
2018-01-02

Visual and auditory brain areas share a neural code for perceived
emotion

Beau Sievers and Thalia Wheatley

Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755

Correspondence to: Beau Sievers, 6207 Moore Hall, Dartmouth College, Hanover, NH 03755.
beau.r.sievers.gr@dartmouth.edu

Abstract

Emotion communication must be robust to interference from a noisy environment. One safeguard
against interference is crossmodal redundancy—for example, conveying the same information using
both sound and movement. Emotion perceivers should therefore be adapted to e�iciently detect
crossmodal correspondences, increasing the likelihood that emotion signals will be understood. One
possible such adaptation is the use of a single neural code for both auditory and visual information. To
investigate this, we tested two hypotheses: (1) that distinct auditory and visual brain areas represent
emotion expressions using the same parameters, and (2) that auditory and visual expressions of
emotion are represented together in one brain area using a supramodal neural code. We presented
emotion expressions during functional magnetic resonance imaging (N=20, 3 scan hrs/participant)
and tested these hypotheses using representational similarity analysis (Kriegeskorte & Kievit, 2013). A
single model of stimulus features and emotion content fit brain activity in both auditory and visual
areas, supporting hypothesis (1), and posterior superior temporal gyrus represented both auditory
and visual emotion expressions, supporting hypothesis (2). These results hold for both discrete and
mixed (e.g., Happy–Sad) emotional expressions. Surprisingly, further exploratory analysis showed
auditory and visual areas represent stimulus features and emotion content even when stimuli are
presented in each area’s non-preferred modality.

Introduction

Across the animal kingdom, communicative signals are linked in sight and sound: the rattlesnake’s
threat is telegraphed by the simultaneous shaking of its tail and its distinctive rattle. The perceptiual
systems of signal receivers, co-evolved alongside signal senders, should exploit such crossmodal
redundancies. Here we test this directly by examining neural processing during the perception of
auditory and visual displays of emotion. We show that humanauditory and visual brain areas represent
emotion using the same neural code. Further, this code is used to represent emotion presented in each
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area’s non-preferred modality. We suggest this shared neural code facilitates successful detection and
understanding of evolutionarily relevant signals.

From Shakespeare’s Hamlet, to Jane Austen’s Emma, to Disney’s Frozen, communicative misunder-
standing is themainspring of human drama. Thismay be rooted in humanity’s evolutionary history. As
a radically social species, our survival depends on the ability to quickly understand others’ thoughts
and feelings (Allport, 1924; Tooby & Cosmides, 1990). This is no easy task, as communication transpires
across a noisy channel—imprecise gestures, sounds, and speech, must pierce through a chaotic envi-
ronment to maximize their chances of perception by distracted and inattentive observers. E�ective
communication requires expressive signals that can survive the noisy channel, and brains adapted
to perceive them (Dezecache, Mercier, & Scott-Phillips, 2013; Huron, 2012; Lorenz, 1970). Consistent
with this adaptive signaling account of emotion expression (Hebets et al., 2016; Huron, 2012), previous
research has revealed that emotion expressions are strikingly similar across music andmovement
(Sievers, Polansky, Casey, & Wheatley, 2013). If this crossmodal redundancy is exploited by perceivers
(Hebets et al., 2016; Johnstone, 1996, 1997), we should observe a tight fit between the structure of
emotion expressions and their representation in perceving brains.

We tested two hypotheses: (1) that both auditory and visual areas encode emotion expressions using
the same parameters—i.e., they share a representational geometry (Kriegeskorte & Kievit, 2013)—and
(2) that auditory and visual expressions of emotion are represented together in one brain area using a
supramodal neural code.

A model capturing both dynamic (i.e., time-varying) stimulus features and emotional meaning fit
activity in both auditory and visual areas, supporting hypothesis (1). The same model fit activity
in posterior superior temporal gyrus (pSTG) during both auditory and visual emotion expressions,
supporting hypothesis (2). Additional exploratory analysis showed that auditory and visual areas
represent stimulus features and emotion content even when stimuli are presented in each area’s
non-preferred modality. These results support an adaptive signaling account of emotion perception,
where the structure of emotional signals and the brains of receivers have adapted to tightly fit one
another, facilitating e�icient and reliable signal perception.

