual
molecular species are, however, parameter dependent. We found that when the free energy
cooperativity of the reactions increases, the intrinsic noise on the oligomeric product decreases,
and is compensated by a higher noise on the monomeric reactants and/or intermediate states.
The noise reduction is moreover more pronounced for higher complexity systems, involving
oligomers of higher degrees.
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1. INTRODUCTION

Although stochastic fluctuations play a major role in the
dynamics of many biological processes, they are often
overlooked. Besides the fundamental challenge of under-
standing how biosystems deal with these fluctuations, the
ability to control them would have valuable applications in
synthetic biology in view of rationally designing systems
with a precise number of molecules of each species or, on
the contrary, with very noisy behaviors.

To obtain a proper description of these effects, stochastic
modeling approaches are required (1; 2; 3). However, the
large size and complexity of biological systems make them
difficult to model mathematically, especially via stochastic
simulations in which the parameter space becomes rapidly
too large to be tractable. This has up to now prevented get-
ting general insights into the biological impact of stochas-
tic fluctuations.

An intriguing open question concerns the relationship be-
tween the complexity of biological systems and the modu-
lation of the intrinsic noise (4; 5; 6). In a recent study (7),
we have made an important step towards this goal. We
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analyzed a large series of chemical reaction networks with
different topologies and degrees of complexity, interacting
or not with the environment, and showed that the global
level of intrinsic noise at the steady state is directly related
to the network’s structure. For networks with a detailed-
balanced (equilibrium) or complex-balanced steady state,
the global noise level is constant, whereas for other homo-
oligomerization networks, the global fluctuation level de-
creases or increases according to whether the fluxes be-
tween molecular species flow from low to high, or from
high to low, complexity.

In this paper, we studied in detail a subset of these
networks and more specifically, closed biological systems
representing molecular homo- or hetero-oligomerization
processes, which admit an equilibrium steady state. Al-
though the global intrinsic noise is in this case constant
for all parameter values, we see that noise reduction or
amplification occurs for some of the molecular species in a
parameter-dependent fashion.

2. MATHEMATICAL MODELING USING ITO
STOCHASTIC DIFFERENTIAL EQUATIONS

Let us consider closed systems consisting of several molecu-
lar species that interact with each other to form molecular
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complexes. These molecules are, for example, proteins that
oligomerize or that bind to ligands, DNA or RNA. As
biological systems are inherently stochastic, their variables
need to be represented as stochastic processes defined
on some probability space and indexed by a parameter
t € [0,7] that represents the time. A natural formalism
for describing the time evolution of such systems consists
of the It6 stochastic differential equations (SDE) (8). For
a closed system with two types of molecules x and y, the
variables are the numbers of molecules denoted by X (¥)
and Y (¢), and the system of SDEs reads as:

dX(t) =ndG(Y,t) — ndF(X,¢t)
dY (t) = dF (X, t) — dG(Y, 1) (1)

where n is the number of molecules of type x that make up
y. The interconversion terms dF' and dG are each expressed
as the sum of a deterministic term with drift coefficient F'
and G, respectively, and of a stochastic term with diffusion
coefficient vF and VG :

dF(X,t)=F(X,t)dt + /F(X,t) dW* ()
dG(Y,t) = G(Y,t)dt + \/G(Y,t) dWC (t) (2)

WE(t) and WY (t) stand for two independent Wiener
processes: WE(t) — WF(t') and WE(t) — WE(t') follow
a N(0,t — t') distribution for all (¢,¢'), and W (0) =
0 = WY(0). Wiener processes have continuous-valued
realizations and are thus appropriate when the number
of molecules is large enough to be approximated as a
continuous variable. The It6 SDE formalism is equivalent,
under some mild conditions, to the Fokker-Plank and
master equation formalisms (8; 9).

