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ABSTRACT

Motivation: Microbial communities play important roles in the function and maintenance of various
biosystems, ranging from the human body to the environment. A major challenge in microbiome
research is the classification of microbial communities of different environments or host phenotypes.
The most common and cost-effective approach for such studies to date is 16S rRNA gene sequencing.
Recent falls in sequencing costs have increased the demand for simple, efficient, and accurate methods
for rapid detection or diagnosis with proved applications in medicine, agriculture, and forensic science.
Results: We describe a reference- and alignment-free approach for predicting the environment
or host phenotype from microbial community samples based on k-mer distributions in 16S rRNA
data. In addition, we propose a bootstrapping framework to investigate the sufficiency of a shallow
sub-sample for prediction. We study the use of deep learning methods as well as classic machine
learning approaches for distinguishing among human body-sites, diagnosis of Crohn’s disease, and
predicting the environments (18 ecological and 5 organismal environments) from representative 16S
gene sequences. Furthermore, we explore the use of unsupervised dimensionality reduction methods as
well as supervised deep representation learning for visualizing microbial data of different environments
and host phenotypes. We demonstrated that k-mer representations outperform Operational Taxonomic
Unit (OTU) features in distinguishing among 5 major body-sites, as well as predicting Crohn’s disease
using 16S rRNA sequencing samples. We also showed that a shallow sub-sample of 16S rRNA samples
alone can be sufficient to produce a proper k-mer representation of data. Aside from being more
accurate, using k-mer features in shallow sub-samples provided the following benefits: (i) skipping
computationally costly sequence alignments required in OTU-picking, and (ii) proof of concept for
the sufficiency of a shallow and short-length 16S rRNA sequencing for environment/host phenotype
prediction. In addition, k-mer features were able to accurately predict representative sequences of 18
ecological and 5 organismal environments with relatively high macro-F1 scores. Deep Neural Network
outperformed Random Forest and Support Vector Machine in classification of large datasets.
Availability: The link to the MicroPheno code and the datasets will be available at
https://llp.berkeley.edu/micropheno.

Frequent abbreviations used are DKL: Kullback Leibler divergence, DNN-l: Deep Neural Network
with l layers, RF: Random Forests, and SVM: Support Vector Machine (here linear SVM).
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1 Introduction
Microbial communities have important functions relevant to supporting, regulating, and in some cases
causing unwanted conditions (e.g. diseases or pollution) in their hosts/environments, ranging from
organismal environments, like the human body, to ecological environments, like soil and water. These
communities typically consist of a variety of microorganisms, including eukaryotes, archaea, bacteria and
viruses. The human microbiome is the set of all microorganisms that live in close association with the
human body. It is now widely believed that changes in the composition of our microbiomes correlate with
numerous disease states, raising the possibility that manipulation of these communities may be used to
treat diseases. Normally, the microbiota (particularly the intestinal microbiota) of the microbiome play
several important roles in humans, which include: (i) prevention of pathogen growth, (ii) education and
regulation of the host immune system, and (iii) providing energy substrates to the host [1]. Consequently,
dysbiosis of the human microbiome can promote several diseases, including asthma [2, 3], irritable bowel
syndrome [4, 5], Clostridium difficile infection [6], chronic periodontitis [7, 8], cutaneous leishmaniasis [9],
obesity [10, 11], chronic kidney disease [12], Ulcerative colitis [13], and Crohn’s disease [14, 15, 16].
The human microbiome appears to play a particularly important role in the development of Crohn’s
disease. Crohn’s disease is an inflammatory bowel disease (IBD) with a prevalence of approximately 40
per 100,000 and 200 per 100,000 in children and adults, respectively [17].

Microbiomes present in the environment also serve important functions. The importance of ecological
microbiomes is undisputed, due to their critical roles in fundamental processes such as nutrient cycling [18].
Due to differences in nutrient availability and environmental conditions, microbiomes in different en-
vironments are each characterized by unique structures and microbial compositions [19, 20, 21, 22].
Furthermore, each microbiome plays a unique role in the environment. For instance, the ocean microbiome
generates half of the primary production on Earth [20]. The soil microbiome surrounding the root of plants
has a great impact on plant fertility and growth [23]. Additionally, analyzing microbial communities in
drinking water is one of the primary concerns of the environmental sciences [19].

The starting point in data collection for many of the above mentioned projects is 16S rRNA gene
sequencing [24] of microbial samples, characterizing the taxonomic associations of the prokaryote or
archaeal community members, which possess 16S genes. There are a number of features that make the 16S
rRNA gene ideal for use as a taxonomic ‘fingerprint’ for microbiome composition characterization. First,
the 16S rRNA gene is highly conserved across bacteria and archaea. Secondly, the gene consists of both
conserved regions, for which universal species-independent PCR primers may be directed against, and
nine hypervariable regions (V1-V9), along which species-specific sequence differences may accumulate
to allow for differential identification of species [25]. Sequencing of specific hypervariable regions of the
16S rRNA gene may be performed for determination of microbial community composition [26]. After the
16S rRNA hypervariable regions are sequenced from a microbial sample, the obtained sequences are then
processed using bioinformatics software (such as QIIME [27, 28], Mothur [29], or Usearch [30]] ) and
clustered into groups of closely related sequences referred to as Operational Taxonomic Units (OTUs),
which may then be used to assist in the functional profiling of microbial samples. Later in 1.2 we discuss
the pros and cons of OTU features in details.

1.1 Machine learning for host/environment classification
Several recent studies predicted the environment or host phenotypes using 16S gene sequencing data for
body-sites [31, 32], disease state [33, 34, 35, 36], ecological environment quality status prediction [37],
and subject prediction for forensic science [38, 39]. In all, OTUs served as the main input feature for
the down stream machine learning algorithms. Random Forest and then, ranking second, linear Support
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Vector Machine (SVM) classifiers were reported as the most effective classification approaches in these
studies [32, 35, 40].