Previous research on neural representation of emotion

Emotion-related neural processes are distributed across a wide range of brain areas, with each area
implicated in the production and/or perception of a range of emotions (Lindquist, Wager, Kober,
Bliss-Moreau, & Barrett, 2012). However, certain aspects of emotion processing are tightly localized.
Lesion studies have demonstrated that some brain areas play emotion-specific roles; for example, the
amygdala is critical for recognizing fearful stimuli (Adolphs, Tranel, Damasio, & Damasio, 1994), and
the insula for recognizing disgust (Calder, Lawrence, & Young, 2001).
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Our hypotheses ask not onlywhere in the brain emotions are represented, but how those represen-
tations are structured. For example, a single brain area may distinguish between emotions using
di�erent spatial patterns of activity that all have the samemean. To characterize the representational
properties of these areas, it is necessary to use techniques that are sensitive to such spatially dis-
tributed patterns; e.g., multivariate pattern classification (Norman, Polyn, Detre, & Haxby, 2006) or
representational similarity analysis (RSA; Kriegeskorte & Kievit, 2013). Below, we summarize previous
research taking a multivariate approach.

Peelen et al. (2010) found that patterns of activation in the medial prefrontal cortex (mPFC) and poste-
rior superior temporal sulcus (pSTS) had greater within-emotion similarity than between-emotion
similarity acrossmodalities, indicating these areas supramodally represent emotion identity. Chikazoe
et al. (2014) found supramodal directional valence (i.e., positive vs. neutral vs. negative) representa-
tions in medial and lateral orbitofrontal cortex (OFC), alongside modality-specific directional valence
representations for visual scenes in ventral temporal cortex, and for tastes in anterior insular cor-
tex. Skerry & Saxe (2015) presented written stories depicting characters experiencing many di�erent
emotions. They found amodel fitting 38 appraisal features (e.g., “Did someone cause this situation
intentionally, or did it occur by accident?”) fit activity in dorsal andmiddle medial prefrontal cortex,
the temporoparietal junction, and a network of regions identified by a theory of mind localization task.
Kim et al. (2017) presented emotional movie clips and orchestral music, finding a range of supramodal
representations: valence direction in the precuneus, valence magnitude in mPFC, STS, andmiddle
frontal gyrus (MFG), and both valence direction andmagnitude in the STS, MFG, and thalamus.

Experimental paradigm

Thepresentworkbuildson the foundationof previous research in severalways. Our stimuli consistedof
short clips of music and animation in which the depicted object—a piano or a bouncing ball—was held
constant, and emotion was communicated solely by varying stimulus features. This ensured emotion
processing requirements were uniform across the stimulus set. By contrast, collections of images or
movies depicting emotionally charged scenes (e.g., the International A�ective Picture System; Lang,
Bradley, & Cuthbert, 2008) may require a wide variety of processes for emotion evaluation, including
moral judgment, memory, and so on.

Stimuli were created by participants in a previously documented experiment (Sievers et al., 2013), who
manipulated five stimulus features (speed, irregularity, consonance/spikiness, ratio of big-to-small
movements, ratio of upward-to-downward movements) to generate five emotions (Angry, Happy,
Peaceful, Sad, Scared). This approach distinguishes between emotions with similar valence, such as
Angry and Sad or Happy and Peaceful. The stimulus set was augmented by linearly mixing the features
of each emotion pair, creating mixed emotions (e.g., Happy–Sad). Emotions were mixed at 25%, 50%,
and 75%. Three additional, “neutral” emotions were identified by searching for points in the stimulus
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feature possibility space that were distant from all emotions. Music and animationwerematched, such
that for each musical stimulus there was an animation stimulus with analogous features. This process
yielded 76 total stimulus classes, including both music and animation. All stimuli are available at
https://osf.io/kvbqm/. A separate set of participants judged how well each stimulus fit all five emotion
labels, and a subset of these participants viewedmanymusic and animation stimuli while undergoing
fMRI scanning (Figure 1).

