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Abstract 43 

Background 44 

Platform-specific error profiles necessitate confirmatory studies where 45 

predictions made on data generated using one technology are additionally 46 

verified by processing the same samples on an orthogonal technology. In 47 

disciplines that rely heavily on high-throughput data generation, such as 48 

genomics, reducing the impact of false positive and false negative rates in 49 

results is a top priority. However, verifying all predictions can be costly and 50 

redundant, and testing a subset of findings is often used to estimate the true 51 

error profile. To determine how to create subsets of predictions for validation 52 

that maximize inference of global error profiles, we developed Valection, a 53 

software program that implements multiple strategies for the selection of 54 

verification candidates.  55 

Results 56 

To evaluate these selection strategies, we obtained 261 sets of somatic 57 

mutation calls from a single-nucleotide variant caller benchmarking challenge 58 

where 21 teams competed on whole-genome sequencing datasets of three 59 

computationally-simulated tumours. By using synthetic data, we had complete 60 

ground truth of the tumours' mutations and, therefore, we were able to 61 

accurately determine how estimates from the selected subset of verification 62 

candidates compared to the complete prediction set. We found that selection 63 

strategy performance depends on several verification study characteristics. In 64 

particular the verification budget of the experiment (i.e. how many candidates 65 
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can be selected) is shown to influence estimates. 66 

Conclusions 67 

The Valection framework is flexible, allowing for the implementation of 68 

additional selection algorithms in the future. Its applicability extends to any 69 

discipline that relies on experimental verification and will benefit from the 70 

optimization of verification candidate selection. 71 

Background 72 

High-throughput genomics studies often exhibit error profiles that are biased 73 

towards certain data characteristics. For example, predictions of single-74 

nucleotide variants (SNVs) from DNA sequencing data have error profiles 75 

biased by local sequence context [1-2], mappability of the region [3] and many 76 

other factors [4-5]. The false positive rate for individual predictions in high-77 

throughput studies is frequently high [6-7], while the false negative rate is 78 

difficult to estimate and rarely known. Critically, error rates can vary 79 

significantly between studies because of tissue-specific characteristics, such 80 

as DNA quality and sample purity, and differences in data processing 81 

pipelines and analytical tools. In cancer studies, variations in normal tissue 82 

contamination can further confound genomic and transcriptomic analyses [8-83 

10].  84 

Taken together, these factors have necessitated the wide-spread use of 85 

studies with orthogonal technologies, both to verify key hits of interest and to 86 

quantify the global error rate of specific pipelines. In contrast to a validation 87 

study, which typically approaches the same biological question using an 88 

independent set of samples (e.g. like a test dataset in a machine learning 89 

exercise), we define a verification study as interrogating the same sample-set 90 
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with an independent method (i.e. a method that generates analogous data 91 

using a distinct chemistry). The underlying concept is that if the second 92 

technique has separate error profiles from the first, a comparative analysis 93 

can readily identify false positives (e.g. in inconsistent, low quality calls) and 94 

even begin to elucidate the false negative rate (e.g. from discordant, high 95 

quality calls). 96 

The choice of verification platform is critical as it determines both the tissue 97 

and financial resources required. There is typically a wide range of potential 98 

verification technologies for any given study. While confirmation of DNA-99 

sequencing results traditionally involves gold-standard Sanger sequencing 100 

[11-12], the drawbacks of this approach (e.g. high financial and resource 101 

costs) and advancements in newer sequencing techniques have shifted the 102 

burden of variant verification to other technologies [13-15]. For example, a 103 

typical Illumina-based next-generation sequencing (NGS) whole-genome or 104 

whole-exome experiment may be verified by sequencing a separate library on 105 

a different but similar machine [16]. This offers the advantages of high-106 

throughput, low cost and the opportunity to interrogate inter-library differences 107 

[17]. Other groups have applied mass-spectrometric based corroboration of 108 

individual variants, which has the benefit of technological independence [18-109 

19]. 110 

Apart from choice of technology, all groups must make decisions regarding 111 

the scope of their verification work. For example when considering genome-112 

wide discovery, it may be appropriate to verify only known candidate drug 113 

target mutations or unexpected novel functional aberrations. However, in 114 

many contexts having an unbiased estimate of the global error rate is critical. 115 

