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Summary

Emotionally expressive music and dance occur together across the world. This may be because fea-
tures shared across the senses are represented the same way even in different sensory brain areas,
puttingmusic andmovement in directly comparable terms. These shared representationsmay arise
from a general need to identify environmentally relevant combinations of sensory features, partic-
ularly those that communicate emotion. To test the hypothesis that visual and auditory brain ar-
eas share a representational structure, we created music and animation stimuli with crossmodally
matched features expressing a range of emotions. Participants confirmed that each emotion corre-
sponded to a set of features shared across music and movement. A subset of participants viewed
both music and animation during brain scanning, revealing that representations in auditory and vi-
sual brain areas were similar to one another. This shared representation captured not only simple
stimulus features, but also combinations of features associated with emotion judgments. The poste-
rior superior temporal cortex represented both music andmovement using this same structure, sug-
gesting supramodal abstraction of sensory content. Further exploratory analysis revealed that early
visual cortex used this shared representational structure even when stimuli were presented audito-
rily. We propose that crossmodally shared representations support mutually reinforcing dynamics
across auditory and visual brain areas, facilitating crossmodal comparison. These shared represen-
tations may help explain why emotions are so readily perceived and why some dynamic emotional
expressions can generalize across cultural contexts.

Introduction

Wherever there is music, there is movement (Kaeppler, 1978; Mehr et al., 2019; Savage, Brown, Sakai,
& Currie, 2015). Not only aremusic anddance pervasive across the anthropological and ethnographic

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2021. ; https://doi.org/10.1101/254961doi: bioRxiv preprint 

https://doi.org/10.1101/254961
http://creativecommons.org/licenses/by/4.0/


record, some languages use a single word for both (Baily, 1985; Trehub, Becker, Morley, & Trehub,
2015). The link between music and movement is present from early in development, with infants
as young as 7 months using movement to resolve ambiguities in musical rhythm (Phillips-silver &
Trainor, 2005). Further, communication of emotion through music and movement occurs across a
range of dissimilar cultures (Fritz et al., 2009; Sievers, Polansky, Casey, & Wheatley, 2013; Trehub
et al., 2015), although there are also many important cross-cultural differences in emotion expres-
sion, perception, and conceptualization (Gendron, Roberson, Vyver, & Barrett, 2014; Jack, Caldara, &
Schyns, 2012; Jack, Sun, Delis, Garrod, & Schyns, 2016; Jackson et al., 2019; Margulis, Wong, Simchy-
Gross, &McAuley, 2019; Yuki, Maddux, &Masuda, 2007). Here, we suggest that the link betweenmusic
andmovementmay result from fundamental similarities in howmusic andmovement are structured,
perceived, and represented in the brain.

Supporting this account, preliminary research suggests that emotional music and movement can
share structural features across cultures. In both the United States and a small-scale society in rural
Cambodia, angrymusic andmovement are both fast andmovedownward, peacefulmusic andmove-
ment are both slow and move upward, and so on (Sievers, Lee, Haslett, Wheatley, & Wheatley, 2019;
Sievers et al., 2013). Though suggestive, shared features do not fully explain the pervasive, experien-
tial link between music and movement. Here, we examine a possible explanation: Different sensory
areas of the brain may share a representational geometry (Kriegeskorte & Kievit, 2013), such that dif-
ferences between sensory features and perceived emotions are represented by matched differences
in patterns of neural activity, putting music andmovement in comparable, task-relevant terms.

We tested two related main hypotheses concerning both where and how music and movement are
represented in the brain. (H1) The separate regions, shared representations hypothesis: that sepa-
rate, modality-specific, auditory and visual areas use a shared representational geometry. (H2) The
supramodal region hypothesis: that a supramodal area (or areas) uses a single representational ge-
ometry for bothauditory andvisual stimuli. Note that (H1) doesnot requirepatternsof activity in audi-
tory and visual brain regions to be identical in every respect, as each sensory region likely represents
modality-specific features. Evidence that the representation of music in auditory regions is very sim-
ilar to the representation of movement in visual regions would support the separate regions, shared
representations hypothesis (H1). By contrast, evidence of a single region that represents both music
andmovement using the same representational geometry would support the supramodal region hy-
pothesis (H2). Importantly, (H1) and (H2) are notmutually exclusive, andwhile previous research has
provided support for (H2) (2010), the status of (H1) remains unknown.

Further,weaskedhowrepresentationsof perceivedemotion inmusic andmovementwereorganized,
testing two auxiliary hypotheses. (A1) The simple features hypothesis: that sensory brain regions rep-
resent emotional stimuli in terms of differences in simple stimulus features, without respect to how
those features may later be inferentially processed to yield emotion judgments (by e.g., simulation
theory, Gordon, 1986; or theory theory, Gopnik & Wellman, 1994). (A2) The environmental conjunc-
tions hypothesis: that sensory representations of emotional stimuli closely track emotion judgments,
suggesting that the human perceptual system may directly represent latent configurations of stim-
ulus features associated with emotion content. These task-relevant representations may act as a
shortcut, reducing the need for downstream inferential processing (Gallagher, 2008). Evidence that
sensory representations fit amodel based on stimulus featureswould support the simple features hy-
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pothesis (A1), while evidence that sensory representations fit a model based on emotion judgments
would support the environmental conjunctions hypothesis (A2). (A1) and (A2) are not mutually exclu-
sive, as sensory regions may represent both stimulus features and environmentally relevant feature
conjunctions.

By “perceived emotions”we refer only to participants’ perceptions of the stimuli and their judgments
of what emotions the stimuli expressed. We do not refer to emotional states evoked in the partici-
pants by the stimuli, or to any other kind of emotion. Importantly, though we discuss the relevance
of the findings to cross-cultural generalization, we did not test any hypotheses across cultures.

Testing both sets of hypotheses required comparing representations between brain areas. To accom-
plish this, we used model-based representational similarity analysis (RSA) (Kriegeskorte, Goebel, &
Bandettini, 2006; Kriegeskorte, Mur, & Bandettini, 2008), comparing representations evoked by sepa-
rately presented auditory and visual stimuli to test (H1) and (H2). For detailed discussion of the limits
andmerits of this approach, seeRoskies (2021). Themodel includedpredictors corresponding toboth
simple stimulus features and to participants’ judgments of emotion content, supporting tests of (A1)
and (A2). We performed an additional supporting test of (H1) using a model-free approach that di-
rectly compared representational geometries across sensory areaswithoutmaking any assumptions
about representational content.