Related prior work on body-site classification [31, 32] used the following datasets: Costello Body
Habitat (CBH - 6 classes), Costello Skin Sites (CSS - 12 classes) [41], and Pei Body Site (PBS - 4 classes
) [32]. An extensive comparison of classifiers for body-site classification over CBH, CSS, and PBS on
top of OTU features has been performed by Statnikov et al [32]. The best accuracy levels measured
by relative classifier information (RCI) achieved by using OTU features are reported as 0.784, 0.681,
and 0.647 for CBH, CSS, and RCI respectively. Due to the insufficiency of the number of samples (on
average 57 samples per class for CBH, CSS, and PBS) as well as the unavailability of raw sequences for
some of the datasets mentioned above, instead of using the same dataset we replicate the state-of-the-art
approach suggested in [32], i.e. Random Forest and SVM over OTU features for a larger dataset (Human
Microbiome Project dataset). We then compare OTU features with k-mer representations. Working on a
larger dataset allows for a more meaningful investigation and better training for deep learning approaches.

Detecting disease status based on 16S gene sequencing is becoming more and more popular, with
applications in the prediction of Type 2 Diabetes [36] (patients: 53 samples, healthy:43 - Best accuracy:
0.67), Psoriasis (151 samples for 3 classes - Best accuracy: 0.225), IBD (patients: 49 samples, healthy:59
- Best AUC:0.95) [33], (patients: 91 samples, healthy: 58 samples - Best AUC:0.92) [34]. Similar to
body-site classification datasets, the datasets used for disease prediction were also relatively small. In this
paper, we use the Crohn’s disease dataset [14] with 1359 samples for evaluating our proposed method and
then compare it with the use of OTU features.

We focus on machine learning approaches for classification of environments or host phenotypes of
16S rRNA gene sequencing data, which is the most popular and cost-effective sequencing method for
the characterization of microbiome to date [40]. Studies on the use of machine learning for predicting
microbial phenotype instead of environments/host phenotype [42, 43], as well as predictions based on
shotgun metagenomics and whole-genome microbial sequencing are beyond the scope of this paper,
although we believe that one may easily adapt the proposed approach to shotgun metagenomics, similar to
the study by Cui et al. on IBD prediction [44].

Recently, deep learning methods became popular in various applications of machine learning in
bioinformatics [45, 46] and in particular in metagenomics [47]. However, to the best of our knowledge
this paper is the first study exploring environment and host phenotype prediction from 16S rRNA gene
sequencing data using deep learning approaches.

1.2 16S rRNA gene sequence representations
OTU representation
As reviewed in 1.1, prior machine learning works on environment/host phenotype prediction have been
mainly using OTU representations as the input features to the learning algorithm. Almost all popular
16s rRNA gene sequence processing pipelines cluster sequences into OTUs based on their sequence
similarities utilizing a variety of algorithms [28, 48]. QIIME allows OTU-picking using three different
strategies: (i) closed-reference OTU-picking: sequences are compared against a marker gene database
(e.g. Greengenes [49] or SILVA [50]) to be clustered into OTUs and then the sequences different from the
reference genomes beyond a certain sequence identity threshold are discarded. (ii) open-reference OTU-
picking: the remaining sequences after a closed-reference calling go through a de novo clustering. This
allows for using the whole sequences as well as capturing sequences belonging to new communities which
are absent in the reference databases [51]. (iii) pure de novo OTU-picking: sequences (or reads) are only
compared among themselves and no reference database is used. The third strategy is more appropriate for
novel species absent in the current reference. Although OTU clustering reduces the analysis of millions
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of reads to working with only thousands of OTUs and simplifies the subsequent phylogeny estimation
and multiple sequence alignment, OTU representations have several shortcomings: (i) All three OTU-
picking strategies involve massive amounts of sequence alignments either to the reference genomes (in
closed/opened-reference strategies) or to the sequences present in the sample (in open-reference and de
novo strategies) which makes them very expensive [52] in comparison with reference-free/alignment-free
representations. (ii) Overall sequence similarity is not a proper condition for grouping sequences and
OTUs can be phylogenetically incoherent. For instance, a single mutation between two sequences is
mostly ignored by OTU-picking algorithms. However, if the mutation does not occur within the sample, it
might be a signal for assigning a new group. In addition, several mutations within a group most likely are
not going to be tolerated by OTU-picking algorithms. However, having the same ratio across samples
may suggest that the mutated sequences belong to the same group [48, 53]. (iii) The number of OTUs
and even their contents are very sensitive to the pipeline and parameters, and this makes them difficult to
reproduce [54].

k-mer representations
k-mer count vectors have been shown to be successful input features for performing machine learning
algorithms on biological sequences for a variety of bioinformatics tasks [55]. In particular, recently
k-mer count features have been largely used for taxonomic classifications of microbial metagenomics
sequences [56, 57, 58, 59, 60, 61]. However, to the best of our knowledge, k-mer features have not been
explored for phenotypical and environmental characterizations of 16S rRNA gene sequencing to simplify
the classification pipeline. The advantages of using k-mer features over OTUs is later discussed in the
discussion section.

In this paper we propose a new approach for environment/host phenotype prediction of 16S rRNA
gene sequencing. Our approach is based on normalized k-mer distribution, which is fast, reference-free
and alignment-free, while contributing in building accurate classifiers outperforming conventional OTU
features in body-site identification and Crohn’s disease classification tasks. We propose a bootstrapping
framework to investigate the sufficiency of shallow sub-samples for the prediction of the phenotype of
interest, which proves the sufficiency of short-length and shallow sequencing of 16S rRNA. In addition,
we explore deep learning methods as well as classical approaches for the classification and show that in the
presence of large datasets, deep learning can outperform classical methods. Furthermore, we explore PCA,
t-SNE, and supervised deep representation learning for visualization of microbial samples/sequences of
different phenotypes. We also show that k-mer features can be used to reliably predict representative 16S
rRNA gene sequences belonging to 18 ecological environments and 5 organismal environments with high
macro-F1s.

2 Material and Methods
2.1 Datasets
Body-site identification
We employ the metagenomic 16S rRNA gene sequence dataset provided by the NIH Human Microbiome
Project (HMP) [62, 63]1. In particular, we use processed, annotated 16S rRNA gene sequences of up
to 300 healthy individuals, each sampled at 4 major body-sites (oral, airways, gut, vagina) and up to
three time points. For each major body-site, a number of sub-sites were sampled. We focus on 5 body
sub-sites: anterior nares (nasal) with 295 samples, saliva (oral) with 299 samples, stool (gut) with 325
samples, posterior fornix (urogenital) with 136 samples, and mid vagina (urogenital) with 137 samples, in

1Available at http://hmpdacc.org/HM16STR/
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total 1192 samples. These body-sites are selected to represent differing levels of spatial and biological
proximity to one another, based on relevance to pertinent human health conditions potentially influenced
by the human microbiome. In order to compare k-mer based approach with state-of-the-art OTU features
we collect the closed-reference OTU representations of the same samples in HMP [63] 2 obtained using
the QIIME pipeline [51].

