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Truncation and Motif Based Pan-Cancer Analysis Highlights Novel Tumor

Suppressing Kinases.

Summary: A unique computational pan-cancer analysis pinpoints novel tumor
suppressing kinases, and highlights the power of functional genomics by defining

the JNK pathway as tumor suppressive in gastric cancer.
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ABSTRACT

A major challenge in cancer genomics is identifying driver mutations from the
large number of neutral ‘passenger’ mutations within a given tumor. Here, we
utilize motifs critical for kinase activity to functionally filter genomic data to
identify driver mutations that would otherwise be lost within mutational noise.
In the first step of our screen, we define a putative tumor suppressing kinome by
identifying kinases with truncation mutations occurring within or before the
kinase domain. We aligned these kinase sequences and, utilizing data from the
Cancer Cell Line Encyclopedia and The Cancer Genome Atlas databases,
identified amino acids that represent predicted hotspots for loss-of-function
mutations. The functional consequences of new LOF mutations were validated
and the top 15 hotspot LOF residues were used in a pan-cancer analysis to define
the tumor-suppressing kinome. A ranked list revealed MAP2K7 as a candidate
tumor suppressor in gastric cancer, despite the mutational frequency of MAP2K7
falling within the mutational noise for this cancer type. The majority of
mutations in MAP2K7 abolished catalytic activity compared to the wild type
kinase, consistent with a tumor suppressive role for MAP2K7 in gastric cancer.
Furthermore, reactivation of the JNK pathway in gastric cancer cells harboring
LOF mutations in MAP2K7 or JNK1 suppresses clonogenicity and growth in soft
agar, demonstrating the functional importance of inactivating the JNK pathway
in gastric cancer. In summary, our data highlights a broadly applicable strategy
to identify functional cancer driver mutations leading us to define the JNK

pathway as tumor suppressive in gastric cancer.
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It was estimated that by the end of 2017 more than 1.6 million cancer samples
would have been sequenced by next generation sequencing (NGS) [1]. The
greatest challenge now lies in interpreting this data to dissect tumorigenic
mechanisms and identify therapeutic targets. A major problem is that the data is
often noisy with many inconsequential ‘passenger’ mutations obscuring the
detection of driver mutations [2-3]. Now that most cancer subtypes have been
characterized by large-scale sequencing studies, the common drivers have been
identified [4]. However, the fact that many of the samples in these studies do not
have an identifiable common driver suggests there are a multitude of lower
frequency drivers that we struggle to detect above the noise [5-6]. The best
method to discover more cancer drivers is under debate [7-9]. Should we
continue sequencing more and more samples, or do we focus on functional
studies? Currently, in silico methods are already widely used to attempt
functional analysis of large genomic data sets [2, 10], however these assessors
are limited and may miss functional driver mutations [11-14]. Therefore, there is
a need to improve genomic analysis to assist in unlocking the potential of these
huge public datasets. By better linking existing knowledge of a protein’s function
to the associated structural features we can begin to functionally screen genomic
data. Protein kinases are a well-characterized class of proteins with documented
mechanisms linking structural motifs to protein function [15-17]. This makes

them ideal candidates to develop motif-driven bioinformatic screens.

We initially produced a list of candidate tumor suppressing kinases using the
frequency of truncating mutations from The Cancer Genome Atlas (TCGA) and

the Cancer Cell Line Encyclopedia (CCLE) that would abolish catalytic activity.
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Sequence alignment of this tumor suppressing kinome allowed the identification
of mutational hotspots in conserved regions. The top 12 mutational hotspots
were all within motifs already known to be critical for kinase function -
validating this approach of hotspot LOF mutation identification. Two novel
hotspot residues were biochemically analyzed, and found to also result in
inactivation of the kinases harboring the mutation. We then developed a
bioinformatics screen to identify mutations in the top 15 hotspot residues in 411
canonical kinases in TCGA and CCLE datasets. Kinases were ranked by the
frequency of these mutations. Alongside known tumor suppressors such as
STK11, we identified and validated a high incidence of MAP2K7 LOF mutations in
gastric cancer, and highlight a tumor suppressive role for MAP2K7 and the JNK
pathway in this cancer subtype. There has been great debate regarding the role
of the JNK pathway in cancer as indicated by the numerous contradictory
publications in the literature [18]. The genetic make-up of the tumor and the
tumor microenvironment will dictate an oncogenic or tumor suppressive role for
this pathway in various cancers [19]. Our study provides a framework to assess
the role of kinases in various types of cancers and our results highlight a tumor

suppressive role for the JNK pathway in gastric cancer.