Previous research on neural representation of emotion

Emotion-related neural processes are distributed across a wide range of brain areas, with each area
implicated in the production and/or perception of many emotions (Lindquist, Wager, Kober, Bliss-
Moreau, & Barrett, 2012; Wager et al., 2015). However, certain aspects of emotion processing are lo-
calized. Lesion and neuroimaging studies have demonstrated that some brain areas play an outsized
role in the processing of specific emotions; for example, the amygdala for the conscious recognition
of fearful stimuli (Adolphs, Tranel, Damasio, & Damasio, 1994; Tsuchiya, Moradi, Felsen, Yamazaki, &
Adolphs, 2009), and the insula for recognizing disgust (Calder, Lawrence, & Young, 2001; Phillips et
al., 1997). Because our hypotheses concern representations capable of distinguishing many differ-
ent emotion expressions, we focus here on distributed representations of emotion, and not on areas
implicated in processing individual emotions.

Our hypotheses ask not only where in the brain emotions are represented, but how those repre-
sentations are structured. For example, a single brain area may distinguish stimulus classes using
different spatial patterns of activity that all have the same mean. To characterize the representa-
tional properties of these areas, it is necessary to use techniques that are sensitive to such spatially
distributed patterns; e.g., multivariate pattern classification (Norman, Polyn, Detre, & Haxby, 2006)
or representational similarity analysis (RSA; Kriegeskorte & Kievit, 2013). For example, Peelen et
al. (2010) showed thatmedial prefrontal cortex (mPFC) and posterior superior temporal sulcus (pSTS)
supramodally represent emotion identity by demonstrating that patterns of activity in these areas
had greater within-emotion similarity than between-emotion similarity. Chikazoe et al. (2014) used
pattern analysis to locate supramodal valence (positive vs. neutral vs. negative) representations
in medial and lateral orbitofrontal cortex and modality-specific valence representations in sensory
cortices. Also investigating valence, Kim et al. (2017) presented emotional movie clips and orchestral
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music, and founda rangeof supramodal representations: valencedirection in theprecuneus, valence
magnitude inmPFC, STS, andmiddle frontal gyrus (MFG), and both valence direction andmagnitude
in the STS, MFG, and thalamus. Skerry & Saxe (2015) found that a model describing participants’
appraisals of emotional narratives (e.g., “Did someone cause this situation intentionally, or did it
occur by accident?”) fit activity in dorsal and middle medial prefrontal cortex, the temporoparietal
junction, and a network of regions identified by a theory of mind localization task.

Importantly, where previous studies have focused on emotions evoked by narrative content while
controlling for stimulus features (e.g., Chikazoe et al., 2014; Kim et al., 2017; Skerry & Saxe, 2015), the
present study takes a different approach, focusing on emotion perceived solely from stimulus fea-
tures without any contextualizing narrative. Emotions perceived from stimulus features make up a
large and understudied part of human experience. For example, people often communicate emotion
using only body language and tone of voice, and actively seek out instrumentalmusic and abstract vi-
sual art that communicates emotion only through variation in pitch, volume, shape, brightness, and
soon. Andalthough therearemanycross-cultural differences in emotionexperience, expression, and
perception (Gendron et al., 2014; Jack et al., 2012, 2016; Jackson et al., 2019; Margulis et al., 2019; Yuki
et al., 2007), preliminary evidence suggests the use of shared stimulus features to express emotion
can generalize across dissimilar cultures (Sievers et al., 2013; Trehub et al., 2015). Despite its ubiq-
uity and importance, the neural mechanisms supporting emotion perception from stimulus features
remain poorly understood.

The present approach allows us to test the shared features (A1) and environmental conjunctions (A2)
hypotheses, assessing whether sensory brain areas represent conjunctions of features associated
with environmentally relevant stimuli such as emotion expressions, orwhether these areas represent
simple features that may be used by separate, downstream areas to infer emotion content.

Stimuli and experimental paradigm

The stimuli consisted of short pianomelodies and animations of a bouncing ball generated by partic-
ipants in a previous study. This study showed that emotions were expressed the same way in music
and inmovement in both theUSanda small-scale society in rural Cambodia (Sievers et al., 2013). The
participants used a computer program to create examples of five emotions (Angry, Happy, Peaceful,
Sad, Scared) by manipulating five stimulus features (speed, irregularity, consonance/spikiness, ratio
of big-to-small movements, ratio of upward-to-downward movements). Participants were split into
separate music andmovement groups, each of which had no knowledge of the other. This approach
did not presupposewhat combinations of featureswould be used for each emotion, and participants
were not instructed to use any specific features or feature combinations. Instead, they were encour-
aged to explore the entire possibility space. Critically, this method allowed us to vary what emotions
were communicated while holding the depicted objects constant (i.e., each emotion was communi-
cated using only the piano or the bouncing ball). This guaranteed that emotion content could only be
communicated by variation in stimulus features, and that processing requirements were consistent
across the stimulus set.

Note that this approach differs from previous research where emotion was communicated using nar-
rative stories or emotionally charged images; e.g., the International Affective Picture System (Lang,
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Bradley, & Cuthbert, 2008). Such studies often control for stimulus features, guaranteeing that emo-
tion judgments are based solely on the content depicted in the stimuli. For example, a study of per-
ceivedemotion in spokennarrativemight control for the speaker’s toneof voice, focusingonwhat the
speaker said, rather thanhow they said it. Thepresent study takes theopposite approach, controlling
for the content depicted in the stimuli, guaranteeing that participants’ emotion judgments are based
solely on variation in stimulus features. This is analogous to holding a speaker’s words constant, so
that emotion can only be communicated by tone of voice.

Becausemany emotions are perceived asmixes of other emotions (Cowen&Keltner, 2017), the stimu-
lus set was augmented by linearlymixing the features of each emotion pair, creatingmixed emotions
(e.g. Happy–Sad). Emotionsweremixed at 25%, 50%, and 75%. Three additional, “neutral” emotions
were identified by searching for points in the stimulus feature possibility space thatwere distant from
all other emotional feature combinations. For each set of stimulus features, or stimulus class, many
individual stimuli were probabilistically generated (see Detailed methods). This ensured the results
were not dependent on the idiosyncracies of single stimuli, but were instead generalizable to all stim-
uli that shared the same features. Further, this prevented participants frommemorizing arbitrary as-
sociations between individual stimuli and emotion labels. Music and animation werematched, such
that for each musical stimulus class there was an animation stimulus class with the same features.
This process yielded 76 total emotional stimulus classes, including both music and animation. All
stimuli are available at https://osf.io/kvbqm/.