Crohn’s disease prediction
For the classification of Crohn’s disease, we use the metagenomics 16S rRNA gene sequence dataset
described in [14]3, which is currently the largest pediatric Crohn’s disease dataset available. This dataset
included annotated 16S rRNA gene sequence data for 731 pediatric (≤ 17 years old) patients with Crohn’s
disease and 628 samples verified as healthy or diagnosed with other diseases, making a total of 1359
samples. The 16S dataset was targeted towards the V4 hypervariable region of the 16S rRNA gene. Similar
to the body-site dataset, in order to compare the k-mer based approach with the approach based on OTU
features we collect the OTU representations of the same samples from Qiita repository 4 obtained using
QIIME pipeline [51].

Prediction of the environment for representative 16S rRNA gene sequences
MetaMetaDB provides a comprehensive dataset of representative 16S rRNA gene sequences of various
ecological and organismal environments collected from existing 16S rRNA databases spanning almost
181 million raw sequences. In the MetaMetaDB pipeline, low-quality nucleotides, adaptors, ambiguous
sequences, homopolymers, duplicates, and reads shorter than 200bp, as well as chimera have been removed
and finally 16S rRNA sequences are clustered with 97% identity generating 1,241,213 representative 16S
rRNA sequences marked by their environment [64]. MetaMetaDB divides its ecological environments
into 34 categories and its organismal environments into 28 categories. We create three datasets which
are subsets of MetaMetaDB to investigate the discriminative power of k-mers in predicting microbial
habitability. Since the sequences in MetaMetaDB were already filtered and semi-identical sequences were
removed, OTU-picking would not be relevant as it would result in an almost one-to-one mapping between
the sequences and OTUs (we verified this using QIIME).

Ecological environment prediction: MetaMetaDB is imbalanced in terms of the number of repre-
sentative sequences per environment. For this study, we pick the ecological environments with more
than 10,000 samples, ending up with 18 classes of ecological environments: activated sludge, ant fungus
garden, aquatic, bioreactor, bioreactor sludge, compost, food, food fermentation, freshwater, freshwater
sediment, groundwater, hot springs, hydrocarbon, marine, marine sediment, rhizosphere, sediment, and
soil 5. We make two datasets out of the sequences in these environments: ECO-18K containing 1000
randomly selected instances per class (a total of 18K sequences) and ECO-180K, which is 10 times larger
than ECO-18K, i.e. contains 10,000 randomly selected instances per class (a total of 180K sequences).

Organismal environment prediction: from the organismal environments in MetaMetaDB we select
a subset containing gut microbiomes of 5 different organisms (bovine gut, chicken gut, human gut, mouse
gut, termite gut) and down-sample each class to the size of the smallest class ending up having 620 sample
per class (in total containing 3100 sequences) we call this dataset 5GUTS-3100.

2Available at https://qiita.ucsd.edu/study/descriptipn/1928
3Available at: https://www.ncbi.nlm.nih.gov/bioproject/PRJEB13679
4Available at https://qiita.ucsd.edu/study/description/1939
5Datasets and descriptions are available at http://mmdb.aori.u-tokyo.ac.jp/download.html
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Figure 1. The components and the data flow in the MicroPheno computational workflow

2.2 MicroPheno computational workflow
We describe a computational workflow using deep learning and classical methods for classification of the
environments/host phenotypes of microbial communities using k-mer frequency representations obtained
from shallow sub-sampling of 16S rRNA gene sequences. We propose a bootstrapping framework to
confirm the sufficiency of using a small portion of the sequences within a 16S rRNA sample for determining
the underlying phenotype.

The MicroPheno computational workflow, as summarized in Figure 1, has the following steps: (i)
to find the proper size for the sample such that it stays representative of the data and a stable k-mer
profile, the 16S rRNA sequences go through a bootstrapping phase detailed in 2.2. (ii) Afterwards, the
sub-sampled sequences will be used to produce k-mer representations of the samples. (iii) Then the k-mer
representations will be used in classification algorithms, Deep Neural Networks (DNN), Random Forest
(RF), and Linear SVM. (iv) Finally, the k-mer representations as well as the supervised representations
trained using DNNs are used for visualization of the 16S rRNA gene sequences/samples. In what follows,
these steps are explained in detail.

Bootstrapping
Confirming the sufficiency of only a small portion of 16S rRNA sequences for environment/phenotype
classification is important because (i) sub-sampling reduces the preprocessing run-time, and (ii) more
importantly, it proves that even a shallow 16S rRNA sequencing is enough. For this purpose we propose a
resampling framework similar to bootstrapping to give us quantitative measures for finding the proper
sampling size. Let θk(Xi) be the normalized k-mer distribution of Xi, a set of sequences in the ith 16S
rRNA sample. We investigate whether only a portion of Xi, which we represent as x̃i j, i.e. jth resample of
Xi with sample size N, would be sufficient for producing a proper representation of Xi. To quantitatively
find a sufficient sample size for Xi we propose the following criteria in a resampling scheme. (i) Self-
consistency: resamples for a given size N from Xi produce consistent θk(x̃i j)’s, i.e. resamples should have
similar representations. (ii) Representativeness: resamples for a given size N from Xi produce θk(x̃i j)’s
similar to θk(Xi), i.e. similar to the case where all sequences are used.