RESULTS

Alignment of predicted tumor suppressing kinome reveals mutational

hotspots in conserved regions.
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To define hot-spot inactivating missense mutations it was important to first
establish a list of potential tumor suppressing kinases, identified by virtue of
frequent truncation mutations. The top kinases identified could then be utilized
to identify highly conserved residues that are mutated at a high frequency and
will likely abolish catalytic activity, consistent with the kinase being a tumor
suppressor. This screen was performed by locating the highly conserved APE
motif or its equivalent sequence in 411 ‘catalytically active’ (Supplementary
Table S1) human kinases possessing the classical kinase domain motifs from
Manning et al [16]. The APE motif, which is a critical component of the kinase
domain functioning to stabilize the C-lobe and mediate substrate interactions,
was used as a conservative cut-off point for identifying truncating mutations that
would abolish kinase activity (Fig. 1). Although there are additional critical
kinase regions C-terminal to this conservative cut off point, including the aF
helix which functions to anchor both the catalytic and regulatory spines of the
kinase domain, the APE motif was chosen because it is highly conserved and can
be easily aligned across the kinase family. When adjusting the cut-off to include
the entire protein, there are 11 unique kinases included in the top 30, therefore a
majority of the top kinases would still be identified as tumor suppressing kinases
(Fig. 2 and Supplementary Table S2). The frequency of truncating mutations
found within the TCGA and CCLE datasets occurring N-terminal to this cut-off for
each kinase were length corrected (Fig. 1) to produce a list of the top 30 kinases
by truncating mutation density (Fig. 2 and Supplementary Table S3). This list is
comprised of known tumor suppressors such as STK11 and MAP2K4 [20,21]
along with kinases without a previously published role in tumor suppression. As

a proof-of-concept, we verified one such MAP2K4 truncating mutation (E221%*)
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found in a pancreatic cell line (CAPAN1) to show that when wild type signaling is
restored a significant decrease in anchorage-dependent and anchorage-
independent colony forming potential is observed (Supplementary Fig. S1A-C).
The kinase domains of these 30 tumor suppressing kinases were then sequence
aligned to identify areas of high conservation. The TCGA and CCLE datasets were
queried to capture all missense mutations occurring at each position of the
aligned sequences and a combined score based on conservation and mutational
frequency was produced for each position (Fig. 2 and Supplementary Table S4).
The top 12 residues identified by this combined score (with a conservation score
above 20) were located within a motif known to be critical for kinase activity
(Table 1) [22, 23]. A total of five novel regions were identified within the top 20
hotspot residues (Table 1, highlighted with blue or grey). Two of these five
residues (APE - 6 and HRD - 6) were further validated to determine their effect

on kinase catalytic activity as discussed below.

Mutations of a hinge residue between the activation and P+1 loops abolish
catalytic function.

The APE - 6 residue is a glycine residue found to be highly conserved within the
411 kinases used in this study (81% conservation across 411 kinases). Structural
modelling demonstrates that this residue lies at a hinge point between the
activation loop and P+1 loop which could allow the typical fluctuations of the
activation loop between its active and inactive conformations (Fig. 3A). The
small size of the glycine amino acid that occupies this position in a large number
of kinases allows for the flexibility of this hinge region. Mutations that limit

flexibility of the hinge region may impair catalytic activity. Alternatively, this


https://doi.org/10.1101/254813

bioRxiv preprint doi: https://doi.org/10.1101/254813; this version posted January 27, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

glycine helps form the P+1 recognition pocket and mutations at this residue will
impact this pocket to alter substrate recognition and binding, which could also
lead to LOF. Molecular dynamics (MD) simulations of one such mutation at this
conserved glycine in MAP2K4 (G265D) showed a decreased movement of the
activation loop compared to that of the wild type kinase (Fig. 3B). Transient
overexpression of MAP2K4 mutations, G265D and G265C, both seen in cancer
samples, demonstrates reduced phosphorylation of the canonical JNK pathway
equivalent to a kinase-dead construct (Fig. 3C). When wild type MAP2K4 was
stably re-expressed in CAL51 cells, harboring the G265D mutation
(Supplementary Fig. S2D), a reduction in colony forming potential was observed
in both two-dimensional and three-dimensional assays (Fig. 3D and E),
compared to the parental cell line, where no significant change was observed.
These data indicate that the G265D MAP2K4 mutation is a significant LOF driver
mutation in the CAL51 cell line. Corresponding glycine mutations observed in
other cancer samples in MAP3K13 (G315D) and PRKCQ (G541V) also showed a

reduction in kinase activity (Fig. 3F and G).

Mutations at HRD-6 abrogates kinase activity.

Investigation into the HRD-6 position was also performed. Structural modelling
of this residue highlights its close proximity to the R-spine anchoring residue
within the aF-helix (Fig. 4A). The R-spine is formed as the kinase becomes active
and is critical for catalytic activity. MD simulation of a mutation at the HRD-6
position within DAPK3 (H131R) shows an increased level of movement around
three out of the four R-spine residues, with RS1 at residue position 79 showing a

large increase in movement. This increased movement could suggest a
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destabilization of the R-spine, which would likely result in reduced catalytic
activity. Assessment of cancer associated mutations at this position in DAPK3
(H131R) and BRAF (H568D) demonstrate a loss of kinase catalytic activity
similar to that observed for kinase dead mutants (Fig. 4B and C). These results
highlight that combining conservation at a given residue with mutational
frequency will be a successful approach to identify low frequency functional

mutations across cancer genomic databases.

Pan cancer analysis of mutations found in critical motifs highlights a
prevalence of LOF MAP2K7 mutations in gastric cancer.