A separate set of participants judgedhowwell each stimulus fit all five emotion labels, and a subset of
these participants viewedmany music and animation stimuli while undergoing functional magnetic
resonance imaging (fMRI) (Figure 1).
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Figure 1: Experimental paradigm. A. Participants in Sievers et al. (2013) manipulated stimulus features to generate music
and animation communicating five prototypical emotions: Angry, Happy, Peaceful, Sad, and Scared. B.Mixed emotions
were generated by linear interpolation between the stimulus features of prototypical emotions. C. Participants judged the
emotion content of many prototypical andmixed emotions in music and animation. D. A subset of participants viewed
many prototypical andmixed emotions in music and animation while undergoing jittered event-related fMRI scanning. E.
Results were analyzed using searchlight representational similarity analysis (Kriegeskorte et al., 2006, 2008; Kriegeskorte
& Kievit, 2013). For each searchlight sphere, the structure of the neural representational dissimilarity matrix (RDM) was
predicted using a linear combination of stimulus feature and emotion judgment RDMs.

Results

Emotion judgments

Participants broadly agreed about the emotion content of each stimulus class (Figure 2). Agreement
was assessedbymeasuring the distance of participants’ individual emotion judgments from the class
mean, scaled by the maximum possible distance, and significance was assessed using permutation
testing (seeDetailedmethods). For all 76 stimulus classes except one “neutral” emotion, participants’
judgments were closer to the class mean than would be expected by chance (mean t=-4.37; mean
difference from null=.07; mean p<.001). Importantly, this agreement rules out the possibility that
participants invented and thenmemorized arbitrary associations between combinations of stimulus
features and combinations of emotion labels.
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Figure 2: Emotion judgment agreement. Agreement between participants was assessed bymeasuring the distance of
participants’ individual emotion judgments from the class mean. Significance was assessed using permutation testing
(see Detailed methods). Values above 0 indicate more agreement than expected by chance.

Shared representational geometry

Auditory and visual brain regions shared a representational geometry. A single model of represen-
tational similarity (Kriegeskorte et al., 2006, 2008; Kriegeskorte & Kievit, 2013) explained patterns
of activity in visual brain regions during animation trials and auditory brain regions during music
trials, providing strong support for the separate regions, shared representations hypothesis (H1) (Fig-
ure 3; Table 1). The model used 10 representational dissimilarity matrices (RDMs) as predictors: five
based on the mean parameter settings used to create the stimuli (speed, irregularity/jitter, conso-
nance/spikiness, ratio of big-to-small movements, ratio of upward-to-downward movements), and
five based on the mean emotion judgments of the behavioral participants (Angry, Happy, Peaceful,
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Sad, andScared) (Figure 4). Themodel includedno information specific to either visionor audition.

Figure 3: Main result. Highlighted brain areas were identified using a model including both stimulus features and
emotion judgments as predictors, which was separately fit to animation trials (blue) andmusic trials (green). A significant
proportion of participants’ model fits overlapped for both trial types (yellow). Neural dissimilarity matrices show pairwise
distances between activity patterns evoked by each stimulus at the locations of best model fit (circled)—medial lingual
gyrus (animation) and lateral superior temporal gyrus (music). Labels as in Figure 4. Multidimensional scaling flattens
these matrices to two dimensions, so the distance between dots reflects the similarity of patterns of neural activity. Dots
are colored by mixing the legend colors based on participants’ judgments of the emotion content of each stimulus.

Figure 4: Representational dissimilarity matrices. Columns and rows share labels. “Biggest Gap,” “Search One”, and
“Search Four” are “neutral” emotions.

The peak of the average model fit across participants was in the left medial lingual gyrus for anima-
tion trials (mean𝑅2

𝑎𝑑𝑗=.15; 95%CI: .08–.21; t(19)=4.68; p=.005 corrected) and in right anterior superior
temporal gyrus for music trials (mean 𝑅2

𝑎𝑑𝑗=.15; 95% CI: .1–.2; t(19)=6.08; p=.01 corrected), (Figure 3).
Critically, a direct, model-free test of similarity between these areas showed that they were more
similar to each other than would be expected by chance (ρ=.68, p<.001), further supporting the sepa-
rate regions, shared representations hypothesis (H1), and making it unlikely that the results reported
above are an artifact of model misspecification (see Detailed methods).

Model fit was driven by both stimulus feature and emotion judgment predictors, and was not dom-
inated by a small number of predictors, providing support for both the simple features and environ-
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mental conjunctions hypotheses (A1 and A2). Individual predictors were assessed by mapping Spear-
man’s ρ across the brain. Spearman’s ρ was significant for all 10 predictors at the location of peak
model fit (Figure 5), and was distributed similarly across the brain (Figure S4). β weight maps for
each predictor were also calculated (Figure S5), reflecting only the unique contribution of each pre-
dictor, whereas Spearman’s ρ reflects both unique and shared contributions. See Figure S6 for an
assessment of model multicollinearity, including variance inflation factors for each predictor.

The model accounted for 51% of the variance for animation trials, and 31% of the variance for music
trials, relative to the lower bound of the noise ceiling (see Detailed methods). Note that because of
small differences in functional anatomy across participants, the peak of the averagemodel fit under-
estimates individualmodel fit. Themeanof the individual peakmodel fitswas in bilateral anterior su-
perior temporal gyrus for music trials (mean individual 𝑅2

𝑎𝑑𝑗=.26; 95% CI: .21–.31; t(19)=10.95; p<.001
uncorrected) and in the lingual gyrus for animation trials (mean individual 𝑅2

𝑎𝑑𝑗=.31; 95% CI: .24–.38;
t(19)=9.2; p<.001 uncorrected) (Figures S1 and S2).

Figure 5: Model fits. Maps of the mean coefficient of determination (𝑅2
𝑎𝑑𝑗) across participants. Maps thresholded at

FWER=.05. Box plots show the median, quartiles, and range of the per-participant 𝑅2
𝑎𝑑𝑗 values at the location of best

model fit at the group level. The dotted line indicates the lower bound of the noise ceiling, and the solid line the upper
bound. For per-parameter Spearman’s ρ and β weight maps, see Figures S4 and S5.

Overlapping auditory and visual model fit

Brain regionswheremusic and animationwere both representedwere found in bilateral posterior su-
perior temporal gyrus (pSTG) in 60%of participants (95%CI 36%–84%, p<.001 corrected), supporting
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the supramodal region hypothesis (H2) (Figure 6A; see Figure S3 for per-participant maps). To locate
such supramodal representations we created binary overlapmasks, selecting voxels where bothmu-
sic and animationmodel fits were significant at the individual level (permutation p<.05 uncorrected).
Multiple comparisons correction of these overlapmapswas performed at the group level, testing the
proportion of individualswith overlap in a region against the null hypothesis that no participants had
overlap in that region. Critically, this analysis is insensitive to themagnitude of𝑅2

𝑎𝑑𝑗 at the individual
level, allowing detection of overlapping signals that have lowmagnitude but reappear across a signif-
icant proportion of the participants. Themodel fit formusic trials was also significant at this location,
though the model fit for animation trials was not (music mean 𝑅2

𝑎𝑑𝑗=.03, 95% CI: .02–.05, t(19)=5.78,
p=.01 corrected; animation mean 𝑅2

𝑎𝑑𝑗=.03, 95% CI: .01–.05, t(19)=2.94, p=.13 corrected). The model
accounted for 26% of the variance for animation trials, and 31% of the variance for music trials, rela-
tive to the lower bound of the noise ceiling. Due to individual differences in functional anatomy, this
procedure underestimates the proportion of participants with supramodal representations.