This is particularly true when benchmarking different data-generating methods 116 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2018. ; https://doi.org/10.1101/254839doi: bioRxiv preprint 

https://doi.org/10.1101/254839
http://creativecommons.org/licenses/by/4.0/


- Page 5 of 27- 

or when looking at genome-wide trends. It remains unclear how best to select 117 

targets for verification studies, particularly in the context of fairly comparing 118 

multiple methods and providing unbiased performance metric estimates. To 119 

address this problem, we created Valection, a software tool that implements a 120 

series of diverse variable selection strategies, thereby providing the first 121 

framework for guiding optimal selection of verification candidates. To 122 

benchmark different strategies, we exploit data from the ICGC-TCGA DREAM 123 

Somatic Mutation Calling Challenge (SMC-DNA), where we have a total of 124 

2,051,714 predictions of somatic SNVs made by 21 teams through 261 125 

analyses [20, 4]. We show that the optimal strategy changes in a predictable 126 

way based on characteristics of the verification experiments. 127 

Results 128 

We began by developing six separate strategies for selecting candidates for 129 

verification (Figure 1). The first is a naïve approach that samples each 130 

mutation with equal probability, independent of whether a mutation is 131 

predicted by multiple algorithms or of how many calls a given algorithm has 132 

made ('random rows'). Two simple approaches follow that divide mutations 133 

either by recurrence ('equal per overlap') or by which algorithm made the call 134 

('equal per caller'). Finally, we created three approaches that account for both 135 

factors: 'increasing per overlap' (where the probability of selection increases 136 

with call recurrence), 'decreasing per overlap' (where the probability of 137 

selection decreases with call recurrence) and 'directed-sampling' (where the 138 

probability of selection increases with call recurrence while ensuring an equal 139 

proportion of targets is selected from each caller). All methods have 140 

programmatic bindings in four separate open-source languages (C, R, Perl 141 

and Python) and are accessible through a systematic API through the 142 
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Valection software package. Valection thus becomes a test-bed for groups to 143 

try new ways of optimizing verification candidate-selection strategies. 144 

To compare the six methods outlined above, we used data from tumour-145 

normal whole-genome sequencing pairs from the ICGC-TCGA DREAM 146 

Somatic Mutation Calling Challenge [20, 4]. These tumours differ in major 147 

characteristics such as normal contamination, sub-clonality and mutation rate. 148 

We chose to work with simulated tumours because we know the ground truth 149 

of their mutational profiles, allowing a precise evaluation of the effectiveness 150 

of different selection schemes in estimating the true underlying error rates. 151 

Altogether, there are results available from 261 SNV calling analyses 152 

performed by 21 teams. We designed a rigorous parameter-sweeping 153 

strategy, considering different numbers of SNV calling algorithms and different 154 

quantities of verification candidate targets. The experimental design is 155 

outlined in Figure 2. 156 

We assessed the performance of the candidate-selection strategies in two 157 

ways. First, we considered how close the predicted F1 score from a simulated 158 

verification experiment is to that from the overall study. We calculated 159 

precision in two modes: 'default' (as described in Methods) and 'weighted' 160 

(where precision scores were modified so that unique calls carried more 161 

weight than calls predicted by multiple callers). Second, we assessed the 162 

variability in this result across 10 replicate runs of each strategy, allowing us 163 

to gauge how much random chance elements of variant-selection perturb the 164 

results of a given method (i.e. a stability analysis). 165 

Overall, across all simulations, the 'equal per caller' approach performs best, 166 

showing a negligible mean difference between subset and total F1 scores 167 

while, additionally, displaying low variability (i.e. small spread) in F1 score 168 
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differences across all runs (Figure 3). Both the number of algorithms tested 169 

and the verification budget size (i.e. the number of candidates being selected) 170 

factor into which strategy performs optimally. Specifically, when there are 171 

large numbers of algorithms or the number of possible verification targets is 172 

low, the 'equal per caller' method does extremely well (ntargets = 100; 173 

Supplementary Figure 1). By contrast, when the number of verification 174 

targets is substantially larger (i.e. a considerable proportion of all predictions 175 