For the simplicity of the subsequent calculations, we ap-
proximated the continuous SDEs given by Egs (1,2) by
discrete-time SDEs, where the time interval [0, 7] is sub-
divided in = equal-length intervals 0 =tg < ... <tz =T,
with t, = 7At and At = T/E. Using the Euler-Maruyama
discretization scheme (10), the discrete-time SDEs are:

Xri1=X; +nAG,(Y:) — nAF.(X;)
Y7—+1 - YT + AFT(XT) - AGT(YT) (3)

for all positive integers 7 € [0,Z]. The discretized inter-
conversion terms are given by:

AF,(X,)=F(X,) At + /F(X,) AWF

AG(Y:) =G(Y;) At +/G(Y;) AWF (4)
with W, = W (t;) and AW, = W, — W,, so that in
particular Wy = 0, E(AW;) = 0 and Var(AW,) = At.

All systems considered here converge towards an equilib-
rium steady state in the long-time limit, obtained by first
taking the limit T' = ZEAt — oo followed by At — 0.

3. HOMO-OLIGOMERS

Consider the closed system depicted in Fig. 1a, in which
n molecules of type x interact to form oligomers of type
y without intermediate states. The discrete-time SDEs
describing this system are given by Eqgs (3-4) with:

F(X;)= fXgn) , G(Yr)=gY: (5)

where X" = X (X;—1)...(X;—n+1). Since the system is
closed, the combination of the two equations (3) yields the
conservation constraint on the total number of molecules
at all times:

X, +nY, =N (6)
The mean of this equation and the mean of this equation
multiplied by X, or Y, yield the relations:

Var(X,) = n*Var(Y;) = —nCov(X,,Y;) (7)
The covariance is thus always negative and equal to
its lowest bound: Cov(X,,Y;) = —/Var(X,)Var(Y).
As a consequence, the conservation of the number of

particles (6) implies the vanishing of the determinant of
the covariance matrix: C'(X;,Y;) = 0.

(c) (d)

Fig. 1. Schematical representation of the oligomerization
systems studied in this paper. The green boxes correspond
to monomers (X, L, M), the red boxes to oligomeric products
(Y), and the blue boxes to intermediate states (U).

Another result following from Eq. (7) is that Var(Y;) =
Var(X,;) when n = 1, and Var(Y,;) < Var(X,) when
n > 1; the variance ratio is equal to 1/n?. Thus, the higher
the oligomer degree, the smaller the oligomer variance
compared to the monomer variance.

To completely solve the model, we need to go back to Eqs
(3-5), and take their mean and the mean of their squares
at the steady state. This yields the additional relations:

B(X ™) = {B(Y) (8)
Cov(X, X™) = —nCov(Y, X() = n%(E(Y) ~ Var(Y))
where the numbers of molecules at the steady state are
denoted by X and Y (without subscript). Note that only
the ratio of the parameters, f/g, enters in the equations.
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For n = 1, the system of equations closes and we get:

= fya - ! fi
E(X)—N(l-l—g) , E(Y) Ng(l-l—g) (9)
= Var(Y) = —Cov N/ S -
Var(X) = Var(Y) = ~Cov(X,Y) = N <1+g>

For n > 2, the system does not close, and we had to make
approximations to solve it. We used the moment closure
approximation (12), assuming E(X) > 1 and E(Y) > 1.
This yields:

n_mn-1) - 1)E(X)"—2 Var(X)

Cov(X, X)) = nE(X)" Var(X) (10)
Egs (8) now reduces to the closed system of algebraic
equations:

E(X™)~E(X)

nE(Y) = N — E(X) ~n gE(X)"

Var(X) =n?Var(Y) = —n Cov(X,Y)
n? B(X)E(Y)

T E(X) +n2E(®Y) (11)

With these approximations, the mean, variance and co-
variance of X and Y can be expressed as a function of
the parameters. In a first step, we obtained a general
expression of these quantities in terms of the parameter
ratio f/g and E(X) for all values of n:

f

B(Y) = B(X)" (12)