Having identified and validated novel hotspot residues for kinase inactivation,
the top 15 mutational hotspots (13 known critical residue and 2 novel residues
validated above) were used in a functional screen to identify novel tumor
suppressing kinases. A pan cancer analysis was performed by querying the TCGA
and CCLE datasets for mutations located in these 15 residues in 411 kinases. The
kinases were then ranked by the mutational frequency of these 15 regions
combined (Fig. 5A). BRAF was identified as the top hit with 39 mutations
throughout both datasets, followed by STK11 (14 mutations), MYO3A (13
mutations), EPHB1 (12 mutations), and MAP2K7 (11 mutations). EPHB1 and
STK11, as well as other top hits such as CHEK2, have previously been
demonstrated to play a tumor suppressive role in different cancer sub-types [21,
24-26]. MAP2K7 was selected for further investigation as 6 out of the 11
detected mutations occurred in a single cancer subtype, gastric adenocarcinoma
(Fig. 5B). In addition, MAP2K7 mutations and deletions occur in 7% of cases in

the TCGA gastric adenocarcinoma series, with 40% of the mutated cases
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possessing more than one mutation, suggesting both alleles are affected.
Transient overexpression of the 4 gastric MAP2K7 mutations that occurred in
conserved motifs validated that three of these mutations are LOF with regards to
JNK pathway activation (Fig. 5C). Furthermore, in a gastric cancer cell line that
harbors an inactivating MAP2K7 mutation (IM95, D290fs, Supplementary Fig.
S2A), reconstitution of wild type signaling (Supplementary Fig. S2C) results in a
significant decrease in anchorage-dependent and anchorage-independent colony
forming potential (Fig. 5D and E).

When other genes in the JNK pathway are considered, approximately 22% of
gastric cancers harbor alterations in MAP2K7, MAP2K4, MAPK8, MAPKO,
MAPK10, JUN, or ATF2 with a high degree of mutual exclusivity suggesting a
significant role for loss-of-function on the JNK pathway in gastric carcinogenesis
(Supplementary Fig. S2D). Re-expression of wild type JNK1 in a cell line
harboring a JNK1 LOF mutation (G177*; Supplementary Fig. S2B-C) also shows
significant decrease in anchorage-dependent growth (Supplementary Fig. S1E).
Together these data indicate that loss of signaling through the JNK pathway is

important for gastric cancer tumorigenesis.

DISCUSSION

Cancer genomics has provided large cohorts of data which has proved extremely
valuable in identifying common genetic drivers. However, the challenge now lies
in dissecting this data to identify those driver mutations that are at a lower
frequency, and thus masked by mutational noise. We present an approach to
screen genomic data utilizing functional knowledge of the kinase domain

structure and sequence. Our first step was to utilize a strategy to identify somatic
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point mutations that will abolish the catalytic activity of a kinase, and through a
pan cancer screen, identify potential tumor suppressing kinases enriched in LOF
mutations. Following this filtering step, we identified a number of kinases, such
as MAP2K?7, that we would predict to harbor frequent LOF mutations. Our final
step was to validate our approach by demonstrating biochemically and through
functional assays that indeed MAP2K7 is a tumor suppressing kinase in gastric
cancer. To put this challenge in perspective, at the time of conducting our screen,
there were 43,212 missense mutations in the 411 canonical kinases included in
our screen. From our conserved motif screen, that included 15 highly conserved
and mutated codons, we identified 921 mutations in these 411 kinases, allowing
us to pinpoint novel kinases enriched in LOF mutations. Our strategy has not
only highlighted many additional kinases to be explored as tumor suppressors,
but also laid the ground work for a broadly applicable approach that can be
utilized to identify novel tumor suppressors in other enzyme families, such

ubiquitin ligases.

The initial truncation screen identified a list of candidate tumor suppressing
kinases and to ensure that the truncation mutations used within this screen
would result in kinase inactivation a conservative cutoff point for these
truncation mutations was determined. We only included truncating mutations
occurring N-terminal to the APE motif, as we could confidently state these would
abolish kinase activity. The length-corrected truncation mutation frequency was
used to rank all the kinases as potential tumor suppressors. The appearance of
two well-known tumor suppressing kinases (STK11 and MAP2K4) occurring as

the top two hits for our screen validated this approach [20,21].
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To identify novel hotspot tumor suppressive residues we aligned the sequences
of the top 30 tumor suppressing kinases and each residue was assigned a
mutational- and conservational-score. Residues were then ranked by their
combined score to give a list of tumor suppressive hotspot residues. The top 12
residues identified in this way occurred in well-known motifs critical for kinase
function, validating this approach as a method for identifying highly functional
mutations. However, we accept that by virtue of their conservation and prior
recognition there is potential bias in the sequence alignment, which would lead
to a higher score for these well-known motifs. We investigated the two novel
residues that occurred in the top 15 hotspot residues identified by this screen.
The first of these was a conserved glycine, occurring between the activation and
p+1 loops, which is frequently mutated in different kinases in cancer samples.
We demonstrated that mutation at this flexible hinge residue reduced the
movement of the activation loop resulting in kinase inactivation, highlighting this
residue as critical for kinase function. The other novel residue to be ranked
within the top 15 hotspot residues was a highly conserved histidine residue at
the HRD-6 position. This residue is located in close proximity to the R-spine
anchor residue within the oF helix, known to be critical for stability of this R-
spine [27]. MD simulations highlighted increased instability in the R-spine
residues, which correlated to the loss of kinase activity in a number of different

kinases

Having identified 15 residues within the kinase domain that were either known
to be critical to kinase function, or validated to result in a LOF phenotype when

