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Motivation: Microbial communities play important roles in the function and maintenance of various
biosystems, ranging from the human body to the environment. A major challenge in microbiome research
is the classification of microbial communities of different environments or host phenotypes. The most
common and cost-effective approach for such studies to date is 16S rRNA gene sequencing. Recent
falls in sequencing costs have increased the demand for simple, efficient, and accurate methods for
rapid detection or diagnosis with proved applications in medicine, agriculture, and forensic science. We
describe a reference- and alignment-free approach for predicting environments and host phenotypes from
16S rRNA gene sequencing based on k-mer representations that benefits from a bootstrapping framework
for investigating the sufficiency of shallow sub-samples. Deep learning methods as well as classical
approaches were explored for predicting environments and host phenotypes.
Results: k-mer distribution of shallow sub-samples outperformed the computationally costly Operational
Taxonomic Unit (OTU) features in the tasks of body-site identification and Crohn’s disease prediction.
Aside from being more accurate, using k-mer features in shallow sub-samples allows (i) skipping
computationally costly sequence alignments required in OTU-picking, and (ii) provided a proof of
concept for the sufficiency of shallow and short-length 16S rRNA sequencing for phenotype prediction. In
addition, k-mer features predicted representative 16S rRNA gene sequences of 18 ecological environments,
and 5 organismal environments with high macro-F1 scores of 0.88 and 0.87. For large datasets, deep
learning outperformed classical methods such as Random Forest and SVM.
Availability: The software and datasets are available at https://llp.berkeley.edu/micropheno.

1 Introduction
Microbial communities have important functions relevant to supporting, regulating, and in some cases
causing unwanted conditions (e.g. diseases) in their hosts/environments, ranging from organismal
environments, like the human body, to ecological environments, like soil and water. These communities
typically consist of a variety of microorganisms, including eukaryotes, archaea, bacteria and viruses. The
human microbiome is the set of all microorganisms that live in close association with the human body.
It is now widely believed that changes in the composition of our microbiomes correlate with numerous
disease states, raising the possibility that manipulation of these communities may be used to treat diseases.
Normally, the microbiota (particularly the intestinal microbiota) of the microbiome play several important
roles in humans, which include: (i) prevention of pathogen growth, (ii) education and regulation of the
host immune system, and (iii) providing energy substrates to the host [1]. Consequently, dysbiosis of the
human microbiome can promote several diseases, including asthma [2, 3], irritable bowel syndrome [4,
5], Clostridium difficile infection [6], chronic periodontitis [7, 8], cutaneous leishmaniasis [9], obesity [10,
11], chronic kidney disease [12], Ulcerative colitis [13], and Crohns disease [14, 15]. The human
microbiome appears to play a particularly important role in the development of Crohns disease. Crohns
disease is an inflammatory bowel disease (IBD) with a prevalence of approximately 40 per 100,000
and 200 per 100,000 in children and adults, respectively [16].

Microbiomes present in the environment also serve important functions, such as nutrient cycling [17].
Due to differences in nutrient availability and environmental conditions, microbiomes in different envi-
ronments are each characterized by unique structures and microbial compositions [18–21]. Furthermore,
each microbiome plays a unique role in the environment. For instance, the ocean microbiome generates
half of the primary production on Earth [19]. The soil microbiome surrounding the root of plants has
a great impact on plant fertility and growth [22]. Additionally, analyzing microbial communities in
drinking water is one of the primary concerns of the environmental sciences [18].
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The starting point in data collection for many of the above mentioned projects is 16S rRNA gene
sequencing of microbial samples [23]. There are a number of features that make the 16S rRNA gene
ideal for use as a taxonomic ‘fingerprint’ for microbiome composition characterization. First, the
16S rRNA gene is highly conserved across bacteria and archaea. Secondly, the gene consists of both
conserved regions, for which universal species-independent PCR primers may be directed against, and
nine hypervariable regions (V1-V9), along which species-specific sequence differences may accumulate
to allow for differential identification of species [24]. Sequencing of specific hypervariable regions of the
16S rRNA gene may be performed for determination of microbial community composition [25]. After
the 16S rRNA hypervariable regions are sequenced from a microbial sample, the obtained sequences
are then processed using bioinformatics software (such as QIIME [26, 27], Mothur [28], or Usearch [29]]
) and clustered into groups of closely related sequences referred to as Operational Taxonomic Units
(OTUs), which may then be used to assist in the functional profiling of microbial samples. Later in§1.2
we discuss the pros and cons of OTU features in details.