Var(X) = n?Var(Y) = —nCov(X,Y)
Ln?B(X)"
1+ Ln2B(x)n1

In a second step, E(X) can be written in terms of the
parameters f/g and N in a n-dependent fashion. In
particular, for n = 1 we recover Eqs (9), while for n = 2

we have:
lyg f
EX)=-=|-1+4/14+8=N 13
(X) 4f< st ) (13
and for n = 3:
A2 _92/3f
E(X) = PRYL S—R (14)
f
?’EA
1/3

2 3
win = (x (sL) +W) wr sl
g g g

Thus, when f/g increases from 0 to oo, E(Y) increases
from 0 to N and E(X) decreases from N to 0, for all values
of n. The variances Var(X), Var(Y) and the covariance
—Cov(X,Y) vanish for f/g =0 and f/g = oo, and reach

a maximum at 5 =1forn=1, at
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Fig. 2. Stochastic behavior of homo-oligomeration pro-
cesses, as a function of the interconversion parameter
ianl, for oligomers of degree n = 1 to 3. N is taken equal

to 100. (a) Fano factors; (b) Mean values; (c) Variances.

for n = 2 and at
f 048

g N?
for n = 3. The mean and variances of X and Y as a
function of f/g are shown in Fig 2, for fixed values of
N. Clearly, they vary with the oligomer degree n.

(16)

The intrinsic noise on a stochastic variable X is usually
estimated by its Fano factor F, defined as the variance to
mean ratio: F(X) = Var(X)/E(X). This factor measures
the deviation from Poissonian noise: when it is lower than
one, the intrinsic noise is reduced compared to the Poisson
distribution, and when it is larger than one, the noise is
amplified.

From Egs (13) follows that the sum of the Fano factors of
the two molecular species x and y at the steady state is


https://doi.org/10.1101/254763
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/254763; this version posted January 28, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

equal to one — the system’s rank — for all n, independently
of the values of the parameters:
FX)+FY)=1 (17)
This result has been shown to hold for general deficiency
zero systems (7). The Fano factors F(X) and F(Y) are
thus lower than one and both molecular species exhibit
sub-Poissonian noise. Strikingly, the N"~!f/g interval
where the intrinsic noise is higher on the oligomer than
on the monomer (F(X) < F(Y)) is reduced for larger
oligomer degree n (see Fig. 2). Indeed the crossing point

between the F(X) and F(Y) curves is g =1forn =1,

Ni:%forn:QandNQi:é—?forn:3.
g g

Since the system is closed, we can define the reaction free
energy as:

E(9Y;)
E(f X\")

where kg is the Boltzmann constant and T the absolute
temperature. This quantity vanishes at the steady state,
which is in this case an equilibrium state. The standard
free energy, AGY, is then:
E(Y)Nn—t fN1
0 -
AG E(X™) kpT log

AG, = —kpT log (18)

= —kpT log

(19)
Thus, the larger the f/g ratio for fixed N, the more
negative the standard free energy, and the stabler the
product y.

4. HOMO-TRIMERS WITH DIMERIC
INTERMEDIATE STATE

Consider now the case in which molecules x first form
homodimers u and then homotrimers y, as depicted in Fig.
1b. This system corresponds to the homo-trimerization
(n = 3) described in the previous section, but with an
intermediate state. The discrete-time SDEs describing this
system are:

X1 =X; —2AF1 + 2AG 1 — AFy; + AGo,
Uri1=U; + AF1; — AG1; — AF + AGo,
Y1 =Y, + AFy, — AGo, (20)
where
AP, = XD At +/ A XD AW
AGy, = iU, At + /U, AWS
AFy, = o X Uy At + /o X, Uy AW
AGay = goVi At + \/g2Y, AWE? (21)
AWHF AW, AW and AWS2 are independent

Wiener processes. The combination of these three equa-
tions, which imposes the conservation of the total number
of particles at all times, is here:

X, +2U,4+3Y, =N (22)
This conservation equation implies the following relations
on the mean, variances and covariances:

1 The deficiency is a structural characteristic of the network defined
as the number of complexes in the network minus the rank and
number of connected components (11).