The approach described above enabled the use of an exhaustively complete model, including both
stimulus features and participants’ judgments of emotion content. All inter-stimulus di�erences were
dependent upon parameters explicitly represented in this model. The fitness of the model to activity
across the brain during vision and audition was evaluated using searchlight representational similarity
analysis (Kriegeskorte & Kievit, 2013; Kriegeskorte, Goebel, & Bandettini, 2006; Kriegeskorte, Mur, &
Bandettini, 2008).
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Figure 1: Experimental paradigm. A. Participants in Sievers et al. (2013) manipulated stimulus features
to generate music and animation expressing five prototypical emotions: Angry, Happy, Peaceful, Sad,
and Scared. B.Mixed emotions were generated by linear interpolation between the stimulus features
of prototypical emotions. C. Participants judged the emotion content of many prototypical and mixed
emotions in music and animation. D. A subset of participants viewedmany prototypical andmixed
emotions in music and animation while undergoing jittered event-related fMRI scanning. E. Results
were analyzed using searchlight representational similarity analysis (Kriegeskorte & Kievit, 2013;
Kriegeskorte et al., 2006, 2008). For each searchlight sphere, the structure of the neural
representational dissimilarity matrix (RDM) was predicted using a linear combination of stimulus
feature and emotion judgment RDMs.

Results

Representational Similarity Analysis

We created 10 model representational dissimilarity matrices (RDMs): five based on the parameter
settings used to create the stimuli (speed, irregularity, consonance/spikiness, ratio of big-to-small
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movements, ratio of upward-to-downward movements), and five based on the emotion judgments of
our behavioral participants (Angry, Happy, Peaceful, Sad, and Scared). Each RDMcaptured the distance
between every pair of stimuli in terms of a single stimulus feature or emotion judgment parameter
(Supplementary Figure 1). RDMs were constructed such that that our model was not sensitive to
di�erences in the mean level of BOLD activity betweenmusic and animation trials. This was achieved
by using the same stimulus feature parameter settings to create bothmusic and animation stimuli, and
by averaging emotion judgments acrossmusic and animation. This ensured that themodeled distance
between any twomusic stimuli was always equal to themodeled distance between the corresponding
animation stimuli, and that the mean distance between music stimuli was equal to the mean distance
between animation stimuli.

To test hypotheses (1) and (2), we performed a searchlight representational similarity analysis
(Kriegeskorte et al., 2006, 2008). Within each searchlight sphere we calculated the Spearman
correlation distance between each pair of stimulus-dependent patterns of BOLD activity to create a
neural RDM. To assess how the neural RDM could be expressed as a linear combination of our model
RDMs, we fit a multiple regression model using our 10 model RDMs as predictors and the neural RDM
as the target. RDMs were ranked before regression. We ran this analysis twice—first, using only music
trials to create the neural RDM, then using only animation trials.

Figure 2: Highlighted brain areas fit a model including stimulus features and emotion judgments
during animation trials (blue), music trials (green), and both trial types (yellow). Neural dissimilarity
matrices show pairwise similarity of activity patterns evoked by each stimulus at the locations of best
model fit (circled)—medial lingual gyrus (animation) and lateral superior temporal gyrus (music).
Fully-labled verions of these matrices are shown in Supplementary Figure 7. Multidimensional scaling
flattens these dissimilarity matrices to two dimensions, so the distance between dots reflects the
similarity of patterns of neural activity. Dots are colored by mixing the legend colors based on
participants’ judgments of the emotion content of each stimulus.
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Ourmodel explained variance in a range of visual and auditory brain regions, providing strong support
for hypothesis (1), that these regions share a common representational geometry (Figure 3; Table 1).
Thepeakof theaveragemodel fit acrossparticipantswas in themedial lingual gyrus for animation trials
(M=.16; 95% CI: .1–.23; t(19)=5.13; p < .001; all p-values corrected at FWER=.05) and in bilateral anterior
superior temporal gyrus for music trials (M=.16; 95% CI: .11–.21; t(19)=6.65; p < .001). Themagnitude
and anatomical location of the peakmodel fit were consistent across participants (Supplementary
Figures 2 and 3). For per-parameter beta weights, see Supplementary Figures 5 and 6.