Exploratory intermodal RSA

To find brain areas that represented stimuli presented in that area’s non-preferred modality, we per-
formedanexploratory intermodalRSA (seeDetailedmethods). IntermodalRSA revealedabilateral set
of areas across occipital, superior parietal, temporal, cingulate, and frontal cortex that represented
stimuli presented in their non-preferred modality (Figure 6B; Table 1). Note that some of these ar-
eas did not show significant unimodal model fit. Peak intermodal model fit was in left lingual gyrus
(mean𝑅2

𝑎𝑑𝑗=.28; 95%CI: .20–.37; t(19)=6.9; p<.001 corrected). Notably, the peak intermodalmodel fit
exceeded the peak within-modality model fit for both music and animation, and also exceeded the
lowerboundof thenoise ceiling, explaining40%of the variance relative to theupper bound. This sug-
gests intermodal activity in left lingual gyrus was dominated by representations of model features.
However, the lower bound of the intermodal noise ceiling was relatively low (.07), suggesting that
most reliable neural activity in this region was modality-specific.
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Figure 6: Results across modalities. A. Supramodal emotion in pSTG. Maps show the proportion of participants
representing emotion in music and animation in the same brain areas, thresholded at voxelwise FWER=.05. Box plots
show the median, quartiles, and range of 𝑅2

𝑎𝑑𝑗 for music and animation trials at the marked peak. B. Intermodal RSA
model fit. Maps show areas that represented emotional stimuli even when presented in the area’s non-preferredmodality
(see Detailedmethods), thresholded at voxelwise FWER=.05. 𝑅2

𝑎𝑑𝑗 values below .1 hidden for visual clarity. Box plot shows
the median, quartiles, and range of per-participant 𝑅2

𝑎𝑑𝑗 values at the marked peak. Dotted lines indicate the lower
bound of the noise ceiling, while solid lines indicate the upper bound.

Table 1: Peakmodel fits. Anim.: Model fit to animation trials. Music: Model fit to music trials. Overlap: Percentage of
participants with overlapping music and animation model fits. Inter.: Intermodal regions which fit the model even when
the stimulus was presented in the non-preferred modality. For results per model predictor, see Figures S4 and S5. Labels
determined programmatically using the atlas of Destrieux, Fischl, Dale, and Halgren (2010).

Analysis x, y, z Nearest atlas label (2010) 𝑅2
𝑎𝑑𝑗 % 95% CI p

Music 58, -2, -2 R Lateral aspect of the superior
temporal gyrus

.15 .10–.20 .011

Music -62, -16, 7 L Lateral aspect of the superior
temporal gyrus

.09 .05–.12 .011

Anim. 2, -88, -2 L Lingual gyrus, lingual part of the
medial occipito-temporal gyrus, (O5)

.15 .08–.21 .005

Anim. 46, -68, 1 R Inferior occipital gyrus (O3) and
sulcus

.04 .01–.07 .005

Anim. 22, -82, 31 R Superior occipital gyrus (O1) .03 .01–.06 .005

Overlap 64, -28, 22 R Supramarginal gyrus 60% .36–.84 < .001
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Analysis x, y, z Nearest atlas label (2010) 𝑅2
𝑎𝑑𝑗 % 95% CI p

Overlap -58, -34, 19 L Supramarginal gyrus 40% .16–.64 .008

Inter. 2, -88, -2 L Lingual gyrus, lingual part of the
medial occipito-temporal gyrus, (O5)

.28 .20–.37 < .001

Inter. 64, -28, 22 R Supramarginal gyrus .09 .06–.12 < .001

Inter. -56, -40, 22 L Planum temporale or temporal plane
of the superior temporal gyrus

.08 .05–.10 < .001

Inter. 32, -56, 61 R Superior parietal lobule (lateral part
of P1)

.07 .05–.09 < .001

Inter. -32, -56, 64 L Superior parietal lobule (lateral part
of P1)

.06 .04–.08 < .001

Inter. -16, -22, 40 L Marginal branch (or part) of the
cingulate sulcus

.05 .03–.07 < .001

Inter. -28, -58, -53 L Lateral occipito-temporal gyrus
(fusiform gyrus, O4-T4)

.04 .03–.06 < .001

Inter. -46, 44, 22 L Middle frontal gyrus (F2) .03 .02–.04 < .001

Inter. -4, 64, 22 L Superior frontal gyrus (F1) .03 .02–.04 < .001

Discussion

Music andmovement are subjectively linked, and both use similar features to communicate emotion
content. We examined a possible explanation for this link: that the brain representsmusic andmove-
ment using a shared representational geometry. To investigate this, we tested two primary hypothe-
ses. (H1) The separate regions, shared representationshypothesis, where separate auditory andvisual
regions use the same representational geometry; and (H2) the supramodal region hypothesis, where
some region(s) represent both auditory and visual stimuli. We also tested two auxiliary hypotheses.
(A1) The simple features hypothesis, where sensory areas represent individual stimulus features that
are not directly associated with emotion content; and (A2) the environmental conjunctions hypothe-
sis, where sensory areas represent conjunctions of features that directly track differences in emotion
judgment.

We found that brain activity in separate auditory and visual areas shared a representational geom-
etry, supporting the separate regions, shared representations hypothesis (H1). Providing additional
support for (H1), representations in auditory and visual brain areas were more similar to each other
than to any randomly chosen pair of brain areas. Further, music and animation were represented
in pSTG, suggesting the pSTG uses a supramodal representation, supporting the supramodal region
hypothesis (H2).

Stimulus feature predictors (speed, jitter, consonance/spikiness, ratio of upward-to-downward
movements, and ratio of big-to-small movements) were significant in both auditory and visual re-
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gions, supporting the simple features hypothesis (A1). A shared, crossmodal representation of simple
stimulus features would support downstream comparison of auditory and visual stimuli, including
inferential assessment of emotion content by, e.g., simulation theory (Gordon, 1986) or theory
theory (Gopnik & Wellman, 1994) systems. On such an account there may be nothing emotional
per se about representations in sensory brain regions. However, predictors based on participants’
emotion judgments were also significant in both auditory and visual regions, even when controlling
for the stimulus feature predictors, supporting the environmental conjunctions hypothesis (A2). On
this account, sensory regions represent conjunctions of task-relevant environmental features, such
as those associated with emotion expressions, supporting direct perception of social information
(Chemero, 2006; Gallagher, 2008).