E(X,)+2EU,) +3E(Y,;) =N (23)
6 Cov(X,,Y;) =4Var(U,) — Var(X;) — 9Var(Y;)
4Cov(X,,U;) = —4Var(U,) — Var(X,;) + 9Var(Y;)
12Cov(Y;,U;) = —4Var(U;) + Var(X,;) — 9Var(Y;)

as well as the vanishing of the determinant of the covari-
ance matrix: C(X,,Y;,U;) =0

To fully solve equations Eqgs (20,21) at the steady state,
we used again the moment closure approximation (12). We
got in this way all variances, covariances and mean values
as a function of the parameter ratios f1/¢1 and f2/gs and
E(X):

E(Y) = %E(X)E(U) = %%E(X):}
Var(X) = B*%E(X)2 (4 + 9ZE(X))
Var(U) = B*lgE(X)2 (1 + 9££E(X)2>
Var(Y) = B~ 12 ;z (X)? (1 +4£E(X))

Cov(U,Y) = 2£E(X)Cov(X, Y)

- B 16(fl>2f2E(X)4 (24)

g1 g2
f1 f2
g—lE(X) <4+992E( )) (25)

Here also, all the covariances are negative. These equations
directly yield the Fano factor relation:

F(X)+FU)+FY)= (26)
which generalizes Eq. (17) for systems of rank two (7).

with B=1+

To get E(X) in terms of the parameters, we had to solve
the additional equation:

f

N:E(X)+2 CE(X )2 + Lglit2

g1 g2

E(X) = Lf (2—1/31) + 21/3(4ﬁ — 92)17—1 — 2)
9L2 g1 g2

E(X)?  (27)

This yields:

g2

with:
3 2
D% = —16 (—1) + 54 (ﬁ) E+243(f1) (f—2> N
g1 g1 92 g1 92
3 3 2
*\/(h> (s (022 a2) 2 (102 2asnt2n)’)
g1 92 g1 g1 g1 92 92

As illustrated in Fig. 3, the mean number of monomers
and dimers E(X) and E(U) decrease with increasing
parameter values fy/go, for fixed N and f;/g1, whereas
the number of trimers increase. In contrast, the variances
show a maximum for some ranges of parameters. The Fano
factors of the monomeric and dimeric states increase with
f2/9g2, whereas the Fano factor of the trimer decreases.

The standard free energies of the two reactions are :
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Fig. 3. Stochastic behavior of a homotrimerization process
with a dimeric intermediate state, as a function of N fa/gs.
N is equal to 500 and N f1/g1 = 10. (a) Fano factors; (b) Mean
values; (c) Variances.

E(U)N AN
0__ P A g
AG]=—kpT log BX®) kp T log 7
E(Y)N foN
0_ e S il
AGY=—kpT log Box) ~ Tl (29)

at the steady state. Cooperative and anticooperative pro-
cesses consist of two or more binding reactions that are
not independent, in which the formation of a first com-
plex makes more or less likely its interaction with other
molecules. Such phenomena are observed in a large variety
of biochemical processes (13). In terms of free energy, the
system described in this section displays a cooperative
behavior when AGY < AGY, and an anticooperative be-
havior when AGY > AGY. In terms of the cooperativity
index defined as:

= Po

T g2f1 (30)

the system is cooperative when I, > 1 and anticooperative
when I, < 1.

As shown in Fig. 4, the higher the cooperativity, the lower
F(Y), and thus the lower the intrinsic noise on the reaction
product. Moreover, for constant cooperativity index, the
noise is reduced when increasing N s%'

Fig. 4. Fano factor of the trimer F(Y) as a function of
the cooperativity index I for different values of N% (2D
graph), and as a function of I and N!J;—i (3D graph); N is
taken equal to 500.