will be tested), the 'random rows' method shows similar performance levels 176 

(ntargets = 1000 and ntargets = 2500; Supplementary Figures 2 and 3, 177 

respectively). However, the 'random rows' method performs poorly when 178 

prediction set sizes are highly variable (i.e. a small number of callers has a 179 

large fraction of the total calls), resulting in some callers with no calls by which 180 

to estimate performance. This was the case for runs with verification budgets 181 

of ntargets = 250 (Supplementary Figure 4), ntargets = 500 (Supplementary 182 

Figure 5) and, in particular, ntargets = 100 (Supplementary Figure 1). Missing 183 

scores were treated as missing data. 184 

However, the effects of the verification experiment characteristics described 185 

above alone do not account for all the variability observed across the 186 

simulations. Comparing runs of matching parameter combinations across the 187 

three synthetic tumours reveals some inter-tumour differences. Unlike with 188 

tumours IS1 (Supplementary Figure 6) and IS2 (Supplementary Figure 7), 189 

the 'random rows' method performs best on tumour IS3 suggesting tumour 190 

characteristics may have an impact on target selection strategy performance 191 

(Supplementary Figure 8). The 'equal per caller' method is only the second 192 

best selection strategy for the IS3 dataset. 193 

We further assessed variability in the results of the selection strategies by 194 
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running 10 replicate runs of each. The results in Figure 4 show that the 195 

consistency of performance across simulations trends with the overall 196 

performance of the selection strategy. An overall positive effect of the 197 

adjustment step ('weighted mode') on the selection strategies is also visible 198 

with the exception of the 'random rows' method, on which the weighted 199 

precision calculation appears to have no effect. A closer look at the recall and 200 

precision scores reveals that the approach with the poorest recall score, 201 

'decreasing with overlap' (Supplementary Figure 9a), also shows the most 202 

sensitivity to the weighted adjustment step in precision calculations 203 

(Supplementary Figure 9b). Altogether, across methods, recall scores tend 204 

to mirror F1 scores in both magnitude and amount of spread, which is lower in 205 

approaches with higher recall. In contrast, precision scores are highly variable 206 

across most selection approaches, regardless of their overall performance. 207 

Discussion 208 

Assessing and comparing the quality of new prediction tools is an important 209 

step in their adoption and the truth of their results is arguably the most 210 

important component of their quality. When the resources required to 211 

independently verify results are substantial, it is vital to choose an unbiased 212 

but maximally informative set of results. This is naturally true not just for 213 

somatic SNVs, but other predictions like structural variants, fusion proteins, 214 

alternative splicing events and epigenetic phenomena, e.g. methylation and 215 

histone marks. Ongoing research into the error profiles of various data types 216 

increases our understanding of what factors influence verification rates [21]. 217 

This information helps in distinguishing high- from low-quality calls and goes 218 

towards minimizing the amount of prediction verification required. However, 219 

with the continuous emergence of new data-generating technologies, e.g. 220 
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third generation sequencing [22], benchmarking studies assessing false 221 

positive and false negative rates are likely to remain a fundamental 222 

component of computational biological research well into the foreseeable 223 

future. Having standardized methods for comparing workflows in contexts 224 

such as these will ease the uptake of new techniques more confidently. 225 

Valection is a first step towards standardizing and optimizing verification 226 

candidate selection. 227 

Evaluation of the target candidate selection approaches presented in this 228 

study provides an in-depth view of the effects of call recurrence and algorithm 229 

representation on a verification candidate set. Nonetheless, this is by no 230 

means an exhaustive set of selection strategies. Although, our findings 231 

suggest that the most straightforward approaches (e.g. 'random rows') are 232 

often the most effective, future implementations of more complex strategies 233 

may highlight additional factors important to target candidate selection. 234 

The need for informative verification target selections also highlights the 235 

importance of simulators for experimental biology, since the best suited 236 

method may vary from dataset to dataset. Indeed, as our findings here 237 

suggest, optimal candidate-selection strategies for somatic SNV calls may 238 

even be affected by various tumour data characteristics. A complete 239 

assessment of error profiles is impossible without access to multifarious 240 

datasets with an established ground truth. As such, there is a need for reliable 241 