11
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mutated, a screen to identify kinases that harbor lower frequency genetic drivers
was performed. Due to the small target area being screened in each sample a
large dataset was required; therefore a pan-cancer analysis was performed
utilizing the TCGA and CCLE datasets. This analysis identified any mutations
occurring in these 15 residues in 411 kinases across all cancer sub-types. Like
the truncation mutation screen this approach identified known tumor
suppressors, many of which were common to both screens (such as STK11,
CHEK2 and TGFBR1). Given that the critical codon screen was derived from the
truncation screen data some overlap could be expected. However, there were
also marked differences between the results of the two screens with the
oncogene BRAF featuring as the top kinase in the critical motif screen whilst only
ranking 88t out of 411 kinases in the truncation screen. Kinase-dead BRAF can
paradoxically act as a scaffold to activate CRAF resulting in activation of the
MEK/ERK pathway [24]. It is likely that the majority of truncation mutations
interfere with this oncogenic mechanism resulting in fewer truncation mutations
being observed in the BRAF oncogene. With this consideration in mind,
comparing the results of our two screens may help to identify mechanisms by
which kinase dead mutations paradoxically activate signaling pathways by a
similar mechanism, rather than resulting in loss of function of the canonical
signaling pathway. Therefore, the discrepancies that exist for the two tumor
suppressing lists can shed light on exciting biology in regards to inactivating

mutations that activate a pathway.

Finally, the screens we developed here identified MAP2K7, an upstream

activator of the JNK pathway, as one of the top hits when identifying mutations in
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codons critical for kinase function. Interestingly, the majority of these mutations
(6/11) were observed in gastric cancer samples highlighting inactivating
MAP2K7 mutations as gastric cancer drivers. Furthermore, when genomic data
from the cBioPortal was interrogated, other JNK pathway components, including
JNK, JUN and ATF, were observed to be mutated or deleted in gastric cancer. The
JNK pathway dictates key processes regulating cancer development but its role
in tumorigenesis remains controversial with research showing it acting as both a
pro-oncogene or tumor suppressor [reviewed in 26]. This dual nature of the JNK
signaling pathway has been shown to be highly dependent on the cellular context
and extracellular environment [19]. For example, decreasing levels of JNK in a
background of oncogenic Ras or reduced p53 enhances lung carcinogenesis and
mammary tumor development respectively [18]. Conversely, JNK inactivation
has been shown to result in reduced hepatocellular carcinoma development and
a decrease in tumors in a carcinogen induced gastric cancer model [18, 29].
Disparate roles for JNK signaling within the same cancer types are also observed.
In the context of colon cancer, JNK-mediated cJUN phosphorylation was shown
to be crucial for intestinal cancer development in an APC dependent colorectal
cancer mouse model (APCMin/+ mice) with inactivation of cJUN resulting in fewer,
smaller tumors [30]. Additionally, it has been shown that increased JNK activity
accelerated colorectal tumorigenesis through direct cross-talk with Wnt
signaling pathway components, resulting in an oncogenic positivity feedback
loop [31]. Whilst, the loss of JNK-mediated upregulation of p21 resulted in the
spontaneous development of intestinal tumors in J]NK1-deficient mice [32] and
increased proliferation in a human colorectal cancer cell line [33]. This

contrasting role is also observed for MAP2K7 with high levels of MAP2K7
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showing enhanced proliferation and metastasis in lung, colon, hepatocellular,
prostate and breast cancers [34-38]. Conversely, MAP2K7 has also been shown
to slow the progression of lung and mammary tumors driven by other oncogenic
drivers [39-40]. Interestingly, our tumor suppressive screens also identified LOF
mutations in MAP2K4 and MAP3K13, upstream JNK pathway activators. Our
experimental data highlights that inactivation of the JNK pathway is important
for promoting tumorigenic phenotypes in gastric cancer, which offers insight
into a molecular mechanism that could affect up to 22% of gastric cancer
patients. Furthermore, our genetic data highlighting MAP2K7, MAP2K4 and
MAP3K13 mutations in different cancer subtypes could suggest that loss of
signaling in the JNK pathway promotes tumorigenesis in a number of human

tumor types

Gastric cancers carry a high number of mutations per sample although few
specific driver mutations are known [41]. By focusing on mutations with a high
probability of disrupting kinase function our screen helps remove mutational
noise caused by passenger mutations. Using the MAP2K7 observation as a
prompt to query other known pathway members highlights a prominent role for
JNK pathway inactivation in almost a quarter of all gastric cancers. It is proposed
that sequencing more cancer samples will eventually cause lower frequency
drivers to become more apparent [42]. Whilst this argument may be true it is
clear from our experience with analysis of the TCGA gastric cancer dataset,
where 287 cancers have been fully sequenced and over 1000 genes have a
mutational frequency over 5%, that this process is greatly facilitated when

precise functionally derived algorithms are integrated into the pipeline [9].
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In conclusion, we have developed and validated two approaches that filter freely
available NGS data with functional consideration to identify novel genetic drivers
that would otherwise be lost within the mutational noise. Our first approach
utilized truncating mutation frequency to identify tumor suppressive kinases
and, from these, identified novel residues critical for kinase function. Utilizing
these ‘critical codons’ we identified kinases harboring high numbers of LOF
mutations, revealing more tumor suppressing kinases with additional
information on tumor type enrichment. Taken together these screens not only
provide novel tumor suppressors to investigate, but also highlight novel residues
of critical importance in kinase activation. This approach, utilizing the human
kinome, provides a wealth of information on inactivated kinases in cancer, and
could be expanded to identify both GOF and LOF mutations within other proteins

containing conserved protein domains.