We quantitatively define self-inconsistency and unrepresentativeness and seek parameter values that
minimize them. We measure the self-inconsistency (D̄S) of the resamples’ representations by calculating
the average Kullback Leibler divergence among normalized k-mer distributions for NR resamples (here
NR=10) with sequences of size N from the ith 16S rRNA sample:
D̄Si(N,k,NR) =

1
NR(NR−1) ∑ ∀p,q

(p6=q)∈{1,2,··· ,NR}
DKL(θk(x̃ip),θk(x̃iq)), where |x̃il| = N; ∀l ∈ {1,2, · · · ,NR}. We cal-

culate the average of the values of D̄Si(N,k,NR) over the M different 16S rRNA samples:
D̄S(N,k,NR) =

1
M ∑

M
i=1 D̄Si(N,k,NR).
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We measure the unrepresentativeness (D̄R) of the resamples by calculating the average Kullback
Leibler divergence between normalized k-mer distributions for NR resamples (NR=10) with size N and using
all the sequences in Xi for the ith 16S rRNA sample: D̄Ri(N,k,NR) =

1
NR

∑∀p∈{1,2,··· ,NR}DKL(θk(x̃ip),θk(Xi)),
where |x̃il| = N; ∀l ∈ {1,2, · · · ,NR}. We calculate the average over D̄Ri(N,k)’s for the M 16S rRNA
samples: D̄R(N,k,NR) =

1
M ∑

M
i=1 D̄Ri(N,k,NR).

For the experiments on body-site and the dataset for Crohn’s disease, we measure self-inconsistency
D̄S and unrepresentativeness D̄R for NR = 10 and M = 10 for any 8≥ k ≥ 3 with sampling sizes ranging
from 20 to 10000. Each point in Figure 5 represents the average of 100 (M×NR) resamples belonging
to M randomly selected 16S rRNA samples, each of which is resampled NR = 10 times. Since in the
ecological and organismal datasets each sample is a single sequence, the bootstrapping step is skipped.

k-mer representation
We propose l1 normalized k-mer distribution of 16S rRNA gene sequences as input features for the down-
stream machine learning classification algorithms as well as visualization. Normalizing the representation
allows for having a consistent representation even when the sampling size is changed. For each k-value
we pick a sampling size that gives us a self-consistent and representative representation measured by
D̄S(N,k,NR) and D̄R(N,k,NR) respectively as explained above . MicroPheno provides a parallel python
implementation of k-mer distribution generation for a given sampling size.

Classification
Random Forests and linear SVM are the state-of-the-art classical approaches for categorical prediction on
16S rRNA sequencing [32, 35, 40] and in general for many machine learning problems in bioinformat-
ics [65]. These two approaches, which are respectively instances of non-linear and linear classifiers, are
both adopted in this study. In addition to these classical approaches, we also evaluate the performance of
deep Neural Network classifiers in predicting environments and host phenotypes.

We evaluate and tune the model parameter in a stratified 10 fold cross-validation scheme. In order
to ensure optimizing for both precision and recall we optimize the classifiers for the harmonic mean
of precision and recall, i.e. F1. In particular, to give equal importance to the classification categories,
specifically when we have imbalanced classes, we use macro-F1, which is the average of F1’s over
categories. Finally the evaluation metrics are averaged over the folds and the standard deviation is also
reported.

Classical learning algorithms: We use a one-versus-rest strategy for multi-class linear SVM [66]
and tune parameter C, the penalty term for regularization. Random Forest [67] classifiers are tuned for (i)
the number of decision trees in the ensemble, (ii) the number of features for computing the best node split,
and (iii) the function to measure the quality of a split.

Deep learning: We use the Multi-Layer-Perceptrons (MLP) Neural Network architecture with several
hidden layers using Rectified Linear Unit (ReLU) as the nonlinear activation function. We use softmax
activation function at the last layer to produce the probability vector that can be regarded as representing
posterior probabilities [68]. To avoid overfitting we perform early stopping and also use dropout at hidden
layers [69]. A schematic visualization of our Neural Networks is depicted in Figure 2.

Our objective is minimizing the loss, i.e. cross entropy between output and the one-hot vector
representation of the target class. The error (the distance between the output and the target) is used to
update the network parameters via a Back-propagation algorithm using Adaptive Moment Estimation
(Adam) as the optimizer [70].

We start with a single hidden layer and incrementally increase the number of layers with systematic
exploration of the number of hidden units and dropout rates to find a proper architecture. We stop adding
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layers when increasing the number of layers does not result in achieving a higher macro-F1 anymore. In
addition, for the visualization of samples as explained later in 2.2 we use the output of the (n−1)th hidden
layer.

Figure 2. General architecture of the MLP Neural Networks that
have been used in this study for multi-class classification of
environment and host phenotypes.

Implementations: MicroPheno
uses implementations of Random
Forest and SVM in the Python
library scikit-learn [71] and
deep Neural Networks are imple-
mented in the Keras6 deep learn-
ing framework using TensorFlow
back-end.

Visualization
In order to project 16S rRNA
sequencing samples to 2D for
visualization purposes, we ex-
plore Principal component anal-

ysis (PCA) [72] as well as t-Distributed Stochastic Neighbor Embedding (t-SNE) [73] as instances of
respectively linear and non-linear dimensionality reduction methods. In addition, we explore the use of su-
pervised deep representation learning in visualization of data [74], i.e. we visualize the activation function
of the last hidden layer of the Neural Network trained for prediction of environments/host phenotypes to
be compared with unsupervised methods. More details on these methods are provided as supplementary
materials.

3 Results
In this section, the results are organized based on datasets. As discussed in Section 2.2 we have several
choices in each step in the computational workflow: choosing the value of k in k-mer, the sampling rate,
and the classifiers. To explore the parameter space more systematically we followed the steps demonstrated
in Figure 3. (i) In the first step for each value of 8 ≥ k ≥ 3 we pick a stable sample size based on the
output of bootrapping. (ii) As the next step, we perform the classification task using tuned Random Forest
for different k values and their selected sampling sizes based on boostrapping. We selected Random Forest
because we found it easy to tune in addition to the fact that it outperforms linear SVM in many cases.
(iii) As the third step, for a selected k we investigate the role of sampling size (N) in classification. (iv)
Finally, we compare different classifiers for the selected k and N. We also compare the performance of our
proposed k-mer features with that of OTU features in classification tasks.

