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Abstract

Motivation: RNA virus populations contain closely related but different viral strains infecting an individual
host. As the selection acts on clouds of mutants rather than single sequences, these viruses have abilities
to escape host immune responses or develop drug resistance. Reconstruction of the viral haplotypes is a
fundamental step to characterize the virus population, predict their viral phenotypes, and finally provide
important information for clinical treatment and prevention. Advances of the next-generation sequencing
technologies open up new opportunities to assemble full-length haplotypes. However, error-prone short
reads, high similarity between related strains, unknown number of haplotypes pose computational
challenges for reference-free haplotype reconstruction. There is still big room to improve the performance
of existing haplotype assembly tools.
Results: In this work, we developed a de novo haplotype reconstruction tool PEHaplo for viral quasispecies
data, which contains a group of related but different viral strains. PEHaplo employs paired-end reads
to distinguish highly similar strains. We applied it to both simulated and real quasispecies data, and
the results were benchmarked against several recently published haplotype reconstruction tools. The
comparison shows that PEHaplo outperforms the benchmarked tools in a comprehensive set of metrics.
Availability: The source code and the documentation of PEHaplo is available at
https://github.com/chjiao/PEHaplo.
Contact: yannisun@msu.edu

1 Introduction
High mutation rate, nature selections, and recombination can lead to
high genetic diversity of RNA virus populations (Domingo-Calap et al.,
2016), which consist of closely related but different viral strains. These
groups of virus populations are often termed as viral quasispecies (Nowak,
2006). Each strain in quasispecies is defined by its haplotype sequence.
Commonly known examples of the fast mutating viruses include clinically
important viruses such as human immunodeficiency virus (HIV-1) and
the hepatitis C virus (HCV). The genetic heterogeneity of the virus
populations is key to their adaptive behavior. As the selection works
on a set of sequences rather than one, high genetic diversity gives the
viruses the abilities to escape host immune responses or develop drug
resistance. Reconstruction of the viral haplotypes is a fundamental step to
characterize the structure of the virus populations, predict viral phenotypes,
and finally provide important information for clinical treatment and
prevention (Schirmer et al., 2012).

Development of next-generation sequencing technologies sheds light
on characterizing the haplotypes and their abundance in heterogeneous
virus populations. The deep sequencing of virus population samples
becomes available and various methods and tools have been developed
for viral haplotype reconstruction (Baaijens et al., 2017). The methods
can be divided into two groups based on their dependency on a reference
genome (Beerenwinkel et al., 2012). The first group of methods need
reference genomes and employ read alignments against the reference
sequence to infer haplotypes. However, due to the high mutation rate, high
quality reference genomes of a virus population are not always available.
In particular, for emerging infectious viral diseases such as SARS that
lack reference genomes during the breakout, reference-based methods are
not plausible. The second group of methods belong to de novo haplotype
reconstruction, which do not require reference genomes. This type of
method can be applied to characterize new viral strains or novel haplotypes.
Our work belongs to the second group.

A recent review of chosen haplotype reconstruction tools has
shown that haplotype recovery is a computationally challenging
problem (Schirmer et al., 2012). The authors’ benchmarking results on
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a series of data demonstrated that the performance of the tested programs
is poor when sequence divergence is low. In addition, these programs failed
to recover rare haplotypes. Thus, there is a need for new methods and tools
for more accurate haplotype reconstruction.

The tested programs in the review (Schirmer et al., 2012) all belong
to group 1, which need alignments against a reference sequence as
input. Without using a reference sequence, our method of haplotype
reconstruction from deep sequencing data takes a method similar to de novo
genome assembly. Applying assembly to viral haplotype reconstruction
faces several challenges. The first challenge is to distinguish highly similar
genomes of different strains. Figure S2 in the Supplementary Materials
presents a partial multiple alignment of five haplotypes in a mixed HIV
sample, showing the high sequence similarity between the genomes
of interest. Existing assembly methods tend to produce either short or
chimeric contigs for deep sequencing data containing highly similar
genomes. Second, it is difficult to distinguish sequencing errors from
mutations of a rare haplotype. Third, reads originating from haplotypes
of low abundance tend to have small overlaps and thus only fragments of
haplotypes can be reconstructed.

1.1 Related work

There exist a number of metagenomic assembly tools that could be applied
to assemble viral genomes in quasispecies data (Namiki et al., 2012;
Treangen et al., 2013; Laserson et al., 2011; Peng et al., 2011; Luo et al.,
2012; Salzberg et al., 2008; Wu et al., 2012). However, these assembly
tools are not designed to distinguish different haplotypes and only produce
fragmented or chimeric contigs.