Other possible parameters such as valence and arousal (Russell, 1980), value (Levy & Glimcher, 2012;
Shuster & Levy, 2018), Fourier features (Sievers et al., 2019), HMAX (Riesenhuber & Poggio, 1999), and
motion energy (Nishimoto et al., 2011) certainly covary with the stimulus feature and emotion judg-
ment predictors. Because these and similarmeasureswould be fully dependent on themodel param-
eters, including them as controls would introduce collinearity and create post-treatment bias. Iden-
tifying exactly how the features used in the reported model map to the true dimensions on which
emotion, audition, and vision are organized will require future research.

An exploratory intermodal representational similarity analysis found that visual areas represented
both stimulus feature and emotion judgment predictors whenmusical stimuli were presented. How-
ever, most reliable neural activity in these areas was modality-specific, as indicated by a low inter-
modal noise ceiling. Previous studies have shown multimodal processing in unimodal areas (for re-
views, see Bulkin & Groh, 2006; Ghazanfar & Schroeder, 2006; Kayser & Logothetis, 2007), whichmay
depend on projections between unimodal areas (Cappe&Barone, 2005; Falchier, Clavagnier, Barone,
& Kennedy, 2002; Rockland &Ojima, 2003). The reported results extend this account by showing that
crossmodal perception is the product not only of operations in association cortices or activity depen-
dent on inter-areal projections, but of the use of a representational geometry that is shared across
modalities.

The reported findings in pSTGare near previously reportedpSTS activationduring action understand-
ing (Beauchamp, Lee, Argall, & Martin, 2004; Wyk, Hudac, Carter, Sobel, & Pelphrey, 2009), emotion
perception (Kreifelts, Ethofer, Grodd, Erb, &Wildgruber, 2007; Robins, Hunyadi, & Schultz, 2009; Wat-
son et al., 2014), affective and linguistic prosody recognition (Belyk & Brown, 2014), and crossmodal
perception and recognition tasks (Werner & Noppeney, 2010; Wright, Pelphrey, Allison, McKeown, &
McCarthy, 2003). Interestingly, the reported resultswere right lateralized, similar to previous findings
on prosody recognition (Belyk &Brown, 2014). Damage to the pSTSdoes not impair voice recognition
(Jiahui et al., 2017), suggesting its representations are downstream from feature detectors. Along-
side these results, the reported findings are consistent with the hypothesis that the pSTG/pSTS acts
as a hub for transforming unimodal inputs into a common supramodal representation (Schirmer &
Adolphs, 2017).
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Evoked emotion

Althoughourparticipantsperceivedemotions inour stimuli, it is unlikely that our stimuli evokedemo-
tions inourparticipants. This disjunctionhighlights the complexand sometimesparadoxical relation-
ship between perceived and evoked emotion. For example, perceiving sadness in music can evoke
feelings of romance or pleasure (Kawakami, Furukawa, Katahira, & Okanoya, 2013). The gap between
perception and feeling has been theorized in terms of direct versus vicarious emotions (Kawakami et
al., 2013), and in terms of emotion modules serving complementary functions (Gelstein et al., 2011;
Mehr, Krasnow, Bryant, &Hagen, 2020). Another possibility is that perceptual representations of stim-
ulus features and emotion content interact with regions that produce context-sensitive appraisals
and emotion experiences, such as those identified by Skerry & Saxe (2015), and subcortical regions
sensitive toemotioncontent, including theamygdala (Wangetal., 2014). Activationof theseappraisal
and experience-related regions may not be necessary for making simple judgments of emotion con-
tent from stimulus features, possibly accounting for their absence in our results.

However, perceptual representations of emotion may also be linked to evoked emotions. Saarimäki
et al. (2018) showed that emotions evoked by listening to short stories produced activity in visual
cortex, suggesting that evoked emotions can activate associated sensory representations. This may
be a special case of the more general principle that mental imagery and episodic memory depend
in part on activity in sensory regions associated with similar experiences (Wheeler, Petersen, & Buck-
ner, 2000). Accordingly, perceptual representations of emotion content may form over development
in a process similar to memory consolidation. This developmental process may be guided by lan-
guage, supporting culture-specific particularity (Barrett, Lindquist, & Gendron, 2007; Hoemann, Xu,
& Barrett, 2019). Activation of perceptual representations of emotion by imagined emotion experi-
ence could play an important role in art and music by allowing artists and composers to iteratively
check whether their artistic products correspond with their perceptual representations.

Systematicity, iconicity, and conceptual scope

The neural representational system identified here is likely involved in phenomena beyond emotion
perception, raising an interesting question: What concepts can and cannot be communicated via
combinations of crossmodal stimulus features? If feature combinations in music and movement are
symbolic, like words in natural language, then we would expect stimulus feature combinations that
refer to abstract, non-emotional concepts. Just as arbitrary sequences of phonemes canpoint to “the
housing market” or “editorial policy,” arbitrary combinations of stimulus features should be able to
do the same.

But, strikingly, music and movement do not operate wholly on an arbitrary, symbolic basis. Music
and movement systematically use variation in the magnitudes of stimulus features to communicate
variation in the magnitudes of concepts which the stimulus iconically resembles (Sievers et al., 2019,
2013; Spector & Maurer, 2009). For example, participants in the present study perceived mixes of
the features for “happy” and the features for “sad” as expressing emotions on a continuum between
happiness and sadness, with this pattern generalizing across emotion pairs. The present results sug-
gest this systematicmixing ismadepossible in part by a crossmodally sharedneural representational
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geometry.

The systematic and iconic properties of musical communication may partially account for its use in
expressing emotion, even across different cultural contexts. For example, the stimulus generator for
the present study was previously used to show that the same combinations of music andmovement
features express the same emotions in both the United States and a small-scale society in rural Cam-
bodia (Sievers et al., 2013). It may be that the forms of emotional music and movement are fixed by
iconic, functional relationships that are shared across cultures (Mehr et al., 2020, p. @Sievers2021).
This may be why lullabies are slow and consonant across a global sample of ethnographic reports
and recordings (Mehr et al., 2019), and why high emotional arousal is expressed using harsh sound-
ing, high spectral centroid sounds even across species of terrestrial vertebrates (Filippi et al., 2017).