METHODS

Truncation mutation screen

R scripts were prepared to identify all kinase truncating mutations within the
TCGA (Scriptl) and CCLE (Script2) databases occurring before the end of the
kinase domain. In brief, the APE motif was identified in the Genbank sequences
of 411 catalytically active kinases with conventional VAIK, HRD and DFG motifs
identified in Manning et al. (Supplementary Table S1) [16]. The location of the E
of the APE motif was defined as the C-terminal limit of a functional kinase
domain. Mutational data from TCGA and CCLE were cross referenced with each

kinase APE location to record all truncating mutations occurring N-terminal to
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this location. Mutational frequencies were length corrected using the mean
transcript length (between shortest and longest transcripts) of each kinase to the
E of the APE motif to account for inter-kinase differences. Supplementary Table
S2 also includes alternate top 30 kinases based on alteration of the cut-off at APE
to include less conservative limit including using the whole protein. A top 30
tumor suppressing kinase list was constructed by ranking kinases by descending
length corrected score (Figures 2, S3 and Supplementary Table S3) and the
kinase domain sequences of these 30 kinases was identified (Script3). Where a
kinase was annotated as possessing more than one kinase domain the domain
sequence with the motif configuration most closely resembling a classical kinase

domain was selected for analysis.

Sequence alignment and residue conservation and mutation scoring

The kinase domain sequence from the first glycine of the GxGxxG loop to APE
motif were sequence aligned for each of the top 30 kinases using the Strap
Alignment Tool. The conservation score was determined as the number of
kinases out of the top 30 that harbored the most common amino acid at that
position. If a location had more than 5 kinases without a corresponding amino
acid (in other words this region is missing from 5 or more kinases) the
conservation score was calculated as zero. All loci with a conservation score
below 20 were removed from the final analysis to leave highly conserved
locations. The aligned sequence locations were cross-referenced with the
mutational data from TCGA and CCLE to identify the mutations at each position
and the mutational score was calculated as the number of kinases with a

mutation at that position. Multiplying the mutational score by the conservation
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score produced a combined score to rank each residue in the kinase domain
sequence. Supplementary Table S4 displays the scores and alignment for all
residues with at least one mutation and Supplementary Figure S4 displays the
frequency distribution of combined scores for each residue with a least one

mutation.

Kinase motif based screen

R scripts were written to identify any mutations from the TCGA (Script5) and
CCLE (Script6) databases occurring within the hotspot residues identified above.
In brief, the top 15 hotspot residues (defined by combined score above) were
located within the Genbank sequences for each kinase. Mutational data from the
TCGA studies was obtained through the CGDS-R package (Supplementary Table
S5) and CCLE were cross-referenced with each kinase to identify any point
mutations occurring within critical kinase motifs. A ranked list was constructed

from the number of mutations observed per kinase (Script 7).

Structural modelling and molecular dynamics simulations

Homology models of wild type and mutant MAP2K4 were created using Modeller
9.16 from PDB ID: 3ALN. Molecular dynamics simulations were performed using
GROMACS version 5.0 with the GROMOS96 53a6 force field parameter set. All
titratable amino acids were assigned their canonical state at physiological pH,
short-range interactions were cut off at 1.4 nm and long-range electrostatics
were calculated using the particle mesh Ewald summation [43]. Dispersion
correction was applied to energy and pressure terms accounting for truncation

of van der Waals forces and periodic boundary conditions were applied in all
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directions. Protein constructs were placed in a cubic box of 100 nM NacCl in
simple point charge water with at least 1 nm distance between the protein
construct and box edge in all directions. Neutralizing counter ions were added
and steepest decent energy minimization was performed, followed by a two-step
NVT/NPT equilibration. Both equilibration steps maintained a constant number
of particles and temperature, NVT equilibration was performed for 100 ps
maintaining a constant volume, followed by 10 ns of NPT equilibration
maintaining a constant pressure. Temperature was maintained at 37°C by
coupling protein and non-protein atoms to separate temperature coupling baths
[44], pressure was maintained at 1.0 bar (weak coupling). All position restraints
were then removed and simulations were performed for 400 ns using the Nose-
Hoover thermostat [45] and the Parrinello-Rahman barostat [46]. Root-mean-
squared fluctuation (RMSF) analysis compared the standard deviation of the
atomic position of each a-carbon in the trajectory, fitting to the starting structure
as a reference frame. Root-mean-squared deviation (RMSD) analysis compared
the structure of specified groups of residues at each time point of a trajectory

with the reference starting structure. Images were created using PyMol version

1.5.0.5.