There are a group of tools designed specifically for haplotype
reconstruction (Zagordi et al., 2011; Malhotra et al., 2013; Prabhakaran
et al., 2010; Töpfer et al., 2013; Prosperi and Salemi, 2012; Astrovskaya
et al., 2011; T O’Neil and Emrich, 2012; Huang et al., 2011). Of them,
HaploClique (Töpfer et al., 2014), SAVAGE (Baaijens et al., 2017),
and MLEHaplo (Malhotra et al., 2015) were recently published and are
highly related to ours. Like our work, all of them utilized paired-end
reads. HaploClique uses the insert size distribution for detection of large
indels. However, it needs a reference sequence for generating alignment
graphs. HaploClique provides a source of inspiration for SAVAGE, which
is the first tool for de novo assembly of viral haplotypes using overlap
graphs. SAVAGE also took advantage of paired-end reads and merge
short reads using cliques. The authors benchmarked SAVAGE with other
virus assembly tools and showed that SAVAGE outperformed other tools
in a comprehensive set of assembly metrics. MLEHaplo also explicitly
employs paired-end reads for finding top-score paths. MLEHaplo and
our method are based on two different graph models: de Bruijn graph
and overlap graph. Thus, different error correction and graph pruning
techniques are applied. In addition, during path finding, we carefully
distinguish paired-end connections formed by different types of nodes
in order to improve the accuracy of the chosen paths. As we focus on de
novo assembly tools, we will benchmark our work against SAVAGE and
MLEHaplo.

In this work, we designed and implemented PEHaplo, which assembles
viral haplotypes from deep sequencing data. Sequence assembly has
been an intensive research area and new methods or implementations are
emerging quickly. We created a novel overlap graph incorporating paired-
end reads information. The paired-end information is utilized in both graph
pruning, path finding, and contig refinement. We applied PEHaplo to both
simulated and real viral deep sequencing data and compared the assembly
performance with the recently published tools. The experimental results
show that PEHaplo can recover viral haplotypes with longer contigs and
higher accuracy.

2 Methods
A major challenge for viral haplotype reconstruction is the high sequence
similarity between viral strains. In particular, the distribution of the
mutations/insertions/deletions largely determines the difficulty levels
of the problem. Here, we use LCS (longest common substring) to
refer to the longest common substring between any two neighboring
mutations/insertions/deletions. Depending on the size of the LCS, we have
three cases as shown in Figure 1.

• If LCS size≤ read size, haplotype reconstruction can be solved based
on read overlaps (Figure 1 (A)).

• If LCS size≥ read size but≤ insert size, paired-end reads are able to
distinguish different haplotypes (Figure 1 (B)).

• If LCS size ≥ insert size, coverage information can be utilized to
distinguish haplotypes of different abundance (Figure 1 (C)).

In order to classify viral haplotype reconstruction problems in the
above three cases, it is ideal to know the LCS distributions inside
each quasispecies. While the insert size can be estimated for different
sequencing platforms, it is not feasible to empirically obtain all viral
strains and compute the sizes of their LCSs. We thus rely on quasispecies
theory (Nowak, 2006) for estimating the LCS sizes using an average viral
mutation rate. The detailed method and also the generated distribution of
LCSs can be found in Supplementary Materials Section 1.

According to our computed LCS distribution, the LCS sizes span all
three cases in Figure 1. Thus, our methods use three types of information
for virus assembly. 1) Paired-end reads. As paired-end reads are sequenced
from the same fragment, they thus belong to the same haplotype. 2):
Coverage. If two strains have highly different coverages, they can be
distinguished using coverage information. 3): Enumeration of cliques.
Reads forming cliques in the overlap graph tend to come from the same
haplotype and thus can be merged as a super-read. This process can
be iteratively applied to extend local haplotype to global one and is an
important component of several recently published tools (Töpfer et al.,
2014; Malhotra et al., 2015; Baaijens et al., 2017). Although paired-end
reads have been employed in haplotype reconstruction previously, they
were not carefully elaborated and analyzed. We conducted a deep analysis
of the utility and limitations of using paired-end reads for haplotype
reconstruction.

The remainder of the Methods Section is organized as follows. We
will first introduce the paired-end overlap graph and the key idea of path
finding using paired-end reads. Then we will show the complete pipeline
and describe the major components.
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Fig. 1. Distinguishing two haplotypes with different LCS (longest common substring) sizes.
In panel B, P1 and P2 represent the ends of a read pair. The problem becomes harder with
increase of the LCS size.

2.1 Paired-end overlap graph and path finding

An overlap graph G(V,E) is a weighted directed graph that reflects
overlaps between reads. Each node v ∈ V represents a read. An overlap
between two reads is formed if the suffix of a read matches the prefix of
another read. Given any two reads r1, r2, and an overlap threshold l, if
the overlap size between r1 and r2 is greater than l, a directed edge is

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted January 28, 2018. ; https://doi.org/10.1101/254987doi: bioRxiv preprint 

https://doi.org/10.1101/254987
http://creativecommons.org/licenses/by-nc-nd/4.0/


“pehaplo_manuscript_bioxiv” — 2018/1/26 — page 3 — #3

De novo viral haplotype reconstruction 3

added from the nodes representing r1 and r2 inG. The edge weight is the
overlap size.

In our method, we constructed a paired-end overlap graph (PE_G),
which adds information from paired end reads to a standard overlap graph.
PE_G has the same node set as an overlap graph but it has two sets of edges.
One set of edges are inherited from a standard overlap graph. The other
set of edges connect nodes whose reads form paired-end reads. Intuitively,
while an overlap graph records the connectivity between reads, PE_G also
records the number of paired-end reads between nodes. Thus, PE_G can
be defined asG(V,E,E′), whereE is the same as in an overlap graph. If
two reads form a paired-end read pair, an edge in setE′ is created between
the corresponding nodes.