5. (2,1)-HETERO-TRIMERS WITH DIMERIC
INTERMEDIATE STATE

We generalized the trimerization of identical monomers
described in the previous section to the case where one
monomer z binds to another monomer ¢ to form an dimer
u, which in turn binds to a second monomer ¢ to form
a (2,1)-heterotrimer. This system is illustrated in Fig.
lc, and describes, for example, a protein = that binds
successively to two ligands ¢, leading to the protein-ligand
complex y. The following discrete-time SDEs describe this
system:

XT+1 =X, - A}?17' + AG].T
L‘r+1 - L‘r - AFlT + AGlT - AFQT + A(;2‘1'
U7—+1 =U,; + AFIT - AGIT - AF2T =+ AGQT

Y=Y+ AFy, — AGo, (31)
where
AP = fiX, Ly At + /i X, L AW,
AGir = giU: At + /g1 U, AWE |
APy, = foL Uy At + \/foL Uy AWF2,
AGa, = oY Al + /9o Y, AWE? (32)

where AW AWz AW and AW are independent
Wiener processes.

Given that the system is closed, we get two relations,
obtained as linear combinations of the four equations (31),
which ensure the conservation of the number of molecules
of species x and ¢ at all times. These are:
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Fig. 5. Fano factors of (2,1)-heterotrimers, as a function of
the cooperativity Ic with s% = 0.05 and N; = 500 = Ny.
X, +U,+Y, =N,
L, +U;,+2Y, =N,
Using the same techniques as in the previous sections,
we analytically solved the system of Eqs (31) under the
moment closure approximation. We got in particular that

the sum of the Fano factors of all molecular species is, as
expected, equal to the system’s rank:

FX)+FL)+FU)+FY)=2 (33)
As illustrated in Fig. 5, the Fano factors of the monomer
¢ and of the intermediate state w increase with the pa-
rameter fa/ga, for fixed f1/g1, whereas the Fano factors
of the monomer x and the trimer y decreases. Note that
for other parameter values, F(X) also increases, whereas
F(Y') always decreases. This behavior can again be related
to the standard reaction free energies, which are in this
case:

E(U)N fIN
0—_ = — —_—
AGT = kBTlogE( ) kg T log "
E(Y)N foN
AGY=—kgT 1 = —kpT logZ=—, (34
L 1 (777) BL 0T (34)

with N = N, + N,. We found here also that the higher
the cooperativity value I¢, the lower the Fano factor on
the trimers y.

6. (3)-HETEROTRIMERS WITH DIMERIC
INTERMEDIATE STATE

We finally considered the trimerization of three different
monomers x, £ and m, with an intermediate state u consist-
ing of dimers built from z and ¢, as illustrated in Fig. 1d.
Generalizing the equations and the approach used in the
previous sections, we find that the molecular conservation
relations imply the vanishing of the determinant of the
covariance matrix at all times: C(X,, L;, M, U,,Y;) =0,
and the equality between the sum of the Fano factors of
all molecular species and the rank of the system, indepen-
dently of the parameter values:

FX)+FL)+FM)+FU)+FY)=2 (35)
Furthermore, the Fano factor of the trimer y decreases
with the increase of the cooperativity index Io, for fixed

fi/91. Hence, again, the higher the cooperativity, the
larger the noise reduction on the complex.

7. CONCLUSION

On the basis of the closed homo- and hetero-oligomerization
systems studied, we conclude that each molecular species
is subject to sub-Poissonian noise, while the sum of their
Fano factors is equal to the rank of the system. The
intrinsic noise on the oligomeric product is all the more
reduced as the oligomeric degree is high, and the reactions
are cooperative.

There are still a several points that need to be addressed.
The SDE formalism and moment closure approximation
are only valid for sufficiently large numbers of molecules,
and the validity of our results for small N need to be
checked. To apply our approach to biological systems of
interest, which are in general open systems interacting
with the environment, our analysis need to be extended to
such systems; our first results in this context are presented
in (7; 14). A further stage will be the comparison of our
analytical results with experimental data on fluctuations
in targeted biochemical networks.
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