Music,movement, and crossmodal neural representationsmaybewell-suited to communicate iconic
concepts that vary in magnitude, whereas language may be well-suited to communicate symbolic
concepts that vary in kind. Similarly, it may be that iconic communication tends to generalize across
cultures while symbolic communication tends to be more culture-specific. For example, previous
research has shown cross-cultural generalization of valence perception but not categorical emotion
(Gendron et al., 2014) (though categorical emotions can also be shared across cultures (Parkinson,
Walker, Memmi, &Wheatley, 2017)). Further, musical narrative built from contrasting sets of stimulus
features (Margulis, 2017) shows large cross-cultural variability in interpretation (Margulis et al., 2019),
unlike the present stimuli (Sievers et al., 2013) which contained no such contrasts.

Importantly, the present study did not test any hypotheses across cultures. Future researchwill need
to explore broad areas of concept space across many cultures, collect free responses from partici-
pants, characterize culture-specific emotion concepts, and contrast concepts that vary inmagnitude
with concepts that vary in kind.

Direct perception

The results support the environmental conjunctions hypothesis (A2), that sensory brain regions repre-
sent task-relevant combinations of stimulus features, reducing the need for downstream inferential
processing andacting as a shortcut formaking important judgments. These representationsmaypro-
vide a neural basis for the direct perception of social information (Chemero, 2006; Gallagher, 2008)—
exemplified here by emotion judgment, and potentially covering a range of other phenomena. Im-
portantly, the simple features hypothesis (A1) was also supported, suggesting that direct perception
and inferential processing systems coexist andmay interact.

Without contextualizing narrative, judgments of emotion content inmusic andmovement dependon
configurations of stimulus features (Sievers et al., 2019, 2013) inmuch the sameway that the solution
to apuzzle dependson the configurationof thepieces. In otherwords, stimulus features andemotion
judgments are naturally confounded. The crux of the environmental conjunctions hypothesis (A2) is
that any combination of features that is sufficiently confounded with a target is useful for identifying
that target. We argue that the brain uses such natural confounds as a shortcut to make task-relevant
judgments: if sensory regions represent feature combinations that are perfectly confounded with a
target’s identity, downstream inferential processing may not be necessary to identify the target.
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In demonstrating support for the environmental conjunctions hypothesis (A2), we do not mean to
suggest that sensory brain areas alone support purely conceptual, symbolic, or cognitive labeling
of emotions. Previous studies using context-dependent and narrative stimuli have demonstrated
the importance of inferential processing for emotion perception (Barrett, Mesquita, & Gendron, 2011;
Skerry & Saxe, 2015). Further, inferential processing may play a role in the gradual tuning of per-
ceptual systems for direct perception across development. Simple adaptations for perceiving cross-
sensory magnitude or position information (Deneux et al., 2019; Murphy et al., 2020) or for adaptive
signalling (Hebets et al., 2016; Huron, 2012; Johnstone, 1996, 1997) may work in concert with learn-
ing (Clark, 2013; Kok, Brouwer, Gerven, & Lange, 2013; Lange, Heilbron, & Kok, 2018; Saffran, Aslin,
& Newport, 1996), language (Hoemann et al., 2019), and cultural evolution (Laland, Odling-Smee,
& Feldman, 2000) processes to support the development of task-relevant representations. This ar-
rangement could flexibly accommodate culture-specific emotion concepts and display rules (Jack et
al., 2012, 2016; Yuki et al., 2007).

Such tuningof sensory representations to the featuresused tocommunicateandcategorizeemotions
shows that the need to identify such signals has exerted a profound shaping force on perceptual pro-
cesses. We do not see or hear the actions of others as raw sense impressions first, later decode their
conceptual content, and finallymake an abstract emotion judgment. Rather, we begin accumulating
evidence for emotion judgments from the lowest levels of sensory processing.

Acknowledgements

We thank Sam Nasatase, Matteo Visconti di Oleggio Castello, J. Swaroop Guntupalli, and Joshua
Greene for helpful comments during the writing process, and Paulina Calcaterra, Rebecca Drapkin,
Caitlyn Lee, Elizabeth Reynolds, Tshibambe Nathanael Tshimbombu, and Kelsey Wheeler for assis-
tance collecting fMRI data. This research was supported in part by the Nelson A. Rockefeller Center
for Public Policy at Dartmouth, the John Templeton Foundation, the Neukom Institute for Compu-
tational Science, the Vision Science to Applications (VISTA) program funded by the Canada First Re-
search Excellence Fund (CFREF, 2016–2023) and by the Natural Sciences and Engineering Research
Council of Canada.

Author contributions

B. Sievers: Conceptualization, data curation, formal analysis, funding acquisition, investigation,
methodology, project administration, software, vizualization, writing - original draft, review & edit-
ing. C. Parkinson: Investigation, methodology, writing - review & editing. P.J. Kohler: Methodology,
writing - review & editing. J.M. Hughes: Methodology, writing - review & editing. S.V. Fogelson:
Methodology, writing - review & editing. T. Wheatley: Conceptualization, funding acquisition,
resources, supervision, writing - review & editing. Roles defined by the Contributor Roles Taxonomy,
available at https://casrai.org/credit/

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 13, 2021. ; https://doi.org/10.1101/254961doi: bioRxiv preprint 

https://doi.org/10.1101/254961
http://creativecommons.org/licenses/by/4.0/


Detailedmethods

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead
contact, Thalia Wheatley (thalia.p.wheatley@dartmouth.edu).

Materials availability

Stimuli have been deposited to osf.io (Sievers, 2021).

Data and code availability

De-identified fMRI data have been deposited toOpenNeuro (Sievers et al., 2021). All original code has
been deposited to osf.io (Sievers, 2021). Any additional information required to reanalyze the data
reported in this paper is available from the lead contact upon request.

Experimental model and subject details

79 participants (47 female) were recruited from the Dartmouth College student community to partic-
ipate in the emotion evaluation task (experiment 1). 20 of these participants (11 female) also partic-
ipated in the fMRI of emotion viewing task (experiment 2). All fMRI participants were right-handed
and had normal or corrected-to-normal vision. All participants provided written informed consent,
and the study was approved by the Dartmouth College Committee for the Protection of Human Sub-
jects.