Figure 2 shows an example of paired-end overlap graph. Figure 2(A)
contains two strains with only two mutations and also the reads sequenced
from them. The overlap threshold is set as half of the read size. The paired-
end overlap graph PE_G is constructed using the reads and is shown in
(B). The edges in E are shown using solid lines while the edges in E′ are
shown using dashed lines. Nodes a.1 and a.2 are a read pair and thus form
an edge in E′. Similarly, nodes d.1 and d.2 have an edge in E′ because
d.1 and d.2 are a read pair.

In the graph, there are four complete paths: a.1 → b → c → e →
f → a.2, a.1 → b → c → e → f → d.2, d.1 → b → c → e →
f → a.2, and d.1→ b→ c→ e→ f → a.2. The goal of assembly is
to output the two correct paths (i.e. a.1 to a.2 and d.1 to d.2). The edges
in E′ will guide the extension of a path that is composed of edges in E.
Specifically, for a path starting with a.1, it will decide whether to extend
to a.2 or d.2 at node f. The dashed edges in E′ (a.1 → a.2) will guide
the path to the correct node a.2. Similarly, a path starting with d.1 will
end with d.2 based on the guidance of the dashed edge d.1→ d.2. Thus,
the path finding using the paired-end information will output two paths,
representing the two haplotypes.
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Fig. 2. (A) The bottom two long lines represent two haplotypes, which only differ by two
mutations at two loci (G-C and A-G). Short lines represent reads sequenced from the two
strains. The reads are sorted by their read mapping positions against their native strain. a.1
and a.2 are a read pair from the thick strain. d.1 and d.2 are the read pair from the thin strain.
(B) Paired-end overlap graph. Nodes b, c, e, and f originate from the common region of the
two strains. The dashed lines represent paired-end read connection.

2.2 The whole pipeline of PEHaplo

There are five major components in the pipeline of PEHaplo as shown
in Figure 3. In the first pre-processing stage, reads with low-quality or
ambiguous base calls are filtered or trimmed. Base-calling errors or indels
are corrected from the filtered set of reads using alignment-based error
correction. Duplicated reads and substring reads are then removed from
the corrected reads. The detailed pre-processing description can be found
in the Supplementary Materials Section 2. Second, an overlap graph is
built from the pre-processed reads and the strand of reads are adjusted by
traversing the graph. The detailed strategy about strand adjustment can be
found in Supplementary Materials Section 3. The output reads will have
the same orientation. The third stage will build the overlap graph again
from the strand-adjusted reads and utilize various graph pruning methods
to remove possible random overlaps and simplify the graph for efficient

error	
correction

Paired-end	overlap	
graph	construction	

Pruning	using	graph	
topology	and	paired-
end	connections		

Path	finding with	
read	pairs	as	
guidance

Remove/split	chimeric	
contigs with	paired-
end	reads	mapping

Paired-end	reads

Fig. 3. The pipeline and main components of PEHaplo. Note that the error correction
component is implemented using Karect (Allam et al., 2015), which uses alignments
between reads rather than alignments between reads and a reference genome for error
correction.

assembly. In the fourth stage,E′ will be constructed and paired-end guided
path finding algorithms are applied to produce contigs from the paired-end
overlap graph. Finally, we align paired-end reads against produced contigs
to identify and correct potential mis-join errors.

2.2.1 Paired-end overlap graph construction
There are two steps in construction of the paired-end overlap graph. In
the first step, we construct the standard overlap graph, collapse nodes,
and merge cliques. In the second step, we identify the number of paired-
end reads between nodes in the overlap graph and remove false connected
edges using added paired-end information. This section will focus on the
overlap computation between reads.

All reads remained after pre-processing are used to construct the
overlap graph. A straightforward overlap detection method requiresO(n2)

comparisons, which is computationally expensive for large sequencing
data sets. There are efficient implementation of all-pairs suffix-prefix
comparison algorithms based on data structures such as hashing table or
compact prefix tree (Gonnella and Kurtz, 2012; Haj Rachid and Malluhi,
2015). In PEHaplo pipeline, we first compute all suffix-prefix matches
between reads for read orientation adjustment, and then compute again for
the final overlap graph construction.

Overlap cutoff estimation The overlap cutoff l is an important
parameter. A small l tends to keep most true overlaps but also introduces
more false connected edges, while large l is likely to eliminate most
false overlaps but can possibly miss true connections for reads from
lowly sequenced regions. We use exponential distribution to estimate the
appropriate overlap cutoff.

Let N be the total reads number, r be the read length and L be the
genome size, the sequencing coverage is thus calculated as C = Nr/L.
We use the Poisson distribution to model the number of reads sequenced
from unit length of a genome. The parameter λ in the Poisson distribution
is estimated as N/L (Wang et al., 2009). The distance (X) (see Figure 4)
between two adjacent reads will thus follow an exponential distribution.
The corresponding cumulative distribution function is the probability that
two adjacent reads have an overlap size of at least r−d. For example, Let
r = 250, L = 10, 000, and N = 800. Then the sequencing coverage
C is 20 and λ(N/L) is 0.08. Thus, for given d as 70, we have F (X ≤
70) = 0.9963. That is, there is 99.63% possibility that two adjacent reads
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X

𝐹 𝑋 ≤ 𝑑 = 1 − 𝑒@AB, 𝑑 ≥ 0
Overlap	of				and				is	a b r	– X.