Figure 3:Maps of the mean coe�icient of determination (R2) across participants. The model included
5 stimulus feature parameters and 5 emotion judgment parameters, and was separately fit to
animation andmusic trials. Maps thresholded at voxelwise FWER=.05. R2 values < .02 hidden for
visual clarity. Box plots show per-participant R2 values at the location of best model fit at the group
level. For per-parameter beta weights, see Supplementary Figures 5 and 6.
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Table 1: Brain regions fitting the stimulus feature and emotion judgment model during animation
trials.

x y z Nearest atlas label (Destrieux, 2009) R2 95% CI p

2 -88 -2 L Lingual gyrus, lingual part of the medial
occipito-temporal gyrus, (O5)

.16 .10–.23 .01

46 -68 1 R Inferior occipital gyrus (O3) and sulcus .06 .03–.08 .041

22 -82 31 R Superior occipital gyrus (O1) .05 .03–.07 .022

-22 -82 34 L Superior occipital gyrus (O1) .05 .03–.07 .022

64 -32 22 R Supramarginal gyrus .05 .02–.07 .036

-56 -34 25 L Supramarginal gyrus .04 .02–.05 .007

-14 -26 40 L Marginal branch (or part) of the cingulate
sulcus

.03 .02–.05 .028

50 10 34 R Precentral gyrus .03 .02–.04 .012

10 -10 73 R Superior frontal gyrus (F1) .03 .01–.04 .017

32 -50 52 R Intraparietal sulcus (interparietal sulcus) and
transverse parietal sulci

.03 .01–.04 .025

Table 2: Brain regions fitting the stimulus feature and emotion judgment model during music trials.

x y z Nearest atlas label (Destrieux, 2009) R2 95% CI p

58 -2 -2 R Lateral aspect of the superior temporal gyrus .16 .11–.21 .002

-62 -16 7 L Lateral aspect of the superior temporal gyrus .1 .07–.14 .003

52 -2 46 R Precentral gyrus .03 .02–.05 .04

2 2 73 L Superior frontal gyrus (F1) .03 .02–.05 .011

-56 -8 49 L Precentral gyrus .03 .02–.03 .003

To locate brain regions representing emotion supramodally, we created binary overlap masks per-
subject, selecting voxels where our model explained a meaningful amount of variance (R2>.02) for
both music and animation trials. These masks were averaged to map the proportion of participants
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with supramodal representations in each voxel. Supramodal representations were found in bilateral
posterior superior temporal gyrus (pSTG) in 65% of participants (p < .001), providing support for
hypothesis (2) (Fig 4). Group level model fits in each unimodal analysis were also significant at this
location (animation mean R2=.04, 95% CI: .02–.07, t(19)=4.25, p<.001; music mean R2=.07, 95% CI:
.05–.1, t(19)=5.3, p<.001). Due to individual di�erences in functional anatomy, this procedure underes-
timates the proportion of participants with supramodal emotion representations. Manual inspection
of the overlapmasks showed supramodal emotion representations in pSTG were consistent across
participants, and that some participants showed additional supramodal representations in other
areas, including the right inferior frontal gyrus (Supplementary Figure 4).

Figure 4: A. Binary overlap masks were created per participant, selecting voxels voxels that were
significant at the group level for both music and animation trials. Maps show the voxelwise average of
these overlap masks, expressing the proportion of participants representing emotion in music and
animation in the same brain areas. Maps thresholded at voxelwise FWER=.05. R2 values < .02 hidden
for visual clarity. B. Box plots show R2 for music and animation trials at the location where most
participants exhibited supramodal emotion representations.

Table 3: Brain regions fitting the stimulus feature and emotion judgment model during both music
and animation trials.

x y z
Nearest atlas label
(Destrieux, 2009) Anim.R2 95% CI p MusicR2 95% CI p

64 -32 19 R Planum temporale or
temporal plane of the superior
temporal gyrus

.04 .02–.07 .042 .07 .05–.10 .008

-52 -34 19 L Supramarginal gyrus .02 .01–.02 .001 .11 .07–.16 .012
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x y z
Nearest atlas label
(Destrieux, 2009) Anim.R2 95% CI p MusicR2 95% CI p

58 4 4 R Opercular part of the
inferior frontal gyrus

.03 .02–.04 .011 .06 .03–.09 .022

Exploratory intermodal RSA

To find brain areas representing emotion even when stimuli are presented in the non-preferredmodal-
ity, we performed an exploratory intermodal RSA that used RDMs containing only between-modality
distances. To build the neural target RDM, we took the rank correlation between patterns of activity
elicited when each emotion was presented as music and when each emotion was presented as anima-
tion (Figure 5A). Model RDMs were built using an analogous procedure, and were rank-ordered before
analysis. Note that because within-modality pairs were excluded, all intermodal RDMs were square,
corresponding to the lower-le� square region of the larger triangular RDM created using stimuli from
bothmodalities. If a brain area is inactive when stimuli are presented in its non-preferredmodality,
then the intermodal neural RDM should be uncorrelated with the intermodal model RDMs. If a brain
area is active, even weakly, and representing emotion content, its intermodal neural RDM should be
correlated with the intermodal model RDMs.