Method details

Stimuli Emotion stimuli were generated using a model developed for a prior study (Sievers et al.,
2013) that used movement across a number line to create both music (simple piano melodies) and
animated movement (a bouncing ball). The model had five stimulus feature parameters: speed,
irregularity/jitter, consonance/spikiness, ratio of big-to-small movements, and ratio of upward-to-
downward movements. Each time the model was run, it probabilistically generated a new stimulus
based on its current parameter settings. Participants in Sievers et al. (2013) (music N=25; movement
N=25; total N=50) used this model to communicate five prototype emotions: Angry, Happy, Peaceful,
Sad, and Scared. Critically, participants were split into separate music and movement groups, each
of which had no knowledge of the other. Participants chose similar music andmovement parameter
settings for each emotion acrossmodalities, showing thatmusic andmovement share an underlying
structure. Themedian parameter settings acrossmusic andmovement from theUnited States partic-
ipants in Sievers et al. (2013) were used to generate the stimuli used in the present studies. All stimuli
are available at https://osf.io/kvbqm/.
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In addition to the prototype emotions, mixed emotion stimuli were created by interpolating linearly
between the parameter settings for each prototype emotion pair; 25%, 50%, and 75% mixes were
used. We also added three putatively “neutral” or “non-emotional” parameter settings that were
selected to be distant from all other stimuli. “Search One” and “Search Four” were selected by a
Monte Carlo search algorithm, and consisted of extreme values for all five parameters. “Biggest Gap”
was created by selecting the midpoint of the largest gap between the five prototype emotions and
the stimulus feature parameter endpoints.

For each prototype,mixed, and “non-emotional” parameter setting in eachmodality, we probabilisti-
cally generated 20 exemplars, for a total of 1,520 stimuli (38 emotions x 2 modalities x 20 exemplars).
To eliminate the possibility of generating unusual outlier stimuli, each candidate exemplar was com-
pared to a larger, separate sample of 5000 same-emotion exemplars, and was re-generated if found
to be further than one standard deviation from the emotionmean along any parameter.

Experiment 1 (emotion evaluation) Participants (N=79, 47 female) evaluated the emotion content
of the stimuli. Stimuliwere presentedusing a computer programdevelopedusingMax/MSP version 5
(Zicarelli, 1998) that displayed five slider bars, one for each emotion prototype (Angry, Happy, Peace-
ful, Sad, andScared). The on-screenorder of slider bars and emotion stimuliwere randomized across
participants. Participants viewedor listened to each stimulus at least three times, andwere asked “to
evaluate the amount or intensity of emotion expressed by themusic or animation by positioning the
slider bars.”

Experiment 2 (fMRI of emotion viewing) During each fMRI run, participants (N=20, 11 female)
viewed 18 randomly selected exemplars from each of the 76 stimulus classes described above.
Each stimulus class was shown once per run, and participants completed 18 runs across 3 separate
scanning sessions (~3 hours of scan time, 1,368 stimulus impressions). Each scan session was
scheduled for approximately the same time of day, and no more than one week elapsed between
scan sessions.

Stimuliwere truncated to3s indurationand followedby fixationperiodsof randomlyvaryingduration
(range: 0.5s–20s). The ratio of stimulus presentation to fixationwas 1:1. A Monte Carlo procedurewas
used to select separate, optimized stimulus presentation orderings and timings for each participant.
This procedure used AFNI make_random_timing.py to generate thousands of possible stimulus
timings, and AFNI 3dDeconvolve to select the timings that best supported deconvolving unique
patterns of brain activity for each stimulus. Stimuli were presented using PsychoPy version 1.84.2
(Peirce, 2007). Participants were instructed to attend to the emotion content of the stimuli. During
randomly interspersed catch trials (10 per run), participants used a button box to rate on a four-point
scale whether the most recently presented stimulus had emotion content that was “more mixed” or
“more pure.” To ensure familiarity with the stimuli, all fMRI participants had previously completed
the emotion evaluation task.

fMRI acquisition Participants were scanned at the Dartmouth Brain Imaging Center using a 3T
Phillips Achieva Intera scanner with a 32-channel head coil. Functional images were acquired using
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anecho-planar sequence (35msTE, 3000msTR;90° flip angle; 3x3x3mmresolution)with 192dynamic
scans per run. A high resolution T1-weighted anatomical scan (3.7ms TE; 8200msTR; .938x.938x1mm
resolution) was acquired at the end of each scanning session. Soundwas delivered using an over-ear
headphone system. Foam padding was placed around participants’ heads to minimize motion.

fMRIpreprocessing Anatomical imageswere skull-strippedandaligned to the last TRof the last EPI
image using AFNIalign_epi_anat.py. EPI imagesweremotion corrected and aligned to the last
TR of the last EPI image using AFNI 3dvolreg. Rigid body transformations for aligning participants’
anatomical and EPI images to the AFNI version of the MNI 152 ICBM template were calculated using
AFNI @auto_tlrc. Alignment transformations were concatenated and applied in a single step us-
ing AFNI 3dAllineate. EPI images were scaled to show percent signal change and concatenated.
EPI images were not smoothed. TRs where inter-TR motion exceeded a euclidean norm threshold of
.3 were censored, along with the immediately preceding TR. The general linear model was used to
estimate BOLD-responses evoked by each of the 76 emotional stimulus classes using AFNI 3dREML-
fit. All six demeaned motion parameters as well as polynomial trends were included as regressors
of no interest.

Quantification and statistical analysis

Posthocpoweranalysis Because thepresent study is the first touse the reportedparadigm,wedid
not conduct an a priori/prospective power analysis. Because accurate assessment of effect size is im-
possible without stable patterns, we prioritized having a large number of fMRI trials per participant.
The number of trials per stimulus class per participant was determined by consulting studies that
used similar analysismethods (MVPA/RSA). E.g., Peelen et al. (2010) used 12 trials per class per partici-
pant for 18participants, Kimetal. (2017) used 10 trials per classperparticipant for 20participants, and
the present study used 18 trials per class per participant for 20 participants. A post hoc/retrospective
power analysis using G*Power 3.1 (Faul, Erdfelder, Lang, & Buchner, 2007) showed that this provided
85% power for music trials and 99% power for animation trials for the effects reported in Figure 3.

Representational similarity analysis Representational similarity analysis (RSA) (Kriegeskorte
et al., 2006, 2008) was conducted using PyMVPA (Hanke et al., 2009), Scikit-Learn (Pedregosa
et al., 2012), NumPy (Oliphant, 2006), and SciPy (Jones, Oliphant, & Peterson, 2001). Stimulus
feature representational distance matrices (RDMs) for each parameter (speed, irregularity/jitter,
consonance/spikiness, ratio of big-to-small movements, ratio of upward-to-downward movements)
were created by aggregating the Euclidean distances between the mean slider bar settings for each
pair of emotions, including mixed emotions. Both music and animation stimuli were created using
the same slider bar settings for each emotion, making it unnecessary to create modality-specific
feature RDMs. Emotion RDMs were created by aggregating the Euclidean distances between the
mean of each emotion judgment parameter in experiment 1 (Angry, Happy, Peaceful, Sad, and
Scared) for each pair of emotions, including mixed emotions. Emotion judgments were averaged
across music and animation, making it unnecessary to create modality-specific emotion judgment
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RDMs. Intermodal RDMs were built by calculating the full multi-modality RDM including both music
and animation stimuli and selecting its lower-left square region (Figure 6B).