Fig. 4. The distance between two adjacent reads can be estimated by an exponential
distribution. a, b, c represent three reads. r is the read length.
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will form an overlap with size of at least 180 (i.e. 250-70). Since we have
800 reads, the expected number of pairs with overlap smaller than 180 is:
799 ∗ (1− 0.9963) = 2.96. Therefore, we may have four contigs for the
genome under this overlap cutoff. While keeping the connectivety of the
graph, the overlap threshold should be as large as possible.

2.2.2 Graph pruning
The original overlap graph is usually very complex because of the large
data size, transitive edges, sequencing errors, and highly similar regions
shared by haplotypes. Besides commonly used transitive reduction and
node collapsing (Yuan et al., 2015), we apply an iterative graph pruning
procedure to repeatedly simplify the graph at each iteration.

Merge reads in cliques We are interested in cliques in the overlap
graph because reads within a clique can share true mutations while
sequencing errors are usually more random and are not shared by the
majority of reads. Therefore, cliques can be used to distinguish true
mutations from sequencing errors. Several recent haplotype reconstruction
tools (Baaijens et al., 2017; Töpfer et al., 2014) merge reads inside cliques
as super-reads and conduct iteratively haplotype extension. In our methods,
we apply the step of merging nodes inside of cliques.

Removing false edges using read pairs Due to the nature of viral
quasispecies, different haplotypes of one species usually have very high
sequence similarity (possibly over 90%), which can easily cause overlaps
between reads originating from different strains. Therefore, having a
suffix-prefix match does not guarantee that the two reads originate from the
same viral strain. Wrong edges increase the complexity of the graph and
may also produce misjoined contigs. We employ paired-end information
to remove potentially wrong edges.

The key idea is that for an edge formed by reads from different
haplotypes, its two end nodes usually have other incident edges incurred
by the correct connections. The wrong edge or the contigs containing the
wrong edge are not well supported by read pairs. Therefore, we use paired-
end information as evidence to remove false edges. We examine each edge
formed by nodes with large in or out degrees (Cormen, 2009) because it
is likely that some of the incident edges are false overlaps.

Figure 5(A) presents a case. Edge u → v is one of the many edges
incident to nodes u or v. We apply the following rules for edge u → v:
if there is no read pair support between u and v, between u’s predecessor
nodes and v, or between u and v’s successor nodes, and the sequence
formed by joining u, v is longer than an insert size cutoff, we will remove
u → v. The insert size cutoff can be customized depending on the given
data properties. To remove false connected edges, we need to traverse each
node and edge of the overlap graph. The time complexity is O(V + E).

2.2.3 Paired-end guided path finding
Once the overlap graph is pruned, paired-end connections will be added
and thus form the paired-end overlap graph PE_G. As a quick review, PE_G
is defined as (V,E,E′), where E contains the edges from read overlaps
while E′ contains edges from paired-end connections. The weight of an
edge in E′ represents the number of paired-end read pairs between two
end nodes. Note that after node collapse, each node can contain multiple
reads.

The problem of assembling a single haplotype in the graph PE_G can
be formulated as finding a path p, where each edge in p ∈ E, so that p′s
weight defined using edges in E′ is maximized. Intuitively, we look for
paths with the best support of paired-end connections. This process can
be repeated to find k longest paths, whose path weight is defined by edge
weight in E′. However, we can prove that finding the path with the most
number of paired-end connections in PE_G is NPC. The detailed proof
can be found in the Supplementary Materials Section 4.
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B

Fig. 5. (A) Removing false edges using paired-end information. The overlap edges with
cross will be removed if insufficient read pairs exist between their ends. (B) In this example,
the ending node pn of current path has two successors v1 and v2 . The path nodes and a
SISO node in the path are marked. The solid lines are overlaps and dashed lines are paired-
end connections between nodes. Six scores are computed to select the right successor for
extending the path. Among which, five are calculated as paired-end edge weights between
nodes in current path and nodes associated with the successor. As for v1 , succ(v1) and
succ′(v1) are shown in the figure. The group 1 scores contain the paired-end edge weights
between the SISO node and v1 , s1 , and s′1, s

′
2 . Group2 scores contain the paired-end edge

weights between path nodes {p1, ..., pn−1} and v1 , s1 .

In our method, we use a DFS-based path extension algorithm for
path finding and use a greedy algorithm to select the right node for path
extension. At each vertex with multiple successors, we apply the greedy
algorithm to choose the best node for extension. The greedy algorithm
carefully considers paired-end connections between different types of
nodes and also the coverage information. Paired-end connections between
nodes can be efficiently accessed from the constructed paired-end graph
PE_G.