3.1 Body-site identification
• (i) Bootstrapping for sampling rate selection for k-mers: Higher k values require higher sam-

pling rates to produce self-consistent and representative representations (Figure 5). For each k,
the interval that D̄S and D̄R converge to their minimum values show a propoer range for picking a
sampling size resulting in self-consistent and representative representations.
• (ii) Classification for different values of k with a sampling size selected based on the out-

put of bootstrapping: Interestingly, using only 3-mer features with a very low sampling rate
(≈20/15000=0.0013) provides a relatively high performance for 5-way classification. The value of

6https://keras.io/
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Figure 3. Steps we take to explore parameters for the representations and how we choose the classifier for
prediction of the phenotype of interest in this study

macro-F1 increases with the value of k from 3 to 6, but increasing k further than that does not have
any additional effect on macro-F1 (Table 1, step (ii)).
• (iii) Exploring the sampling size (N) for a selected k-mer: For a selected k-value (k=6), using

Random Forest classifier for different sampling sizes are presented in Table 1, step (iii). The results
suggest that changing the sampling size from 0.6% to 100% of the sequences will not change
the classification results significantly, suggesting that in body-site identification, a very shallow
sub-sampling of the sequences is sufficient for a reliable prediction. Using more sequences does
not necessarily increase the discriminative power and may even result in over-fitting. We selected a
sampling size of 5000 for 6-mers for comparison between classifiers in the next step.
• (iv) Comparison of classifiers for the selected N, k: For selected values of k, N, the results of the

body-site prediction task using Random Forest, SVM, and Neural Network classifiers are provided
(Table 1, step (iv)). Random Forest classifier obtained the top macro-F1 (0.84) for this 5-way
classification.
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Figure 4. The confusion matrix for the classification of 5
major body-sites, using Random Forest classifier in a 10xfold
cross-validation scheme. The presented body-sites are saliva (o:
oral), mid-vagina (u: urogenital), anterior nares (n: nasal),
stool (g: gut), and posterior fornix (u: urogenital).

The confusion matrix in Figure 4 shows
that the most difficult decision for the classi-
fier is to distinguish between mid vagina and
posterior fornix, both of which are urogen-
ital body-sites. The visualizations of body-
site samples obtained through using PCA,
t-SNE, and t-SNE on the activation function
of the last layer of the trained 5-layered Neu-
ral Network are presented in Figure 6. These
results suggest that supervised training of
representations using Neural Networks pro-
vides a non-linear transformation of data that
can discriminate between dissimilar body-
sites with reasonably accuracy. As shown in
the last row of Table 1, combining the uro-
genital body-sites increases the macro-F1 to
0.99±0.01 using the Neural Network.
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(i) Self-inconsistency D̄S, with respect to resample size (N)
demonstrated for different k values in the body-site dataset
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(ii) Unrepresentativeness D̄R, with respect to resample size (N)
demonstrated for different k values in the body-site dataset
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Figure 5. Measuring (i) self-inconsistency (D̄S), and unrepresentativeness (D̄R) for the body-site dataset.
Each point represents an average of 100 resamples belonging to 10 randomly selected 16S rRNA samples. Higher k
values require higher sampling rates to produce self-consistent and representative samples.

Step Representation Resample size/≈15000/fasta Classifier
Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

(ii)

3-mers 20

RF

0.84 ± 0.02 0.84 ± 0.02 0.84 ± 0.02 0.75 ± 0.03 0.75 ± 0.03 0.74 ± 0.03
4-mers 100 0.86 ± 0.03 0.86 ± 0.03 0.86 ± 0.03 0.77 ± 0.03 0.77 ± 0.03 0.77 ± 0.03
5-mers 500 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03
6-mers 2000 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.85 ± 0.05 0.85 ± 0.04 0.84 ± 0.05
7-mers 5000 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.85 ± 0.05 0.85 ± 0.05 0.85 ± 0.05
8-mers 8000 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.85 ± 0.05 0.84 ± 0.05 0.84 ± 0.05

(iii) 6-mers

100

RF

0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.82 ± 0.04 0.82 ± 0.03 0.81 ± 0.03
1000 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.83 ± 0.04 0.83 ± 0.04 0.83 ± 0.04
2000 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.85 ± 0.05 0.85 ± 0.04 0.84 ± 0.05
5000 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.85 ± 0.04 0.84 ± 0.04 0.84 ± 0.04

10000 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.84 ± 0.05 0.84 ± 0.05 0.84 ± 0.05
All sequences 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.84 ± 0.05 0.84 ± 0.04 0.84 ± 0.05

(iv) 6-mers 5000
RF 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.85 ± 0.04 0.84 ± 0.04 0.84 ± 0.04

SVM 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.76 ± 0.06 0.76 ± 0.03 0.74 ± 0.04
DNN-5 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.79 ± 0.02 0.79 ± 0.03 0.79 ± 0.02

- 6-mers 5000 DNN-4 (4 classes) 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Table 1. The results for classification of major body-sites using k-mer representations. The set of rows
matches the steps (ii to iv) mentioned in Figure 3, i.e k-mer selection, N (sample size) selection, and finally selection
of the classifier. The classifiers (Random Forest, Support Vector Machine and Neural Network classifiers) are tuned
and evaluated in a stratified 10xfold cross-validation setting. The last row shows the Neural Network’s performance
in the classification of body-sites when the urogenital body-sites are combined.
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(ii) t-SNE over 6-mer representations
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Figure 6. Visualization of the body-site dataset using different projection methods: (i) PCA over 6-mer
distributions with unsupervised training, (ii) t-SNE over 6-mer distributions with unsupervised training, (iii)
visualization of the activation function of the last layer of the trained Neural Network (projected to 2D using t-SNE).

Features Classifiers
Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

6-mer features (size: 4096)
RF 0.9 ± 0.03 0.9 ± 0.03 0.9 ± 0.03 0.85 ± 0.04 0.84 ± 0.04 0.84 ± 0.04
SVM 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.76 ± 0.06 0.76 ± 0.03 0.74 ± 0.04

OTU features (size: 20589)
RF 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.83 ± 0.03 0.83 ± 0.03 0.83 ± 0.03
SVM 0.85 ± 0.03 0.85 ± 0.03 0.85 ± 0.03 0.77 ± 0.05 0.78 ± 0.04 0.76 ± 0.04

Table 2. Comparison of k-mer and OTU features in body-site identification.

Comparison of k-mer and OTU features in body-site identification
A comparison between OTU features and k-mer representations in body-site identification is presented
in Table 2. For this comparison, Random Forest classifier (as an instance of non-linear classifier) and
linear SVM (as an instance of linear classifier) have been used, tuned and evaluated in a stratified 10xfold
cross-validation setting. Our results suggest that for both k-mer features and OTUs, Random Forest is the
best choice. In addition, with almost 1

5 of the size of OTU features and in spite of being considerably less
expensive to calculate, k-mer marginally outperforms OTU features in body-site identification.