Plasmids and transfections

BRAF and MAP3K13 cDNA were prepared from RNA extracted from HEK293T
cells. PRKCQ was bought in the pENTR vector (Ultimate Human ORF Library -
Life Technologies), MAP2K4 and MAP2K7 were bought in pCMV6-Entry vectors
(Origene), and MLK4 was purchased in pReceiver-M12 FLAG vector

(GeneCopoeia). Primers containing attB flanking sites were used to amplify up
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the constructs before they were inserted into pDONR-221 vector using the BP
clonase reaction. The ABL1 constructs were purchased in the pDONR-223 vector.
From here, the Gateway system was used for cloning into a pDEST-FLAG vector
created by Dr. Eleanor Trotter from the pReceiver-M12 plasmid (GeneCopoeia).
3X-FLAG DAPK3 vector was provided by Dr. Timothy Haystead (Department of
Pharmacology and Cancer Biology, Duke University Medical Center, Durham,

North Carolina 27710).

Mutants were created using the Quikchange Site-directed Mutagenesis II Kit
(Agilent Technologies) using the manufacturers protocol. Kinase dead mutants
were BRAF (K483M), DAPK3 (K42M), MAP2K4 (K131M), MAP2K7 (K148M),
MAP3K13 (K195M), MLK4 (K151M) and PRKCQ (K409M). All sequences were
confirmed using Sanger sequencing. HEK293T cells or CAL51 cells (for MAP2K4
transfections) were seeded into 12-well plates (standard transfections) or 6-well
plates (immunoprecipitations) and transiently transfected the following day
using either Attractene (QIAGEN) for the HEK293T cells or Lipofectamine2000
(Thermo Fisher Scientific) for CAL51 cells according to the manufacturer’s

protocol.

Protein lysate preparation and immunoblots

Cells were lysed on ice after 24 hours using Triton X-100 Cell Lysis Buffer (Cell
Signaling) supplemented with a protease inhibitor tablet (Roche). Lysates were
either resolved on SDS-PAGE gels followed by western blotting or used in an in
vitro kinase assay (details below). Primary antibodies used were as follows: Flag
M2 and a-tubulin (Sigma); MAP2K4, MAP2K?7, pJNK (T183/Y185), pMARCKS

(S152/5156), pPKC (S676), pThr, and p-cJun (S73) (Cell Signaling Technology).

19


https://doi.org/10.1101/254813

bioRxiv preprint doi: https://doi.org/10.1101/254813; this version posted January 27, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

Mouse or rabbit HRP-conjugated secondary antibodies were used (Cell Signaling
Technologies). All western blots are representative of at least three independent

experiments.

In vitro Kinase assays

Cell lysates from DAPK3 transfections were incubated with anti-Flag M2 affinity
gel (Sigma) for at least 2 hours. Beads were washed with lysis buffer and kinase
buffer (Cell Signaling Technology) and a kinase assay was performed in the presence
of 200 uM ATP at 30°C for 30 min to assess autophosphorylation. Following addition
of 4x reduced SDS sample buffer, proteins were resolved by SDS-PAGE and

analyzed by western blotting.

Generation of MAP2K4, MAP2K7 and JNK1 tetracycline-inducible cell lines.
Parental CAL51 (MAP2K4), CAPAN1 (MAP2K4), IM95 (MAP2K7) and NUGC3
(JNK1) were used to generate cells with tetracycline-inducible expression of wild
type plasmids (cloned into pLenti/TO/V5-DEST vector) and pLenti3.3/TR (for
tetracycline repressor expression) were transfected into 293FT cells using
Lipofectamine2000 to generate a lentiviral stock. Cells were transduced with
lentiviral stocks and cell lines generated by antibiotic selection (Blasticidin
(Invitrogen) and Geneticin (Gibco)). Tetracycline (Invitrogen) was used to induce
expression of wild type MAP2K4 (CAL51, CAPANI1), wild type MAP2K7 (IM95) or

wild type INK1 (NUGC3).

Anchorage-dependent colony formation assay
Cells were seeded at approximately 100 cells/well in a 6-well plate format. The

following day, tetracycline was added and cells were left to grow for 3 weeks
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with media changed every 2-3 days. Colonies formed and were fixed with ice-
cold methanol, stained with 0.5% crystal violet (Sigma) solution made up in 25%
methanol. Wells were thoroughly washed and air dried. For quantification, 2 ml
of 10% acetic acid was added to each well, incubated for 20 mins with shaking

and absorbance values read at 595 nm.

Anchorage-independent colony formation assay

Anchorage-independent colony formation assays were performed with CAPAN1,
NUGC3 and IM95 cell lines. Plates were initially coated with 0.6% soft agar with
or without tetracycline containing no cells. Cells were then seeded at
approximately 10,000 cells/well in a 6-well plate format in 0.35% soft agar with
or without tetracycline. Media was added (with or without tetracycline) and
changed every 2-3 days. After 3 weeks cells were stained using 0.05% crystal

violet (Sigma) solution made up in 25% methanol.

Matrigel 3D embedded growth assay

Matrigel 3D embedded growth assays were performed with the CAL51 cell line,
as these cells did not grow successfully in the anchorage independent growth
assay. 6 well plates were pre-coated with a thin layer of EHS (Corning) before
cells were seeded at approximately 50,000 cells/well in EHS. 2 ml of media with
or without tetracycline was added. Media was changed every 2-3 days and after
10 days cells were stained using 0.05% crystal violet (Sigma) solution made up

in 25% methanol.