Scores calculation for path extension To find correct paths from
the graph, the right node need to be selected each time we extend the
path. In particular, when a node has multiple successors, a right choice

Algorithm 1 Greedy algorithm for path extension

1: if there exists a node v ∈ succ(pn) with e′SISO,v >0 then
2: extend to the node with argmaxv∈succ(pn)(e

′
SISO,v)

3: return
4: else if v ∈ succ(pn) with e′SISO,w > 0, w ∈ succ(v) in E then
5: extend to the node with argmaxv∈succ(pn)(e

′
SISO,w), w ∈

succ(v) in E
6: return
7: else if v ∈ succ(pn) wtih e′SISO,w > 0, w ∈ succ′(v) in E′ then
8: extend to the node with argmaxv∈succ(pn)(e

′
SISO,w), w ∈

succ′(v) in E′

9: return
10: else if v ∈ succ(pn) with e′Path,v > 0

11: extend to the node with argmaxv∈succ(pn)(e
′
Path,v) then

12: return
13: else if v ∈ succ(pn) with e′Path,w > 0, w ∈ succ(v) in E then
14: extend to the node with argmaxv∈succ(pn)(e

′
Path,w), w ∈

succ(v) in E
15: return
16: else
17: extend to the node v ∈ succ(pn) with

argminv∈succ(pn)(abs(C(v)− C(Path)))

18: return
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must be made for path extension. In general, we choose a successor
with the most paired-end connections to the current path. Different
types of paired-end connections were treated with different priorities in
distinguishing haplotypes. In particular, single-in single-out (SISO) nodes
are differentiated from other nodes. SISO nodes have in-degree of 1 and
out-degree of 1 and thus are unique to one haplotype. Any paired-end
connection incident to SISO nodes can be used to recruit nodes that
belong to the same haplotype. On the contrary, nodes originating from
common regions of two or more haplotypes are not SISO nodes. Paired-
end connections to those nodes do not provide useful guidance in path
finding. In our algorithm, we distinguish paired-end connections involving
SISO nodes and other nodes.

For e′ ∈ E′, e′(u, v) is the edge weight between u and v in E′. Let
Path = {p1, p2, ..., pn} be the current path. The ending node pn in
the current path has multiple successors. As we have two sets of edges
in PE_G, let succ(v) in E represents v’s successor nodes in the standard
overlap graph. succ′(v) in E′ represents all nodes that form paired-end
connections with v. For each successor v of pn (v ∈ succ(pn)), we
compute six scores, which are divided into three groups. An example
of the scores calculation is shown in Figure 5(B). Group 1 contains the
paired-end edge weights between SISO nodes in Path and v (score 1),
v′s successor nodes inE (score 2), and v′s successor nodes inE′ (i.e. all
nodes that form paired-end connections with v, score 3). Group 2 contains
the paired-end edge weights between all path nodes (except pn) and v
(score 4), v′s successor nodes in E (score 5). The third group contains
coverage difference between Path and v (score 6).

The pseudocode in Algorithm 1 describes the greedy algorithm that
chooses the locally optimal node for path extension based on the above
scores. e′SISO,v represents a paired-end edge weight between SISO
node(s) in the current path and v, which is a successor node of pn. Function
C(v) denotes the read coverage of node v.

2.2.4 Correcting contigs with paired-end read distribution
To further improve the quality of assembled contigs, we apply a contig
correction method similar to the tool PECC (Li et al., 2017). With the
contigs generated after path finding, we align the raw reads to them and
split contigs from the locations with low read pairs coverage (Figure 6).

Regions	with	low	read	pairs	coverage

Sequence	from	strain	𝑏Sequence	from	strain	𝑎

Fig. 6. Read pairs mapping profile on a misjoined contig. The contig is shown as the long
bar at the bottom, which is misjoined with two sequences from strains a and b. The dashed
line connects the two ends of a read pair. Fewer read pairs will go across the misjoined
location, thus revealing a valley in the aligned reads profile, which can be used to split the
contig.

3 Results
We have designed and implemented PEHaplo, a de novo viral quasispecies
assembly method that uses paired-end reads to guide path finding in paired-
end overlap graph. In this section, we will evaluate the performance of
our method on both simulated and real viral quasispecies data sets. The
simulated data set includes both the commonly adopted HIV data set and
also highly biased data set with rare haplotypes. For each experiment, we
will present the performance of PEHaplo and benchmark it with recently
published quasispecies de novo assembly tools. In addition, we carefully
evaluate the performance of each main component in the whole pipeline.

The results show that our tool produces fewer and significantly longer
contigs that can recover a majority of the haplotypes.

3.1 Experimental data sets

We evaluated PEHaplo on several simulated data sets, one real HIV-1
Illumina MiSeq sequencing data set, and one real Influenza sample. Both
the simulated and real HIV-1 data sets were generated from a mixture of
five well-studied HIV-1 strains (HXB2, JRCSF, 89.6, NL 43 and YU2).
These strains have pairwise sequence similarities from 91.8% to 97.4%
(Supplementary Table S1). HXB2 and NL43 have the highest similarity
with LCS of size 427bp (Supplementary Table S2). We choose HIV
because it is adopted by other viral haplotype reconstruction tools and
has become a gold standard for performance evaluation.

3.2 Evaluation metrics

As the haplotype sequences and compositions are known in these datasets,
we are able to evaluate the quality of the assembled contigs generated by
all tools. We compared the produced results to recently published de novo
assembly tools IVA (Hunt et al., 2015), MLEHaplo (Malhotra et al., 2015)
and SAVAGE (Baaijens et al., 2017).

Following SAVAGE, we use a third-party tool MetaQuast (Mikheenko
et al., 2015) for evaluating the output of all tested tools. MetaQuast
integrated several components for convenient de novo assembly
performance evaluation. It aligns the generated contigs to the viral
reference genomes and reports the number of contigs, N50, unaligned
length, target genome(s) covered, mismatch and indel rates, etc. N50
length is defined as the maximal length that all contigs of at least this length
contain at least 50% of all the contig bases. A contig can be partially aligned
to a reference sequence. Thus, the total length of all unaligned parts are
reported as "unaligned length". For the aligned parts, "target genome(s)
covered" and "mismatch and indel rates" are computed. Target genome(s)
covered is the percentage of reference genomes that are aligned by contigs,
and mismatch/indel rate is the percentage of mismatchs/indels of aligned
contigs.