The intermodal RSA revealed a bilateral set of areas across occiptal, superior parietal, temporal,
cingulate, and frontal cortex that represented emotions presented in the non-preferred modality
(Figure 5B; Table 4). Note that some of these areas did not show significant unimodal model fit. Peak
intermodalmodel fit was in right lingual gyrus (M=.29; 95%CI: .21–.38; t(19)=7.07; p < .001). Notably, the
peak intermodal model fit exceeded the peak within-modality model fit for both music and animation.
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Figure 5: Intermodal model fit. We created behavioral and neural intermodal RDMs to locate brain
areas representing emotion even when stimuli were presented in that area’s non-preferred modality.
A. Intermodal RDMs capture the stimulus feature, emotion judgment, or neural pattern distances
betweenmusic and animation expressing the same emotion. The intermodal RDM is the lower-le�
square of the the full RDM created using both music and animation. B. Intermodal model fit,
thresholded at FWER=.05. R2 values < .04 hidden for visual clarity. Box plot shows per-participant R2

values at the location of best model fit at the group level.

Table 4: Brain regions fitting intermodal model; i.e., regions which fit the stimulus feature and
emotion judgment model even when the stimulus is presented in the non-preferred modality.

x y z Nearest atlas label (Destrieux, 2009) R2 95% CI p

2 -88 -2 L Lingual gyrus, lingual part of the medial
occipito-temporal gyrus, (O5)

.29 .20–.38 < .001

64 -28 22 R Supramarginal gyrus .1 .07–.13 .001

-56 -40 22 L Planum temporale or temporal plane of the
superior temporal gyrus

.09 .06–.11 < .001

32 -56 61 R Superior parietal lobule (lateral part of P1) .07 .05–.09 < .001

-32 -56 64 L Superior parietal lobule (lateral part of P1) .07 .05–.08 < .001

-16 -22 40 L Middle-posterior part of the cingulate gyrus
and sulcus (pMCC)

.06 .04–.08 .003

-28 -58 -53 L Lateral occipito-temporal gyrus (fusiform
gyrus, O4-T4)

.05 .04–.06 < .001

-46 44 22 L Middle frontal gyrus (F2) .04 .03–.05 < .001

-4 64 22 L Superior frontal gyrus (F1) .04 .03–.05 < .001
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Unthresholded statistical maps

All unthresholded statistical maps are available at https://neurovault.org/collections/3399/.

Discussion

On the adaptive signaling account of emotion perception, the human brain should show adaptations
specific to the crossmodally redundant structure of emotion expression. To investigate this, we tested
two hypotheses: (1) that auditory and visual brain areas encode emotion expressions using the same
underlying parameters, and (2) that in some brain areas, auditory and visual expressions of emotion
are represented using a single, supramodal neural code. Visual and auditory sensory areas both
fit a model including stimulus features and emotion judgments, indicating these regions use the
same neural code for emotion, supporting hypothesis (1). The samemodel fit activity in pSTG during
both animation andmusic trials, indicating the presence of a supramodal emotion representation,
supporting hypothesis (2). Exploratory intermodal representational similarity analysis showed that
low-level visual and auditory areas represent stimulus features and emotion content even when
presented in their non-preferred modality.

Tuning of sensory representations to evolutionarily revelant signals—in this case, emotion
expressions—shows that the need to identify such signals has exerted a profound shaping force on
low-level perceptual processes. Such tuning is predicted by the adaptive signaling account of emotion
perception (Dezecache et al., 2013; Hebets et al., 2016; Huron, 2012; Lorenz, 1970). We do not see or
hear the actions of others as raw sense impressions first, and later encode them as communicating
emotion a�er a chain of intermediary processing steps occuring in encapsulated cognitive modules
(Firestone & Scholl, 2016; Fodor, 1985). Rather, we begin accumulating evidence for an emotional
intepretation from the lowest levels of sensory processing.