3.2 Crohn’s disease prediction
• (i) Bootstrapping for sampling rate selection for k-mers: Similar to bootstrapping for the body-

site dataset (Figure 5), D̄S and D̄R for different values of k with respect to sampling sizes were
calculated. As the structure of the curve is similar to the body-site dataset, in order to avoid
redundancy the figure is provided as supplementary material.
• (ii) Classification for different values of k with a sampling size selected based on the output

of bootstrapping: Choosing k=6 with a sampling size of 2000 (≈2,000/38,000 = 0.05) provides us
a macro-F1 of 0.75 which is the minimum k with top performance (Table 3, step (ii)).
• (iii) Exploring the sampling size (N) for a selected k-mer: For a selected k-value (k=6), using

Random Forest classifier for different sampling sizes are presented in Table 3, step (iii). Increasing
the sampling size from 100 (100/38000=0.003) to 5000 (5000/38000=0.13) increases the macro-F1
from 0.7 to 0.75. In addition, using all sequences instead of 0.13 of them in each sample, does not
increase the discriminative power.
• (iv) Comparison of classifiers for the selected N, k: For selected values of k, N, the results of

the Crohn’s disease prediction using Random Forest, SVM, and Neural Network classifiers are
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Figure 7. Visualization of the Crohn’s disease dataset using different projection methods: (i) PCA over
6-mer distributions with unsupervised training, (ii) t-SNE over 6-mer distributions with unsupervised training, (iii)
visualization of the activation function of the last layer of the trained Neural Network (projected to 2D using t-SNE).

Step Representation Resample size/≈38000/fasta Classifier
Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

(ii)

3-mers 20

RF

0.62 ± 0.05 0.62 ± 0.05 0.62 ± 0.05 0.62 ± 0.05 0.61 ± 0.05 0.61 ± 0.05
4-mers 100 0.7 ± 0.05 0.7 ± 0.05 0.7 ± 0.05 0.69 ± 0.05 0.69 ± 0.05 0.69 ± 0.05
5-mers 500 0.74 ± 0.05 0.74 ± 0.05 0.74 ± 0.05 0.74 ± 0.05 0.74 ± 0.05 0.74 ± 0.05
6-mers 2000 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04
7-mers 5000 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04
8-mers 8000 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04

(iii) 6-mers

100

RF

0.71 ± 0.04 0.71 ± 0.04 0.71 ± 0.04 0.71 ± 0.04 0.7 ± 0.04 0.7 ± 0.04
1000 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.76 ± 0.04 0.75 ± 0.04 0.75 ± 0.04
2000 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04
5000 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.75 ± 0.04 0.75 ± 0.04

10000 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.05 0.75 ± 0.04 0.75 ± 0.05
All sequences 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.05 0.75 ± 0.04 0.75 ± 0.05

(iv) 6-mers 5000
RF 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.75 ± 0.04 0.75 ± 0.04

SVM 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.67 ± 0.04 0.67 ± 0.04
DNN-7 0.7 ± 0.02 0.7 ± 0.02 0.7 ± 0.02 0.7 ± 0.03 0.7 ± 0.02 0.7 ± 0.03

Table 3. The results for classification of Crohn’s disease prediction using k-mer representations. The set of
rows matches the steps (ii to iv) mentioned in Figure 3, i.e k-mer selection, N (sample size) selection, and finally
selection of the classifier. The classifiers (Random Forest, Support Vector Machine and Neural Network classifiers)
are tuned and evaluated in a stratified 10xfold cross-validation setting.

provided (Table 3, step (iv)). Random Forest classifier obtained the top macro-F1 (0.75) for this
binary classification.

The projection of the Crohn’s disease dataset using with PCA and t-SNE over raw k-mer representations,
as well as t-SNE over the representation learned though the supervised learning of the Neural Network are
visualized in Figure 7. The trained Neural Network provides a non-linear transformation of data that can
identify subjects diagnosed with Crohn’s disease with reasonable performance.

Comparison of k-mer and OTU features in Crohn’s disease classification
For a comparison between OTU features and our proposed k-mer representations in detecting Crohn’s
disease from metagenomic samples, the Random Forest classifier (as an instance of non-linear classifiers)
and linear SVM (as an instance of linear classifiers) were tuned and evaluated in a stratified 10xfold
cross-validation. For both k-mer features and OTUs, the Random Forest classifier performed best (Table 4).
In addition, even though only half of the number of features were used and in spite of being considerably

12/19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2018. ; https://doi.org/10.1101/255018doi: bioRxiv preprint 

https://doi.org/10.1101/255018
http://creativecommons.org/licenses/by-nc-nd/4.0/


Features Classifiers
Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

6-mer features (size: 4096)
RF 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.76 ± 0.04 0.75 ± 0.04 0.75 ± 0.04
SVM 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.67 ± 0.04 0.67 ± 0.04

OTU features (size: 9511)
RF 0.74 ± 0.04 0.74 ± 0.04 0.74 ± 0.04 0.74 ± 0.04 0.74 ± 0.04 0.74 ± 0.04
SVM 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.04

Table 4. Comparison of k-mers and OTU features in the detection of the Crohn’s disease phenotype. For
this comparison, Random Forest classifier (as an instance of non-linear classifiers) and linear SVM (as an instance
of linear classifiers) have been used. The classifiers are tuned and evaluated in a stratified 10xfold cross-validation
setting.