simulators in biology to create and analyze gold-standard synthetic datasets 242 

to help guide top empirical research. For some time computationally-243 

simulated data has been used to circumvent the difficulties that arise when 244 

working with real data [23]. The production of varied synthetic data is 245 

comparatively cheap and efficient, restricted only by the computational power 246 
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and storage space required to generate and hold it. With complete control 247 

over data feature profiles, researchers are able to query numerous biological 248 

questions simultaneously. As demonstrated here, and specific to cancer 249 

genomics, synthetic tumour data can expedite accurate estimation of false 250 

negative rates which are difficult to determine in genome-wide mutation 251 

calling, thus mitigating the need for large-scale wet lab validation of non-252 

variants. It is important to note, however, that the utility of synthetic data is 253 

limited to non-exploratory research. Biological processes or data features that 254 

are unknown or poorly understood cannot be adequately simulated, leading to 255 

a lack of 'real-world' complexity. Therefore, the interplay between 256 

experimental and simulated data is critical to the advancement of 'big data' 257 

disciplines such as genomics. As such, subsequent assessment using 258 

comprehensively-characterized real data will be vital to further optimizing 259 

candidate-selection strategy. 260 

Conclusions 261 

Verification of somatic SNV calls made on NGS tumour data is critical due to 262 

the high numbers of false positive and false negative calls. However, a 263 

thorough search to identify all erroneous calls is a cumbersome and 264 

expensive task. Our findings suggest that it may also be an avoidable one. 265 

Fewer verification targets may be sufficient to characterize global error rates 266 

in data, provided that there is proper optimization of the target candidate 267 

selection process. We find that this optimization must factor in not just the 268 

scope of the verification study but, conceivably, the characteristics of the 269 

dataset itself. To date, few studies have assessed candidate-selection 270 

methods for verification purposes. Here, we begin to explore the alternatives 271 

available to big data analysts performing confirmatory studies that are both 272 
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efficient and thorough. By releasing our Valection software publicly, we 273 

encourage groups across the wider research community to continue this work. 274 

With a straightforward implementation and easy application, Valection has the 275 

potential for maximal impact across a wide range of disciplines that rely on 276 

verification studies. 277 

Methods 278 

Selection Strategies & Software 279 

The random rows selection strategy (Figure 1b) samples calls at random 280 

without replacement from the entire set of calls, and continues until the 281 

verification budget has been reached, or there are no more calls left. 282 

The directed-sampling selection strategy (Figure 1c) begins by constructing 283 

a matrix. Row 1 contains all the calls made only by individual callers, row 2 284 

contains the calls made by exactly 2 callers, all the way to row N, which 285 

contains the calls that were made by all of the N callers. Each column, j, of the 286 

matrix contains only the calls made the jth caller. Note that this means in all 287 

rows past 1, calls appear in multiple cells on the same row. Any given cell 288 

holds zero or more calls. To select calls, the following procedure is followed 289 

for each row, from N to 1, and for each cell in that row, ordered by ascending 290 

number of calls: 291 

• Calculate the cell budget as the total remaining verification budget 292 

divided among the yet unexamined cells in the rest of the matrix. 293 

• Select calls without replacement from the cell in question up to the cell 294 

budget (these calls become invalid selections for future cells). Each call 295 

selected reduces the total remaining verification budget. 296 

• If any budget remains once all cells have been selected from, the 297 
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process is repeated. 298 

The equal per caller selection strategy (Figure 1d) divides the verification 299 

budget equally among all callers. The set of calls that each individual caller 300 

made is sampled from without replacement up to that caller’s portion of the 301 

total budget. A call selected by one caller becomes an invalid choice for all 302 

other callers. If a single caller does not have enough available calls (calls not 303 

yet selected in another caller’s budget), its remaining budget is distributed 304 

equally to the other callers. 305 

The equal per overlap selection strategy (Figure 1e) is based around the 306 

number of times each call was made. With N callers, the verification budget is 307 

divided N ways. Out of the set of calls made only once (all the calls unique to 308 

any caller), calls are selected without replacement up to the sub-budget. This 309 

is repeated for all the calls made by exactly two callers, and so on up every 310 