Supramodal representation in pSTG/pSTS

Our findings in pSTG overlap with previously reported pSTS activation during action understanding (M.
S. Beauchamp, Lee, Argall, & Martin, 2004; Wyk, Hudac, Carter, Sobel, & Pelphrey, 2009) and emotion
perception tasks (Kreifelts, Ethofer, Grodd, Erb, & Wildgruber, 2007; Robins, Hunyadi, & Schultz, 2009;
Watson et al., 2014). The pSTG/pSTS may act as a general-purpose hub for transforming unimodal
inputs into a common supramodal representation, and then comparing them to check for a match.
Supporting this account, the pSTS shows greater activation for combined audio–visual presentation
than for either modality alone (M. S. Beauchamp et al., 2004; Wright, Pelphrey, Allison, McKeown, &
McCarthy, 2003). The amplitude of these responses, when controlled for noise distorting the stimulus,
predicts object categorization performance (Werner & Noppeney, 2010). Interestingly, visual and
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auditory selectivity in pSTS are linked, with areas sensitive to moving mouths responding strongly to
voices, but not non-vocal sounds (Zhu & Beauchamp, 2017). This suggests crossmodal selectivity in
pSTSmay be shaped by co-occurence statistics in the environment.

Reading emotion from semantic content vs. stimulus features

Recent studies of emotion perception have emphasized reading emotions from semantic content
(Chikazoe et al., 2014; Kim et al., 2017; Skerry & Saxe, 2015). The emotional meaning of stimuli used
in these studies (e.g., detailed written stories; images from the International A�ective Picture Sys-
tem, Lang et al., 2008) depends on semantic processing: recognizing what is depicted and why it
is emotionally relevant. While important, this type of emotion perception is di�erent in kind from
reading emotional meaning conveyed by stimulus features, such as movement or prosody. By con-
trast, our experiment usedmusic and animation in which the depicted object was held constant, and
relatively low-level stimulus features were manipulated to express a wide range of emotions. These
di�erent approaches likely impose di�erent neural processing demands. We anticipate that advances
in automatic feature extraction (McNamara, Vega, & Yarkoni, 2017) will enable the use of stimuli and
models spanning not only the stimulus feature and emotion spaces examined here, but also additional
dimensions of semantic meaning, context dependence, self- and other-relevance, appraisal features,
and so on. Such future experiments will be the best of both (or many) worlds, allowing researchers to
disentangle the many possible underlying mechanisms supporting emotion perception.

Adaptive signaling vs. “peg fits hole”

One possible reading of these results is that humans have evolved neural detectors specific to the
structure of emotion expressions, and that these are present from birth. On this “peg fits hole” in-
terpretation, any sensory input with the right structure should be detected and interpreted as an
emotion expression. While this may be true in some basic cases, such as infants’ reactions to shouting
or motherese, cross-cultural variation in emotion expressions places a limit on the “peg fits hole”
interpretation. Although emotion expressions across cultures share structural features supporting
mutual intelligibility (Ekman, 1992; Jack, Sun, Delis, Garrod, & Schyns, 2016; Sievers et al., 2013), there
are also substantial cross-cultural di�erences (Jack, Caldara, & Schyns, 2012; Jack et al., 2016; Yuki,
Maddux, & Masuda, 2007). The neural mechanisms supporting emotion perceptionmust therefore
flexibly accommodate culture-specific emotion dialects and display rules. These mechanisms need
not be present from birth, and need not be specific to emotion. Rather, emotion perception may
exploit statistical learning and predictive coding processes (Clark, 2013; Sa�ran, Aslin, & Newport,
1996), or may arise later in development, emerging from cognitive strategies for coping with a complex
social world (Blakemore, 2008). On this account, the structure of emotion expressions, the brains of
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emotion perceivers, and their cultural–environmental niche are interlinked and evolve together. The
cross-cultural intelligibility of emotion expressions can be explained by globally shared contextual
factors, including the evolutionary inheritance of the human body, the challenge of cooperating with
others in a dangerous, unpredictable, resource-limited world, and the related need to estimate others’
internal states. Cross-cultural di�erences can be understood as path-dependent adaptations specific
to a regional cultural–environmental niche.