3.3 Results on HIV simulated data set

We first applied PEHaplo on a simulated HIV-1 quasispecies data set.
We used ART-illumina (Huang et al., 2012) to simulate 1.9e+5 paired-
end, 250bp error-containing MiSeq reads from the five HIV-1 strains with
average insert size of 600 bp and standard deviation of 150 bp. The total
coverage of the 5 strains is ~5000x, which is close to the coverage of
real HIV quasispecies data commonly used by existing tools. To obtain a
more realistic data set, a fitness based power law equation (Barbosa et al.,
2012) was used to simulate the coverage distribution among five strains:
Ci = bfai , where Ci and fi denote the coverage and fitness of strain i,
respectively. The coverages for each strain in the simulated data set are:
89.6 - 2190x, HXB2 - 1095x, JRCSF - 730x, NL43 - 547x, YU2 - 438x.

Following the PEHaplo pipeline, we first performed error correction
and duplicated sequence removal on the raw simulated data set. With
1.9e+5 error corrected reads, 48,833 reads were kept after removing
duplicates. Only those reads that duplicate at least 3 times in the raw data
were kept, further reducing the reads number to 26,961. After adjusting
reads orientation, an overlap graph was constructed with the tool Apsp
(Haj Rachid and Malluhi, 2015). The original overlap graph has 26,961
nodes and 977,570 edges. After merging cliques, removing transitive edges
and collapsing nodes, 63 nodes and 67 edges were left. We then applied
false edge removal and node collapsing on the graph, and further reduced
it to 48 nodes and 44 edges. Paths and contigs were generated from this
pruned graph using the greedy algorithm described in the Methods Section.
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To evaluate the effectiveness of our false edges removal step, we also
assembled the simulated reads without the false edges removal step. The
results are shown in Supplementary Table S3. Comparing to contigs with
false edges removal, the genome covered fraction is reduced from 97%
to 91.8%. Also, the N50 value is decreased while the mismatch rate is
increased. The results reveal that our false edges removal step is effective
and can improve the final results.

PEHaplo generated 12 contigs from the simulated data set and the
results are summarized in Table 1. The contigs are able to cover over 96%
on the 5 viral strains, with a N50 of 9,262 bp. The largest contig has a length
of 9,668bp, which can almost cover a complete HIV strain. Meanwhile,
these contigs have low mismatch and indel rates.

We also assembled the simulated reads with benchmark tools IVA,
MLEHaplo, and SAVAGE and summarized their results in Table 1. With
the default parameters, IVA produced a single, long contig from the error
corrected reads. This long contig has a length of 13,434 bp and can cover
the whole genome of the strain 89.6 and about 43% of the strain HXB2.
The results of IVA reveal that it tends to generate one consensus genome
sequence corresponding to the haplotype with the highest coverage. Other
strains are largely missed. Using k-mer size of 55, MLEHaplo produced
205 contigs that cover 78% of the five HIV-1 strains. The contigs it
produced are quite fragmented, with a low N50 value of 671 bp and the
longest contig of 1,716 bp. Following the guidance of SAVAGE tutorial,
we set the overlap cutoff as 180 bp. SAVAGE produced 64 contigs that
cover over 97% of the reference genomes, with a N50 of 1,926 bp, and the
largest contigs of 7,941 bp.

Comparing to IVA and MLEHaplo, PEHaplo is able to produce longer
contigs with fewer mismatches and indels on the simulated HIV-1 data
set. SAVAGE also shows better performance than IVA and MLEHaplo on
this data set. But it produced many short contigs (N50 value 1,926 bp vs.
9,262 bp of PEHaplo). Some of them cannot be aligned to the reference
genomes, leading to larger "unaligned length".

3.3.1 Paired-end reads guided path finding is able to generate accurate
long contigs

The greedy algorithm that carefully utilizes paired-end information plays
a crucial role for producing high quality long contigs. In this section,
we focus on evaluating the performance of path finding and investigating
whether the improved performance of PEHaplo is simply due to the pruned
graph or the combination of the pruned graph and path finding algorithm.
Thus we applied popular de novo metagenomic assembly tools IDBA-UD
(Peng et al., 2012) and Ray Meta (Boisvert et al., 2012) on the pruned
overlap graph that used as the input for path finding in PEHaplo. In
addition, as SAVAGE is the newest viral haplotype reconstruction tool
and has better performance than IVA and MLEHaplo, we also applied
SAVAGE on the same pruned overlap graph as PEHaplo.

With the same input reads or graph, we compared the output of these
tools using MetaQuast and presented the results in Supplementary Table
S3. The results revealed that those contigs assembled by IDBA-UD, Ray
Meta and SAVAGE from the reduced overlap graph are fragmented and

Table 1. Assembly results on simulated HIV data set for IVA, MLEHaplo,
SAVAGE and PEHaplo. Contigs that are at least 500 bp are aligned to the
reference haplotype sequences with a similarity cutoff of 98%.