level of overlap. If a single level of overlap does not have enough available 311 

calls (calls not yet selected in another overlap level’s budget), its remaining 312 

budget is distributed equally to the other levels. 313 

The increasing with overlap selection strategy (Figure 1f) is similar to equal 314 

per overlap, but instead of selecting an equal number of calls at every level of 315 

overlap, it selects a number from each level of overlap proportional to the 316 

level of overlap. 317 

The decreasing with overlap selection strategy (Figure 1g) is identical to 318 

increasing with overlap, but the number of calls selected at each level is 319 

inversely proportional to the level of overlap. 320 

All of these methods are available through four commonly used programming 321 

languages C, Perl, Python and R. The implementations have robust user-level 322 

documentation and are openly available at both their appropriate public 323 
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repositories (i.e. CPAN, PyPI and CRAN) and on our website at: 324 

labs.oicr.on.ca/boutros-lab/software/valection. 325 

The selection strategy algorithms were implemented in C, and compiled using 326 

the GNU Compiler Collection (v4.8.1). The implementations also made use of 327 

GLib (v 2.44.0). The R statistical environment (v3.1.3) was used for statistical 328 

analysis and data subsetting. Perl (v5.18.2) was used to coordinate the 329 

simulations. All plots were generated with the same version of R using the 330 

“BPG” (v5.2.8) [24], “lattice” (v0.20-31) and “latticeExtra” (v0.6-26) packages. 331 

The analysis scripts are also available at http://labs.oicr.on.ca/boutros-332 

lab/software/valection. 333 

Simulated Data 334 

To test the accuracy of these different approaches empirically, we applied 335 

them to gold-standard data from the ICGC-TCGA DREAM Somatic Mutation 336 

Calling Challenge [20]. This is a global crowd-sourced benchmarking 337 

competition aiming to define the optimal methods for the detection of somatic 338 

mutations from NGS-based whole-genome sequencing. The challenge has 339 

two components, one using simulated data created using BAMSurgeon 340 

software [4] and the other using experimentally-verified analyses of primary 341 

tumours. To test the accuracy of our approaches on representation 342 

algorithms, we exploited the SNV data from the first three in silico tumours. 343 

This dataset comprises 261 genome-wide prediction sets made by 21 teams 344 

and there are no access restrictions. The raw BAM files are available at SRA 345 

with IDs SRX570726, SRX1025978 and SRX1026041. Truth files are 346 

available as VCFs at https://www.synapse.org/#!Synapse:syn2177211. 347 

Prediction-by-submission matrices for all submissions are provided in 348 

Supplementary Tables 1-3, as well as the best submissions from each team in 349 
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Supplementary Table 4, truth calls in Supplementary Tables 5-7 and a 350 

confusion matrix in Supplementary Table 8. 351 

To probe a range of possible verification studies, we ran a very broad set of 352 

simulations. For each run, we pre-specified a tumour, a number of algorithms 353 

and a number of mutations to be selected for verification, and ran each of the 354 

candidate-selection strategies listed above. We then calculated the F1 score 355 

(along with precision and recall) based on the verification study, assuming 356 

verification results are ground truth. Finally, we compared the true F1 for a 357 

given algorithm on a given tumour across all mutations to the one inferred 358 

from the verification experiment. 359 

We used three separate tumours with diverse characteristics 360 

(https://www.synapse.org/#!Synapse:syn312572/wiki/62018), including a 361 

range of tumour cellularities and the presence or absence of sub-clonal 362 

populations. We selected subsets of algorithms for benchmarking in four 363 

different ways: 364 

i) the complete dataset (X) 365 

ii) the single best submission from each team (X-best) 366 

iii) three randomly selected entries from X-best (repeated 10 times) 367 

iv) 25 randomly selected entries from X (repeated 10 times) 368 

Lastly, we considered verification experiment sizes of 100, 250, 500, 1000 369 

and 2500 candidates per tumour. Thus, in total, we analyzed each of the 370 

candidate-selection algorithms in 22 datasets for 3 tumours and 5 verification 371 

sizes, for 330 total comparisons. 372 

Statistical Analyses 373 

The precision, recall and F1 score of each caller were calculated as follows, 374 
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from the caller's true positive (TP), false positive (FP) and false negative (FN) 375 

values, as estimated by the selection strategy. Here, FNs are true calls 376 

sampled by the selection strategy that were not made by the caller in question 377 