Conclusion

The structure of emotion expressions is shared across music andmovement and is tightly coupled to
meaning. This is reflected in the organization of the brain: the same neural code is used to represent
emotion in auditory, visual, and supramodal areas. Surprisingly, unimodal auditory and visual areas
represent stimuli shown in their non-preferred modality. Such e�icient organization is consistent
with the adaptive signaling account of emotion perception. This theory predicts both that emotion
signals be crossmodally redundant in order to survive communication across a noisy channel, and
that receivers be specifically adapted to the crossmodal nature of the signal’s structure. In other words,
human emotion perception is optimized “end-to-end”—all levels of the processing hierarchy are tuned
to support the social goal of understanding the emotional states that predict others’ behavior.

Materials and Methods

Participants

79 participants (47 female) were recruited from the Dartmouth College student community to partici-
pate in the emotion evaluation task (experiment 1). 20of theseparticipants (11 female) alsoparticipated
in the fMRI of emotion viewing task (experiment 2). All fMRI participants were right-handed and had
normal or corrected-to-normal vision. All participants provided written informed consent, and the
study was approved by the Dartmouth College Committee for the Protection of Human Subjects.

Stimuli

Emotion stimuli were generated using an amodal dynamic model of movement across a number line
with five parameters: speed, irregularity, consonance/spikiness, ratio of big-to-small movements, and
ratio of upward-to-downwardmovements. Model output wasmapped to either simple pianomelodies
or the movement of an animated bouncing ball. Each time the model was run, it probabilistically
generated a new stimulus based on the current parameter settings. Participants in (Sievers et al.,
2013) (music N=25, movement N=25, total N=50) used this model to express five emotions: Angry,
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Happy, Peaceful, Sad, and Scared. For each emotion, parameter settings were similar for both music
andmovement. Details of the model are described in Sievers et al. (2013). All stimuli are available at
https://osf.io/kvbqm/.

To reduce the influence of outliers, the median parameter settings across music andmovement were
used to generate stimuli for the present experiments. In addition to the five prototypical emotions
listed above, we created mixed emotion stimuli by interpolating linearly between the parameter
settings for each emotion pair; 25%, 50%, and 75%mixes were used. We also added three putatively
“neutral” or “non-emotional” parameter settings selected to be distant from all other stimuli. “Search
One” and “Search Four” were selected by a Monte Carlo search algorithm, and consisted of extreme
values for all five parameters. “Biggest Gap” was created by selecting the midpoint of the largest gap
between the five prototypical emotions emotions and the parameter endpoints.

For each prototypical, mixed, and “non-emotional” parameter setting in each modality, we generated
20 exemplars, for a total of 1,520 stimuli (38 emotions x 2 modalities x 20 exemplars). Because stimuli
were created using a probabilistic method, all exemplars were compared to a larger, separate sample
of 5000 same-emotion examples to ensure no stimulus was further than one standard deviation from
the category mean along any parameter.

Experiment 1 (emotion evaluation)

Participants (N=79, 47 female) evaluated the emotion content of the stimuli. Stimuli were presented
using a computer program that displayed five slider bars, one for each emotion prototype (Angry,
Happy, Peaceful, Sad, and Scared). The on-screen order of slider bars and emotion stimuli were
randomized across participants. Participants viewed or listened to each stimulus at least three times,
and were asked to use the slider bars to evaluate what emotion or mix of emotions the stimulus
expressed.

Experiment 2 (fMRI of emotion viewing)

During each fMRI run, participants (N=20, 11 female) viewed 18 randomly selected exemplars from
each of the 76 stimulus classes described above. Each stimulus class was shown once per run, and
participants completed 18 runs across 3 separate scanning sessions (~3 hours of scan time, 1,368
stimulus impressions). Each scan session was scheduled for approximately the same time of day, and
nomore than one week elapsed between scan sessions.

Stimuli were truncated to 3s in duration and followed by fixation periods of randomly varying duration
(range: 0.5s–20s). The ratio of simulus presentation to fixation was 1:1. A Monte Carlo procedure was
used to select separate, optimized stimulus presentation orderings and timings for each participant.
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This procedure used AFNI make_random_timing.py to generate thousands of possible stimulus
timings, and AFNI 3dDeconvolve to select the timings that best supported deconvolving unique
patterns of brain activity for each stimulus. Stimuli were presented using PsychoPy (Peirce, 2007).
Participants were instructed to attend to the emotion content of the stimuli. During randomly inter-
spersed catch trials (10 per run), participants used a button box to rate on a four-point scale whether
themost recently presented stimulus had emotion content that was “moremixed” or “more pure.”
To ensure familiarity with the stimuli, all fMRI participants had previously completed the emotion
evaluation task.