Representational similarity analysis was conducted separately for music trials, animation trials, and
(for the intermodal analysis) music and animation trials together. Each analysis used a spherical
searchlight with a 3-voxel (9mm) radius. In each searchlight sphere, music and animation neural
RDMs were created by aggregating the ranked correlation distances (1-Spearman’s ρ) between the
estimated stimulus-evoked pattern of BOLD activation for each emotion. The use of correlation dis-
tance ensured that the analysis would not mistake differences in the mean level of BOLD activity
across music and animation trials for differences in representational similarity. Intermodal neural
RDMs were created as described above, using neural data instead of stimulus features or emotion
judgments (Figure 6B). The fit of the model to stimulus-evoked patterns of BOLD activation was as-
sessed using multiple regression, with the ranked model RDMs as predictors and the neural RDM as
the target. This produced coefficient of determination (𝑅2) and β weight maps for each participant
and each analysis. 𝑅2 values were adjusted using a permutation approach (similar to that of Peres-
Neto, Legendre, Dray, & Borcard, 2006): Multiple regression was performed an additional 1000 times
with randomly selected permutations of each predictor, and the mean 𝑅2 from this null distribution
was subtracted from the reported 𝑅2 values (𝑅2

𝑎𝑑𝑗). Multiple regression β weights reflect only the
unique contribution of each predictor, resulting in β weight maps that do not reflect the shared con-
tributions of correlated predictors. To assess the contribution of individual predictors we calculated
the ranked correlation (Spearman’s ρ) of each predictor to the neural RDM.

All group-level statistics (including 𝑅2
𝑎𝑑𝑗, β weights, Spearman’s ρ, p-values, and any other values

reported unless otherwise noted) were corrected for multiple comparisons using amaximum cluster
mass sign-flipping permutation test performed with FSL randomise (Jenkinson, Beckmann,
Behrens, Woolrich, & Smith, 2012; Nichols & Holmes, 2001), with a cluster-determining threshold of
p=.01 and a family-wise error rate of .05.

Intermodal RSA Intermodal RSA differed from the RSA analysis described above in that both the
neural target RDM and the predictor RDMs used only between-modality distances, corresponding to
the lower-left square region of the larger triangular RDM created using stimuli from both modalities
(Figure 6B). If activity in a brain areawas unrelated to stimuli presented in its non-preferredmodality,
then the intermodal neural RDM should be uncorrelated with the intermodal model RDMs. However,
if a brain areawas evenweakly representing emotion content acrossmodalities, then the intermodal
neural RDM should be correlated with the intermodal model RDMs. Note that because this analysis
only considered between-modality distances, it could not in principle have identified any modality-
specific activity.

Model-free similarity analysis To rule out the possibility that the identified brain regions were a
good fit for the stimulus features and emotion judgments in the reported model, but did not truly
share a representational geometry (i.e., were not directly similar to each other), we performed a per-
mutation test of inter-region representational similarity. This test assessed whether the representa-
tions at the locations of peakmodel fit weremore similar than representations at randomly selected
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locations. Analogously, the claim “San Francisco and Oakland are close to each other,” is weaker
than the claim “San Francisco and Oakland are closer to each other than 95% of all pairs of American
cities.” To build a null distribution, we randomly selected 2000 pairs of coordinates in the right hemi-
sphere of the brain. For each coordinate pair, wemeasured the ranked correlation (Spearman’s ρ) of
the mean neural RDM for music trials at the first coordinate and the mean neural RDM for animation
trials at the second coordinate. The mean inter-region similarity in the null distribution was ρ=-.007,
whereas the inter-region similarity at the locations of peakmodel fit was ρ=.68 (p<.001), more similar
than any pair of coordinates in the null distribution.

Noise ceiling The upper and lower bounds of the noise ceiling were calculated using an approach
based on Nili et al. (2014), but adapted for use with multiple regression. The approach described by
Nili et al. (2014) depends on a simple principle: for any dataset, themodel that accounts for themost
variance in the datawill always be derived from the data itself. For correlation, this best-fittingmodel
is the mean of the data. Given measurement error and individual differences across the dataset, no
model could possibly outperform the mean, and so the model fit of the mean establishes a ceiling
against which other models can be usefully compared. Analogously, for a multiple regressionmodel
with n predictors, the best-fittingmodel is themean of the data alongwith the top n predictors identi-
fied using principal component analysis (PCA). Nomultiple regression model with the same number
of predictors could possibly outperform this mean-and-PCA model. In the present study, the upper
bound of the noise ceiling was calculated at each searchlight center by performing amultiple regres-
sion analysis that used themean neural RDM and the top 10 principal components of the neural RDM
as predictors. The lower bound of the noise ceiling was calculated using a leave-one-subject-out
cross-validation approach: For each subject, the same multiple regression procedure was applied,
but themean neural RDM and the top 10 principal components were calculated with that subject left
out.

Overlapmaps Overlapmapswerecreated foreachparticipantby identifyingvoxelswherebothmu-
sic and animationmodel fitswere significant at the individual level (permutation p<.05, uncorrected).
Overlapmapswere set to 1 if bothmodel fits were significant, and 0 otherwise. Multiple comparisons
correction of the overlap maps was performed at the group level (CDT=.01; FWER p=.05; see below),
testing the proportion of individuals that showed overlap in a region against the null hypothesis that
no participants showed overlap in that region.

Multiple comparisons correction Group level maps were calculated and corrected for multiple
comparisons using amaximumclustermass sign-flipping permutation test FSLrandomise (Jenkin-
son et al., 2012; Nichols & Holmes, 2001) (cluster-determining threshold p=.01; family-wise error rate
p=.05). Tests for𝑅2

𝑎𝑑𝑗 were 1-sided. Tests for βweights and Spearman’s ρwere two-sided. Mapswere
visualized using Nilearn (Abraham et al., 2014) and AFNI SUMA (Saad, Reynolds, Argall, Japee, & Cox,
2004).

Emotion judgments permutation procedure For each emotion, we averaged participants’ emo-
tion judgment ratings, yielding a class mean. We then calculated the Euclidean distance of each indi-
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vidual judgment to thismean, scaled by themaximumpossible distance (determined by the limits of
each slider), yielding a distribution of scaled distances to themean for each stimulus class. A null dis-
tribution of scaled distances to the class means was created by applying this procedure 2000 times,
eachwith a different permutation of the emotion labels over thewhole dataset. Welch’s independent
samples t-test was applied to test whether the observed distributions of scaled distances to class
means differed from the null. This approach was chosen because it accounts for the simultaneous
use of five rating scales and conservatively respects the dependency structure of the data.
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