(i.e. another caller made it). 378 

 
(1) 

 379 

 
(2) 

 380 

 
(3) 

 381 

When no calls were selected to calculate a value for a caller, scores were 382 

given values of N/A. This happened primarily with the 'random rows' method. 383 

Additionally, each precision score was calculated in an adjusted and 384 

unadjusted manner. A caller's precision in the unadjusted form was calculated 385 

exactly as described above, using all the calls made by the caller and 386 

selected for verification as the TPs and FPs. In the adjusted form, the 387 

selected calls were first divided into groups, according to how many callers 388 

made the call. Then, the precision was calculated separately using the calls 389 

from each group. The final precision was calculated as a weighted average of 390 

the precision of each group of calls, with weights equal to the total number of 391 

calls (verified and unverified) that caller made at that overlap level. Thus, in a 392 

two-caller example, a caller that made 100 unique calls and 50 calls shared 393 
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with the other caller would count its precision from unique calls twice as 394 

strongly as its precision from shared calls. 395 
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SNV: single-nucleotide variant 397 

NGS: next-generation sequencing 398 

ICGC: International Cancer Genome Consortium 399 
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FP: false positive 404 
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Figure Legends 468 

Figure 1: Valection Candidate-Selection Strategies 469 

a) A hypothetical scenario where we have results from three callers available. 470 

Each call is represented using a dot. SNV calls that are shared by multiple 471 

callers are represented with matching dot colours. b) The 'random rows' 472 

method where all unique calls across all callers are sampled from with equal 473 

probability. c) The 'directed-sampling' method where a 'call overlap-by-caller' 474 

matrix is constructed and the selection budget is distributed equally across all 475 

cells. d) The 'equal per caller' method where the selection budget is 476 

distributed evenly across all callers. e) The 'equal per overlap' method where 477 

the selection budget is distributed evenly across all levels of overlap (i.e. call 478 

recurrence across callers). f) The 'increasing with overlap' method where the 479 

selection budget is distributed across overlap levels in proportion to the level 480 
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of overlap. g) The 'decreasing with overlap' method where the selection 481 

budget is distributed across overlap levels in inverse proportion to the level of 482 

overlap. 483 

Figure 2: Verification Selection Experimental Design 484 

Verification candidates were selected from somatic mutation calling results of 485 

multiple algorithms run on three in silico tumours (IS1, IS2, and IS3). 486 

Candidate selection was performed separately on each tumour's set of results 487 

using all combinations of five different verification budgets (i.e. number of calls 488 

selected) and six different selection strategies. F1 scores were calculated for 489 

each set of selected calls and compared to F1 scores calculated from the full 490 

prediction set. To compare the effect of the numbers of algorithms used, 491 

datasets were further subset using four different metrics. 492 

Figure 3: All Simulation Results for Selection Strategy Parameter 493 

Combinations 494 

Overall, the best results are obtained using the 'equal per caller' method. The 495 

'random rows' approach scores comparably except in cases where there is 496 

high variability in prediction set sizes across callers. Calls from low-call callers 497 

are less likely to be sampled at random and, in cases where none are 498 

sampled, it is not possible to get performance estimates for those callers. 499 

Failed estimate runs are displayed in grey. 500 

Figure 4: F1 Scores Across Replicate Runs. 501 

Top selection strategies perform consistently across replicate runs. Strategies 502 

are ordered by median scores. The adjustment step in precision calculations 503 

improves the 'equal per caller' method, but shows little effect on 'random 504 

rows'. 505 
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Additional files 506 