Tools
Contigs

num N50
Genomes

covered (%)
Unaligned
length (bp)

Mismatch
rate(%)

Indels
(%)

IVA 1 13,434 28.7 0 0.809 0.051
MLEHaplo 205 671 78.0 81,125 0.542 0.008
SAVAGE 64 1,926 97.32 4792 0.009 0.004
PEHaplo 10 9,274 97.0 0 0.026 0.002

could only cover a small proportion of the five reference genomes. These
contigs have low rate of mismatches and indels, but their average lengths
are much shorter than PEHaplo. The experiments show that the paired-end
guided path finding algorithm in PEHaplo is essential for producing long
haplotype segments from the viral quasispecies sequencing data.

3.4 Benchmark on HIV MiSeq data set

To further assess the performance of assembly methods, we applied
PEHaplo on a real HIV quasispecies data set (SRR961514) sequenced from
the mix of five HIV-1 strains with Illumin MiSeq sequencing technology
(Di Giallonardo et al., 2014). This data set contains 714,994 pairs (2x250
bp) of reads that cover the five strains to 20,000x.

We used PEHaplo to perform similar pre-processing procedures on
the real HIV quasispecies data. With 774,044 filtered and error corrected
reads, 98,947 reads were kept after removing duplicates and substrings.
Since the raw data set has extremely high coverage on the five strains, we
still kept those reads that duplicate at least three times in the raw data set.
After these pre-processing procedures, 26,691 reads were kept for strand
adjustment and assembly.

PEHaplo produced 33 contigs from the real MiSeq HIV data set that
can cover over 92% of the five HIV-1 strains. These contigs have a N50
value about 2,500 bp and the longest contig is 9,108 bp. The results are
summarized in Table 2. Compared to simulated HIV data set, PEHaplo has
generated more contigs but with a lower N50 value and higher mismatches
and indels on the real data set. We notice that the real HIV data set contains
more sequencing errors and has a larger variation for insert size than the
simulated data set.

We again compared the performance of PEHaplo with IVA, MLEHaplo
and SAVAGE. IVA generated 10 contigs that can cover about 20% of the
five strains. Similar to the simulated data set, these contigs still cover
larger parts on haplotypes with higher sequencing coverage. With the
same parameters as before, MLEHaplo produced 234 contigs that can
cover over 53% of the five genomes with similar mismatch and indel
rates to the simulated data set. It generated much longer contigs on the
real data, with a N50 value of 6,501 bp and the largest contig of 8,470
bp. However, these contigs contain many misjoined segments. Over 150
contigs with total length of 787,272 cannot align to any reference genomes.
Since the SAVAGE paper (Baaijens et al., 2017) has shown their results
on the same data set, we use the metrics in their literature for evaluation.
From their results, SAVAGE produced 846 contigs that cover over 92% of
the reference genomes, with a N50 of 588 bp, and largest contig of 1,221
bp (Table 2).

On the real HIV data set, PEHaplo can still produce longer contigs with
fewer mismatches than all three benchmarked tools. Overall, PEHaplo is
able to assemble short reads that are sequenced from multiple viral strains
sharing high similarities, generating long, high quality contigs that can
reconstruct most of the target haplotypes. In Supplementary Figure S2,
we show the contig alignment result on HXB2 strain for PEHaplo and
SAVAGE. This figure clearly shows that our tool usually produces fewer
but longer contigs.

Table 2. Assembly results on real HIV MiSeq data set for IVA, MLEHaplo,
SAVAGE and PEHaplo.

Tools
Contigs

num N50
Genomes

covered (%)
Unaligned
length (bp)

Mismatch
rate (%)

Indels
(%)

IVA 10 1,150 20.1 1150 0.660 0.052
MLEHaplo 234 6,501 53.6 786,272 0.588 0.035
SAVAGE 846 588 92.6 0 0.161 0.040
PEHaplo 24 2,223 92.98 0 0.016 0.045
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3.5 Benchmark on simulated biased HIV data sets

It is a major challenge to reconstruct the low-abundance haplotypes
in quasispecies data. To evaluate the performance of our methods on
assembling low abundance strains, we used HIV strains HXB2 and NL43
to simulate three groups of data sets with extremely biased coverages. We
choose HXB2 and NL43 because they share the highest similarity and
longest common region among five HIV strains, representing the hardest
case for assembly. The total coverage for each group is 1000x, with HXB2-
900x, NL43-100x; HXB2-950x, NL43-50x; and HXB2-990x, NL43-10x
for each group, respectively. These data sets contain 250 bp paired-end
reads produced by ART-illumina with average insert size of 600 bp and
standard deviation of 150 bp.

With the similar pre-processing procedures on HIV 5 strains data, we
used PEHaplo to assemble contigs from these data sets and compared the
results with SAVAGE, which has better performance than MLEHaplo and
IVA. The results are shown in Table 3.

The results reveal that both tools failed to assemble the rare strain with
5% or 1% abundance. However, PEHaplo was able to better assemble
the dominant strain with one long contig. In addition, when the rare
strain reached 10% (100x) of the total coverage, PEHaplo could partially
assemble it, while SAVAGE only assembled the dominant one.

Table 3. Assembly results on simulated biased HXB2-NL43 MiSeq data set for
SAVAGE and PEHaplo.