Statistical Analyses
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All statistical significance values were calculated using a two-tailed Student’s t-

test.
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SUPPLEMENTARY MATERIALS

Supplementary Figure S1: Truncation mutation screen identifies tumor
suppressing Kkinases. Stable tetracycline-inducible re-expression of WT
MAP2K4 in the pancreatic cell line CAPAN1, which harbors a truncating MAP2K4
mutation, results in significant loss of anchorage-dependent (A) and anchorage-
independent (B) colony forming potential (*** = p < 0.001, * = p < 0.05). Stable
tetracycline-inducible cell lines CAPAN1 (C) and CAL51 (D) over-express WT
MAP2K4 following the addition of tetracycline.

Supplementary Figure S2. MAP2K7 pathway components offer a significant
target for gastric cancer therapy. A) MAP2K7 D290fs mutation observed in the
IM95 gastric cancer cell line is inactivating towards downstream substrate JNK.
B) JNK1 G177* mutation observed in the NUGC3 gastric cancer cell line is
inactivating towards downstream substrate cJun. C) Stable tetracycline-inducible
cell lines over expressing WT MAP2K7 (IM95) or JNK1 (NUGC3) following the
addition of tetracycline. D) MAP2K7 pathway components are altered in 22% of
patient samples sequenced within the TCGA and CCLE databases, data taken
from the cBioPortal. (E) Re-expression of WT JNK1 in NUGC3 cell line harboring
JNK1 G177* mutation shows a significant reduction in anchorage-dependent
colony forming potential (*** =p < 0.001).

targ et for gastric cancer therapy.

Supplementary Figure S3: Frequency histogram of truncation mutation scores
(calculated as number of truncation mutations divided by mean length of gene
upstream of APE motif). The Top 30 kinases are shaded blue to demonstrate that
they are located in the tail of the distribution.

Supplementary Figure S4: Frequency histogram of combined scores for each
codon in the kinase domain of Top 30 kinases (calculated as mutation score
multiplied by conservation score). The top 15 codons based on score (in addition
to two codons with high scores based on mutation score but with a lower
conservation score than the cut-off of 20 to make the final list) are shaded blue to
demonstrate that they represent the tail of the distribution. Note that this
distribution does not include residues with a combined score of 0 (as a result of a

mutational score of 0).
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Supplementary Table S1: List of 411 ‘active’ kinases used in the screens within
this paper.

Supplementary Table S2: Table displaying the effect on the top 30 candidate
tumour suppressors by changing the cut-off point used to determine truncating
mutations that abolish kinase catalytic activity. The APE columns display the
original screen used in the manuscript with the cut-off being the E of the APE
motif. APE+50 and APE+100 display the top 30 when the cut-off is extended past
the E of the APE motif by 50 or 100 residues respectively. The total column
displays the top 30 truncation mutations when the whole length of the gene is
used. The grey shaded kinases are those that do not appear in the top 30 when
the respective cut-offs are used and the kinases in bold are those that appear in
the new list.

Supplementary Table S3: Truncation mutation scores for all 411 kinases. As
numerous gene transcripts exist, gene length was calculated by taking an
average of the longest and shortest transcript lengths from the start of the gene
to the codon encoding the E of the APE motif.

Supplementary Table S4: Output from the computational screen aligning the
top 30 tumour suppressing kinases, identified in an initial screen, and ranking
each amino acid within the kinase domain based on their conservation and
mutational scores (for all residues with at least 1 mutation).

Supplementary Table S5: TCGA studies from which mutational data was

acquired on 7th January 2016.
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Other Supplementary Information:

Scriptl_Truncating Mutations_TCGA.R

ScriptZ2_Truncating Mutations_CCLE.R

Script3_Truncating Mutations_Merge CCLE and TCGA data.R
Script4_ldentification of Motif Residues.R

Script5_Genbank Merge with TCGA.R

Script6_Genbank Merge with CCLE.R

Script7_Merge TCGA and CCLE.R

Script Source files
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Table 1. Tumor suppressing hotspot residues, identified through our motif
screen, ranked by their total score (the product of the conservation and
mutational scores). Note residues with conservation scores below 20 are

excluded. Blue shading indicates validated new hotspot LOF residues, grey

shading indicates new residues that are predicted to be LOF.

Mutated Conserved Number of Described
Codon Score Kinases Mutated Previously!
AP(E) 28 11 308 v

Salt Bridge E 30 8 240 v
V(A)IK? 27 8 216 v
Gx(G)xxG3 30 7 210 v
HR(D)* 30 7 210 v
H(R)D* 28 7 196 v
(D)FG 30 5 150 v
HRD+5 (N)5 29 5 145 v
(H)RD* 28 5 140 v
DF(G) 28 5 140 v
A(P)E 28 5 140 v
(A)PE 23 6 138 v
APE - 6 (G) 26 5 130 x
HRD - 6 (H) 25 5 125 x
GxGxx(G)3 24 4 96 v
HRD+7 24 4 96 x

HRD - 7 20 4 80 x

VAI(K)2 30 2 60 v

APE - 3 20 3 60 x

(G)xGxxG3 28 2 56 v

1Described previously in the literature [22] with the exception of HRD+5 [23]

ZReferred to in the context of the salt bridge in [22]

3Referred to as glycine-rich region in [22]