Additional file 1: Supplementary Figure 1. 507 

TIFF 9.4 Mb 508 

Simulations with 100 verification targets, across all tumours. The 'equal per 509 

caller' method (weighted mode) performs optimally as the 'random rows' 510 

method generates N/As. 511 

Additional file 2: Supplementary Figure 2. 512 

TIFF 9.2 Mb 513 

All simulations with 1000 verification targets, across all tumours. The best 514 

results come from the 'random rows' and the 'equal per caller' (weighted 515 

mode) methods. 516 

Additional file 3: Supplementary Figure 3. 517 

TIFF 8.9 Mb 518 

All simulations with 2500 verification targets, across all tumours. The best 519 

results come from the 'random rows' and the 'equal per caller' (weighted 520 

mode) methods. 521 

Additional file 4: Supplementary Figure 4. 522 

TIFF 9.9 Mb 523 

All simulations with 250 verification targets, across all tumours. The 'equal per 524 

caller' method (weighted mode) performs optimally as the 'random rows' 525 

method generates N/As. 526 

Additional file 5: Supplementary Figure 5. 527 

TIFF 9.6 Mb 528 
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All simulations with 500 verification targets, across all tumours. The 'equal per 529 

caller' method (weighted mode) performs optimally as the 'random rows' 530 

method generates N/As. 531 

Additional file 6: Supplementary Figure 6. 532 

TIFF 18 Mb 533 

All simulations for tumour IS1. Optimal results are achieved with the 'equal per 534 

caller' method (weighted mode). 535 

Additional file 7: Supplementary Figure 7. 536 

TIFF 12 Mb 537 

All simulations for tumour IS2. Optimal results are achieved with the 'equal per 538 

caller', 'increasing per overlap' and 'equal per overlap' methods (weighted 539 

mode). 540 

Additional file 8: Supplementary Figure 8. 541 

TIFF 14 Mb 542 

All simulations for tumour IS3. Optimal results are achieved with the 'random 543 

rows' method, regardless of how precision is calculated. 544 

Additional file 9: Supplementary Figure 9. 545 

TIFF 4.1 Mb 546 

a) Recall scores from all runs, displayed per candidate-selection strategy. b) 547 

Precision scores from all runs, calculated with and without a weight 548 

adjustment step (default mode and weighted mode, respectively) and 549 

displayed per candidate-selection strategy. 550 
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Additional file 10: Supplementary Table 1. 551 

CSV 57 Mb 552 

A prediction-by-submission matrix of all SNV call submissions for tumour IS1 553 

where SNV predictions are annotated with chromosome (“CHROM”) and 554 

position (“END”). 555 

Additional file 11: Supplementary Table 2. 556 

CSV 29 Mb 557 

A prediction-by-submission matrix of all SNV call submissions for tumour IS2 558 

where SNV predictions are annotated with chromosome (“CHROM”) and 559 

position (“END”). 560 

Additional file 12: Supplementary Table 3. 561 

CSV 3.6 Mb 562 

A prediction-by-submission matrix of all SNV call submissions for tumour IS3 563 

where SNV predictions are annotated with chromosome (“CHROM”) and 564 

position (“END”). 565 

Additional file 13: Supplementary Table 4. 566 

CSV 3.3 kb 567 

A summary table of the top team submissions for each tumour, includes 568 

submission ID, team alias, the number of true positives, true negatives, false 569 

positives and false negatives, as well as the precision, recall and F1 scores. 570 

Additional file 14: Supplementary Table 5. 571 

CSV 3.1 Mb 572 

A table of all predicted SNVs for tumour IS1, annotated by chromosome 573 
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(“chrom”) and position (“pos”), and a “truth” column for whether the call is a 574 

true positive (1) or not (0). 575 

Additional file 15: Supplementary Table 6. 576 

CSV 2.5 Mb 577 

A table of all predicted SNVs for tumour IS2, annotated by chromosome 578 

(“chrom”) and position (“pos”), and a “truth” column for whether the call is a 579 

true positive (1) or not (0). 580 

Additional file 16: Supplementary Table 7. 581 

CSV 329 kb 582 

A table of all predicted SNVs for tumour IS3, annotated by chromosome 583 

(“chrom”) and position (“pos”), and a “truth” column for whether the call is a 584 

true positive (1) or not (0). 585 

Additional file 17: Supplementary Table 8. 586 

CSV 20 kb 587 

A summary table of all submissions from across all tumours, includes 588 

submission ID, the number of true positives, true negatives, false positives 589 

and false negatives, as well as the precision, recall and F1 scores. 590 
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