Step Representation Dataset Classifier
Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

(ii)

3-mers

ECO-18K RF

0.6 ± 0.01 0.6 ± 0.01 0.6 ± 0.01 0.63 ± 0.02 0.6 ± 0.01 0.57 ± 0.01
4-mers 0.67 ± 0.01 0.67 ± 0.01 0.67 ± 0.01 0.7 ± 0.01 0.67 ± 0.01 0.65 ± 0.01
5-mers 0.72 ± 0.01 0.72 ± 0.01 0.72 ± 0.01 0.74 ± 0.01 0.72 ± 0.01 0.71 ± 0.01
6-mers 0.75 ± 0.01 0.75 ± 0.01 0.75 ± 0.01 0.76 ± 0.01 0.75 ± 0.01 0.73 ± 0.01
7-mers 0.74 ± 0.01 0.74 ± 0.01 0.74 ± 0.01 0.76 ± 0.01 0.74 ± 0.01 0.73 ± 0.01
8-mers 0.72 ± 0.01 0.72 ± 0.01 0.72 ± 0.01 0.74 ± 0.01 0.72 ± 0.01 0.71 ± 0.01

(iv) 6-mers ECO-18K
RF 0.75 ± 0.01 0.75 ± 0.01 0.75 ± 0.01 0.76 ± 0.01 0.75 ± 0.01 0.73 ± 0.01

SVM 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01
DNN-3 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.01

(iv) 6-mers
ECO-180K RF 0.83 ± 0.0 0.83 ± 0.0 0.83 ± 0.0 0.84 ± 0.0 0.83 ± 0.0 0.83 ± 0.0

(10x larger)
SVM 0.86 ± 0.0 0.86 ± 0.0 0.86 ± 0.0 0.87 ± 0.01 0.86 ± 0.0 0.86 ± 0.0

DNN-5 0.88 ± 0.0 0.88 ± 0.0 0.88 ± 0.0 0.88 ± 0.0 0.88 ± 0.0 0.88 ± 0.0

Table 5. The results for the task of selecting between 18 ecological environments. The classifiers (Random
Forest, Support Vector Machine and Neural Network classifiers) are tuned and evaluated in a stratified 10xfold
cross-validation setting over both ECO-18K and ECO-180K datasets.

less expensive to calculate, k-mers marginally outperformed OTU features in the detection of Crohn’s dis

3.3 Ecological environment prediction
• (ii) Classification for different values of k: As stated before, for the ecological and organismal

datasets we do not need to perform resampling as we classify single 16S rRNA gene representative
sequences. We thus can skip steps (i) and (iii) (Figure 3). Step (ii) in Table 5, shows the effect of
k in the performance of the classification of the 18 environments for the ECO-18K dataset. The
result shows that k=6 provides a better classification performance with a macro-F1 of 0.73 which is
relatively high for a 18-way classification (has a mere 0.06 chance of randomly occurring).
• (iv) Comparison of classifiers for the selected k: For selected values of k the results of the

environment prediction using Random Forest, SVM, and Neural Network classifiers are provided
(Table 5, step (iv), ECO-18K dataset). SVM classifier obtained the top macro-F1 (0.79) for 18-way
classification. In order to see the effect of increasing the number of data points in classification
performance we repeat the classifier comparison (step iv) for the ECO-180K dataset. The results are
summarized in Table 5 showing that feeding more training instances results in better training for the
deep learning approach, outperforming SVM and achieving a macro-F1 of 0.88, which is very high
for a 18-way classification framework.

In training the Neural Networks for the ECO-18K dataset, increasing the number of hidden layers
from 3 to more did not help result in improvements. However, using the ECO-180K dataset, which is 10
times larger, allowed us to train a deeper network increasing the macro-F1 by 5 percent going from 3
layers to 5 layers. Increasing the number of layers further did not result in any improvements.
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(iii) t-SNE / activation function of the last layer of neural network
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Figure 8. Visualization of 18 ecological microbial environments using different projection methods: (i)
PCA over 6-mer distributions with unsupervised training, (ii) t-SNE over 6-mer distributions with unsupervised
training, (iii) visualization of the activation function of the last layer of the trained Neural Network (projected to 2D
using t-SNE).

Neural Network Visualization
Visualizations of representative 16S rRNA gene sequences in 18 ecological environments obtained through
using PCA, t-SNE, and t-SNE on the activation function of the last layer of the trained Neural Network are
presented in 8. For ease of visualization, we randomly picked 100 samples per class. These results suggest
that supervised training of representations using Neural Networks provides a non-linear transformation
of data containing information about high-level similarities between environments in the sub-plot on the
right (scatter plot (iii)), where such structures appeared in the visualization only when more hidden layers
were used: (i) On the left, the environments containing water are clustered in a dense neighborhood:
marine, aquatic, freshwater, hot springs, bioreactor sludge (description in the dataset: The sludge inside
the bioreactor that treats wastewater.), groundwater, and rhizosphere (an environment where plants, soil,
water, microorganisms, and nutrients meet and interact). (ii) In the middle we have environments labeled
related to sediment: sediment, freshwater sediment, marine sediment, and soil and. (iii) Ant fungus garden
is close to hydrocarbon. A previous study confirms that chemical analysis of ant fungus gardens reports
the presence of hydrocarbons, a class of chemical compounds found commonly on insect cuticles [75].
(iv) Environments containing food like food, food fermentation, and compost are at the bottom of the plot.
(i) Finally, artificial and industrial environments like bioreactor and activated sludge are clustered on the
left of the sub-plot.

3.4 Organismal environment identification
• (ii) Classification for different values of k: The results show that k=6 and 7 provide a high

classification macro-F1 of 0.87 for 5 classes (0.2 chance of randomly occurring), step (ii) in Table 6.
• (iv) Comparison of classifiers for the selected k: For selected values of k the results of the

organism prediction using Random Forest, SVM, and Neural Network classifiers are provided
(Table 6, step (iv)). SVM classifier obtained the top macro-F1 (0.88) for 5-way classification.

4 Discussion
In this work, we present MicroPheno, a new approach for environments and host phenotypes prediction
using normalized k-mer distribution of 16S rRNA gene sequences over shallow sub-samples. We divide
our discussion of the results of this study into three main components: (1) the use of k-mers versus OTUs,

14/19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2018. ; https://doi.org/10.1101/255018doi: bioRxiv preprint 

https://doi.org/10.1101/255018
http://creativecommons.org/licenses/by-nc-nd/4.0/


Step Representation Dataset Classifier
Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

(ii)

3-mers

5GUTS-3100 RF

0.8 ± 0.02 0.8 ± 0.02 0.8 ± 0.02 0.8 ± 0.02 0.8 ± 0.02 0.79 ± 0.02
4-mers 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.83 ± 0.01
5-mers 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.85 ± 0.02
6-mers 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01
7-mers 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.88 ± 0.02 0.87 ± 0.01 0.87 ± 0.01
8-mers 0.86 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.87 ± 0.01 0.86 ± 0.01 0.86 ± 0.01

(iv) 6-mers 5GUTS-3100
RF 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01

SVM 0.88 ± 0.02 0.88 ± 0.02 0.88 ± 0.02 0.89 ± 0.01 0.88 ± 0.02 0.88 ± 0.02
DNN-5 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01

Table 6. The results for the task of classifying 5 organismal environments belonging to 5 organisms’ gut.
The classifiers (Random Forest, Support Vector Machine and Neural Network classifiers) are tuned and evaluated in
a stratified 10xfold cross-validation setting over 5GUTS-3100 dataset.