4Referred to as catalytic loop in [22]

SReferred to as HRD+4 in [23] based on its position in one Kkinase, alignment of the top 30

tumor suppressing kinases results in this residue residing at position HRD+5
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Figure Legends
Figure 1

Pan cancer analysis of Length correction of Protein sequence Conservation score
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Figure 1. Schematic illustrating the screen of 411 kinases to produce the
list of hotspot inactivating residues. A pan cancer analysis across TCGA and
CCLE datasets was performed to identify truncating mutations occurring N-
terminal to the APE motif. The truncation mutation frequency was length
corrected to account for intra-kinase variability due to the position of the kinase
domain within the overall protein. The kinase domains (GxGxxG to APE motif) of
the top 30 kinases determined by length corrected truncation mutation
frequency were sequenced aligned to identify conserved codons (between the 30
top kinases). This allowed re-querying of TCGA and CCLE datasets for mutational
frequency at each residue. The conservation and mutational scores were
combined to rank each residue of the kinase domain to generate a list of hotspot

residues for kinase inactivating mutations.
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Figure 2. Output of the truncation mutation screen with the top 30 kinases
illustrating a region of kinase sequence analyzed for conservation and
number of kinases harboring missense mutations at each position. The top

30 kinases found from the truncation mutation screen, ranked by descending
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length corrected truncation mutation score (Tr. Score). A portion of the kinase
sequence alignment (DFG to APE motif) is shown as an example to illustrate the
tumor suppressing hotspot mutation screen. The vertical grey bar highlights a
break in the alignment shown, as this region had very poor sequence alignment.
The number of kinases mutated at each position is graphed along the top of this
alignment whilst the conservation score for each residue is graphed along the
bottom. The conservation score corresponds to the number of kinases with the
most common amino acid at that position. Residues with high levels of
conservation (>20) are colored in shades of blue. The full alignment performed

from GxGxxG to APE is available in Supplementary Table S4.
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Figure 3. Mutations identified in a hinge glycine at position APE-6 are
inactivating. A) Position of the conserved APE-6 glycine at a hinge point of the
activation loop (shown in INSR kinase domain). Active kinase conformation is

shown in light blue (PDB ID: 11R3), inactive kinase conformation is shown in
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dark blue (PDB ID: 1IRK). DFG and APE motifs are shown as sticks, glycine is
shown in sticks and spheres. B) MD simulations show a large decrease in the
level of movement observed for the activation loop in MAP2K4 (PDB ID: 3ALN).
(i) Root-mean-squared fluctuations (RMSF) of each residue is shown graphically
and (ii) structurally, with width and color of the ribbon showing corresponding
level of movement. C) Western blot showing biochemically that mutations in the
conserved glycine of MAP2K4 are LOF towards to the JNK pathway. A significant
decrease in 2D (D) and 3D (matrigel 3D embedded growth assay); E) colony
forming potential is observed in CAL51 cell line harboring MAP2K4 G265D
following tetracycline-inducible expression of wild type MAP2K4 (*** =p <
0.001). Mutations of the conserved APE-7 glycine within MAP3K13 (F) and
PKCO(G) are also LOF. Error bars depict the standard error of the mean;

statistical significance was calculated with a two-tailed Student’s t-test.
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Figure 4
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Figure 4. Mutations identified in HRD-6 are inactivating. A) HRD-6 residue
(red sticks) lies in close proximity to the R-spine anchoring residue within oF
helix (orange sticks). R-spine shown as yellow spheres (PKA - PDB ID: 1ATP).
Root-mean-squared fluctuations (RMSF) from MD simulations highlight
increased movement around R spine residues RS1, RS2 and RS4 in DAPK3
H131R (PDB ID: 3BHY), which results in an altered movement of the activation
and P+1 loops. B) In vitro kinase assay shows decreased kinase activity within
DAPK3 H131R as determined by decreased autophosphorylation. C) Decreased
kinase activity observed for BRAF H568D mutation, as observed by downstream

phosphorylation of MEK.
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Figure 5. Critical codon screen identifies MAP2K7 as a target in gastric
cancer. A) Table ranking kinases based on the number of mutations observed
within top 15 critical codons (Table 1). B) Schematic highlighting mutations
identified within key motifs of MAP2K7. Mutations are indicated by yellow

spheres, those colored blue are found in gastric cancer, those colored half blue
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have half of the mutations observed in gastric cancer. C) Western blot showing
MAP2K7 gastric cancer mutations are LOF towards downstream substrate JNK.
D) 2D colony formation assay with IM95 gastric cell line harboring LOF MAP2K?7.
Parental cell line shows increased numbers of colonies formed following
addition of tetracycline. IM95 cell line with tetracycline-inducible expression of
MAP2K7 (IM95+MAP2K7) shows significantly decreased numbers of colonies
formed following the addition of tetracycline (*** = p < 0.001, * = p < 0.05). E) 3D
colony formation assay with the IM95 cell lines. IM95+MAP2K7 cell line shows
significantly decreased colony forming potential when MAP2K?7 signaling is
restored following tetracycline treatment. No difference is observed when the
parental cells are treated with tetracycline (*** = p < 0.001). Error bars depict
the standard error of the mean; statistical significance was calculated with a two-

tailed Student’s t-test.
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