HXB2
:NL43 Tools

Contig
num N50

Genome
covered (%)

Unaligned
length (bp)

Mismatch
rate (%)

Indels
(%)

900
:100

SAVAGE 7 2,500 46.76 581 0.022 0
PEHaplo 11 8,163 80.26 0 0.038 0

950
:50

SAVAGE 8 8,032 46.76 1,817 0 0
PEHaplo 1 9,470 46.76 0 0.033 0.01

990
:10

SAVAGE 13 2,130 46.75 1,590 0.022 0
PEHaplo 1 9,509 48.95 0 0 0

3.6 Benchmark on Influenza data set

In addition to HIV data, we also applied PEHaplo on a real Influenza
H1N1 data set (SRR1766219) sequenced from the mix of a wild type
(99%) and a mutant type (1%). This data set is sequenced with Illumina
MiSeq sequencing technology, containing 646,879 pairs (2x250) of reads
that cover the two strains to ~23,000x. The mutant type carries two silent
mutations in the M1 ORF (C354T and A645T, segment 7).

We first perform similar pre-processing on the Influenza data. With
851,988 filtered and error corrected reads, 27,888 reads were kept after
removing duplicates and substrings. We still kept those reads that duplicate
at least three times in the raw data set. After pre-processing, 11,940 reads
were kept for strand adjustment and assembly.

It is worth noting that the H1N1 viruses have 8 segmented genomes.
PEHaplo produced 10 contigs from the MiSeq Influenza data, with 8
contigs covering over 99% of the 8 segments of Influenza genome and
2 contigs unaligned. On the other hand, SAVAGE produced 220 contigs
with a N50 value of 620 bp. The results are summarized and compared
in Table 4. The comparison shows that PEHaplo works much better than
SAVAGE on this Influenza quasispecies data as it successfully assembled
all the 8 segments.

This data set contains a wild type and a rare mutant type (1%). However,
neither method can recover the two mutations in the rare haplotype. In
order to investigate this issue, we mapped all reads back to the region
of the rare haplotype that contains the two mutations. The read mapping
results clearly show that only several reads contain the same bases as the
mutant type while all the other reads support the wild type. Thus, with
such low number of mapped reads, existing information is not sufficient to

distinguish true mutations from sequencing errors. Long read sequencing
platforms might be a better choice for recovering the rare mutant type.

Table 4. Assembly results on Influenza MiSeq data set for SAVAGE and
PEHaplo.

Tools
Contig
num N50

Genomes
covered (%)

Unaligned
length (bp)

Mismatch
rate (%)

Indels
(%)

SAVAGE 220 620 96.3 38,303 0.818 0.046
PEHaplo 10 1,790 99.5 1,270 0.836 0.007

3.7 Computational time and memory usage

To evaluate the computational efficiency of our tool, we compare the
running time and peak memory usage of the tested tools on the HIV 5-strain
simulated data and also the real data. The results are shown in Table 5.
PEHaplo runs significantly faster than SAVAGE and MLEHaplo. All the
experiments were tested on a MSU HPCC CentOS 6.8 node with Two
2.4Ghz 14-core Intel Xeon E5-2680v4 CPUs and 128GB memory. We
used 4 threads for IVA, 16 threads for SAVAGE and 1 thread for PEHaplo.
The commands of running these tools on HIV simulated data can be found
in Supplementary Materials Section 5.
Table 5. Running time and peak memory usage of assembly tools on HIV
simulated and real data.

Tools
Simulated data Real data

Time Memory (GB) Time Memory (GB)
IVA 17m 2.6 17m 2.6
MLEHaplo 10h 6.4 4h 2.4
SAVAGE 6h 1.5 125h 1.1
PEHaplo 9m 2.9 23m 1.3

4 Discussion and conclusion
For paired-end reads, one may consider to combine read pairs into a longer
sequence before conducting assembly. We actually applied existing read
joining tools for this purpose. However, joining reads is not a trivial
problem as the overlapping part of the read pairs may not always be
identical. Thus, existing methods of joining two ends may introduce
errors. In addition, merging paired-end reads will discard the paired-
end information for guiding the path finding process. As a result, the
experimental results using PEAR (Zhang et al., 2014) and other end
merging tools show inferior performance. Thus we did not include that
step in our pipeline.

The third-generation sequencing platforms such as PacBio can
produce very long reads, which can cover the whole length of viral
genomes. However, the high sequencing error rate (about 10%) and the
lower throughput than Illumina still hamper their wide application for
metagenomic sequencing. The advantages and limitations of applying
current long reads technologies for viral haplotypes reconstruction are
discussed in BAsE-Seq (Hong et al., 2014). With the increased read quality,
long read sequencing technologies will greatly simplify the assembly
methods for metagenomic data (Di Giallonardo et al., 2014). However,
at this moment, viral haplotype reconstruction using short reads is still
needed.

Our method can be extended to metagenomic data if the member
species’ genomes have common regions with length smaller than fragment
size. However, our analysis has shown that many genes in metagenomic
data can have LCS sizes much greater than typical fragment size. For those
metagenomic data, large insert sizes should be chosen for the sequencing
protocol.
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In conclusion, we presented a de novo viral haplotype reconstruction
tool for viral quasispecies. We applied it to both simulated and real
quasispecies data and achieved better results than several benchmarked
tools.
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