fMRI acquisition

Participants were scanned at the Dartmouth Brain Imaging Center using a 3T Phillips Achieva Intera
scanner with a 32-channel head coil. Functional images were acquired using an echo-planar sequence
(35ms TE, 3000ms TR; 90° flip angle; 3x3x3mm resolution) with 192 dynamic scans per run. A high
resolution T1-weighted anatomical scan (3.7 ms TE; 8200ms TR; .938x.938x1mm resolution) was
acquired at the end of each scanning session. Sound was delivered using an over-ear headphone
system. Foam padding was placed around participants’ heads to minimize motion.

fMRI preprocessing

Anatomical images were skull-stripped and aligned to the last TR of the last EPI image using AFNI
align_epi_anat.py. EPI images were aligned to the last TR of the last EPI image using AFNI
3dvolreg. Rigid body transformations for aligning participants’ anatomical and EPI images to the
AFNI version of the MNI 152 ICBM template were calculated using AFNI @auto_tlrc. Alignment
transformations were concatenated and applied in a single step using AFNI 3dAllineate. EPI
images were scaled to show percent signal change and concatenated. EPI images were not smoothed.
The general linear model was used to estimate BOLD-responses evoked by each of the 76 emotional
stimulus classes using AFNI 3dREMLfit.

Representational similarity analysis

Representational similarity analysis (RSA) (Kriegeskorte et al., 2006, 2008) was conducted using
PyMVPA (Hanke et al., 2009) and Scikit-Learn (Pedregosa et al., 2012). Stimulus feature representa-
tional distance matrices (RDMs) for each of the parameters described in (Sievers et al., 2013) (speed,
irregularity, consonance/spikiness, ratio of big-to-small movements, ratio of upward-to-downward
movements) were created by calculating the Euclidean distances between the slider bar settings for
each pair of emotions. Emotions in music and animation were created using the same slider bar
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settings, making it unecessary to create modality-specific feature RDMs. Emotion RDMs were created
by calculating the Euclidean distance between the mean of each emotion judgment parameter in
experiment 1 (Angry, Happy, Peaceful, Sad, and Scared) for each pair of stimuli. Emotion judgments
were averaged acrossmusic and animation,making it unnecessary to createmodality-specific emotion
judgment RDMs. Intermodal RDMswere built by calculating the fullmulti-modality RDM including both
music andmovement stimuli and selecting its lower-le� square region. Because the music and anima-
tion stimuli were created using the same slider bar settings, and because emotion judgments were
averaged across modality, the mean distance betweenmusic stimuli was equal to the mean distance
between animation stimuli. This ensured our analyses would not be sensitive to mean di�erences in
BOLD activity betweenmusic and animation.

Representational similarity analysis was seperately conducted for music trials, animation trials, and
(for the intermodal analysis) music and animation trials together. Each analysis used a spherical
searchlight with a 3-voxel (9mm) radius. For music and animation trials, we calculated a neural RDM
in each searchlight sphere bymeasuring the correlation distance between each estimated stimulus-
evoked pattern of activation within modality. Intermodal neural RDMs were created by calculating
the full multi-modality RDM including both music andmovement stimuli and selecting its lower-le�
square region, containing only inter-modality distances (Figure 5A).

Multiple regression using least squares was used to assess how the neural RDM in each seachlight
sphere could be expressed as a linear combination of our stimulus feature and emotion judgment
RDMs. RDMs were rank-ordered before model fitting. This procedure generated beta weight and
coe�icient of determination (R2) maps for each participant, for each analysis. To locate areas fitting
our model during both music and animation trials, per-participant overlap maps were created by
identifying voxels where both music and animation model fit exceeded .02 and where the group
level model fit was significant at FWER=.05. Group level maps were calculated and corrected for
multiple comparisons at voxelwise FWER=.05 using permutation testing with BROCCOLI (Eklund,
Dufort, Villani, & Laconte, 2014). Maps were visualized using Nilearn (Abraham et al., 2014) and AFNI
SUMA (Saad, Reynolds, Argall, Japee, & Cox, 2004). All unthresholded statistical maps are available at
https://neurovault.org/collections/3399/.
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