(2) the benefits of shallow sub-sampling, and (3) classical methods versus the deep learning approach.

4.1 K-mers versus OTUs
In order to evaluate MicroPheno, we compared our proposed k-mer representations with OTU features in
two tasks of body-site identification and Crohn’s disease classification. We replicated the state-of-the-art
approach, i.e. Random Forest over OTU features, on datasets larger than those that had been previously
explored. We showed that k-mer features outperform conventional OTUs, while having several advantages
over OTUs, as listed below:

• k-mer representations are easy to compute at no computational cost for any type of alignment to
references or tasks of finding pair-wise sequence similarity within samples as needed in OTU-picking
pipelines. Just to get an idea of the computational efficiency of k-mers calculation in comparison
with OTUs, note that OTU picking for the Crohn’s disease dataset of 1359 samples takes more
than 5 hours using 5 threads, while 6-mer distribution calculation took around 5 minutes using the
optimal sampling size (N) for classification using the same number of threads.
• Taxonomy-independent analysis is often the preferred approach for amplicon sequencing when the

samples contains unknown taxa. k-mer features can be used without making any assumptions about
the taxonomy. However, OTU-picking pipelines make assumptions about the taxonomy as discussed
in 1.2; therefore they can even be phylogenetically incoherent.
• k-mer distribution is a well-defined and stable representation, while OTUs are sensitive to the

pipeline and the parameters
• Sequence similarities are naturally incorporated in the k-mer representations for the downstream

learning algorithm, but with grouping sequences into certain categories, the sequence similarities
between OTUs are ignored
• No need for full length sequencing of 16S rRNA: using short k-mers (k=6) suggests that even cheaper

technologies offering very short length sequencing of 16S can be sufficient for the prediction of the
phenotype of interest.

NO-FREE-LUNCH; and the main disadvantage of k-mer features over OTUs is that, using short
k-mers make it more difficult to trace the relevant taxa to the phenotype of interest. When such an analysis
is needed using OTUs or increasing the size of k would be an alternative solution. However, as long as
prediction is concerned, the k-mer representation seems to be the best choice for an accurate and rapid
detection/diagnosis over 16S rRNA sequencing samples.
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4.2 Shallow sub-sampling
We proposed a bootstrapping framework to investigate the consistency and representativeness of k-mer
distribution for different sampling rates. Our results suggest that depending on the k-mer size even
very low sub-sampling rates (0.001 to 0.1) (for k between 3 to 7) not only can provide a consistent
representation, but can also result in better predictions while possibly avoiding overfitting. Setting aside
the save in preprocessing time as a natural benefit of sampling, this result also suggest that at least for
similar phenotypes of interest, shallow sequencing of the microbial community would be sufficient for an
accurate prediction.

4.3 Classical classifiers versus Deep learning
To the best of our knowledge this paper for the first time explores the use of deep learning for envi-
ronment/host phenotype prediction of 16S rRNA sequences. Studying the role of dataset size in the
classification of ecological environments showed that for large datasets using deep learning provides us
with more accurate predictions. However, when the number of samples are not large enough, Random
Forests performs better on both OTUs and k-mer features. In addition, we observed that in the case of
classification over representative sequences as opposed to samples (pool of sequences), SVM works better
than Random Forest classifier.

Another advantage of using deep learning in classification was that supervised training of a proper
representation of data results in a more discriminative representation for the downstream visualization
compared to the unsupervised methods (PCA and t-SNE on the raw k-mer distributions). In the cases of
body-site identification and more clearly in ecological environment classification, the model was able to
extract more high-level similarities between the environments as detailed in 3.3.

5 Conclusion
A new approach for environment/host phenotype prediction on 16S rRNA gene sequencing has been
presented based on k-mer representations of shallow sub-samples, outperforming the computationally
costly OTU features in the two tasks of body-site identification and Crohn’s disease classification. This
result also suggests the sufficiency of a shallow and short length sequencing of 16S rRNA sequences for
phenotype prediction purposes. Deep learning methods as well as classical approaches were explored for
the classification of the the environments/phenotypes. In addition, we showed that k-mer features can
reliably predict representative 16S rRNA gene sequences of 18 ecological environments, and 5 organismal
environments with high macro-F1 scores of 0.88 and 0.87. We showed that in the presence of large
datasets, deep learning can outperform classical methods such as Random Forest and SVM. Furthermore,
PCA, t-SNE, and supervised deep representation learning were explored in this paper for visualization of
microbial samples/sequences of different phenotypes.
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55. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinforma.
27, 764–770 (2011). DOI 10.1093/bioinformatics/btr011. 1006.1266v2.

56. McHardy, A. C., Martı́n, H. G., Tsirigos, A., Hugenholtz, P. & Rigoutsos, I. Accurate phylogenetic classification of
variable-length DNA fragments. Nat. Methods 4, 63–72 (2007). DOI 10.1038/nmeth976.

57. Patil, K. R. et al. Taxonomic metagenome sequence assignment with structured output models (2011). DOI
10.1038/nmeth0311-191. NIHMS150003.

58. Wood, D. E. & Salzberg, S. L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome
Biol. 15 (2014). DOI 10.1186/gb-2014-15-3-r46. /www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=3006164{&}tool=pmcentrez{&}rendertype=abstract.

59. Kawulok, J. & Deorowicz, S. CoMeta: Classification of metagenomes using k-mers. PLoS ONE 10 (2015). DOI
10.1371/journal.pone.0121453.

60. Menzel, P. & Krogh, A. Kaiju : Fast and sensitive taxonomic classification for metagenomics. bioRxiv 7, 1–9 (2015). URL
http://dx.doi.org/10.1038/ncomms11257. DOI 10.1101/031229.
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