1.1 Machine learning for environments or host phenotypes classification
Several recent studies predicted the environment or host phenotypes using 16S gene sequencing data
for body-sites [30, 31], disease state [32–35], ecological environment quality status prediction [36], and
subject prediction for forensic science [37, 38]. In all, OTUs served as the main input feature for the
down stream machine learning algorithms. Random Forest and then, ranking second, linear Support
Vector Machine (SVM) classifiers were reported as the most effective classification approaches in these
studies [31, 39, 34].

Related prior work on body-site classification [30, 31] used the following datasets: Costello Body
Habitat (CBH - 6 classes), Costello Skin Sites (CSS - 12 classes) [40], and Pei Body Site (PBS - 4 classes
) [31]. An extensive comparison of classifiers for body-site classification over CBH, CSS, and PBS
on top of OTU features has been performed by Statnikov et al [31]. The best accuracy levels measured
by relative classifier information (RCI) achieved by using OTU features are reported as 0.784, 0.681,
and 0.647 for CBH, CSS, and RCI respectively. Due to the insufficiency of the number of samples (on
average 57 samples per class for CBH, CSS, and PBS) as well as the unavailability of raw sequences for
some of the datasets mentioned above, instead of using the same dataset we replicate the state-of-the-art
approach suggested in [31], i.e. Random Forest and SVM over OTU features for a larger dataset (Human
Microbiome Project dataset). We then compare OTU features with k-mer representations. Working on a
larger dataset allows for a more meaningful investigation and better training for deep learning approaches.

Detecting disease status based on 16S gene sequencing is becoming more and more popular, with
applications in the prediction of Type 2 Diabetes [35] (patients: 53 samples, healthy:43 - Best accuracy:
0.67), Psoriasis (151 samples for 3 classes - Best accuracy: 0.225), IBD (patients: 49 samples, healthy:59
- Best AUC:0.95) [32], (patients: 91 samples, healthy: 58 samples - Best AUC:0.92) [33]. Similar to
body-site classification datasets, the datasets used for disease prediction were also relatively small. In this
paper, we use the Crohn’s disease dataset [14] with 1359 samples (patients: 731 samples, negative class:
628 samples) for evaluating our proposed method and then compare it with the use of OTU features.

We focus on machine learning approaches for classification of environments or host phenotypes of
16S rRNA gene sequencing data, which is the most popular and cost-effective sequencing method for
the characterization of microbiome to date [39]. Studies on the use of machine learning for predicting
microbial phenotype instead of environments/host phenotype [41, 42], as well as predictions based on
shotgun metagenomics and whole-genome microbial sequencing are beyond the scope of this paper,
although we believe that one may easily adapt the proposed approach to shotgun metagenomics, similar
to the study by Cui et al. on IBD prediction [43].

Recently, deep learning methods became popular in various applications of machine learning in
bioinformatics [44, 45] and in particular in metagenomics [46]. However, to the best of our knowledge
this paper is the first study exploring environment and host phenotype prediction from 16S rRNA gene
sequencing data using deep learning approaches.
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1.2 16S rRNA gene sequence representations
OTU representation
As reviewed in§1.1, prior machine learning works on environment/host phenotype prediction have been
mainly using OTU representations as the input features to the learning algorithm. Almost all popular 16S
rRNA gene sequence processing pipelines cluster sequences into OTUs based on their sequence similari-
ties utilizing a variety of algorithms [47, 27]. QIIME allows OTU-picking using three different strategies:
(i) closed-reference OTU-picking: sequences are compared against a marker gene database (e.g. Green-
genes [48] or SILVA [49]) to be clustered into OTUs and then the sequences different from the reference
genomes beyond a certain sequence identity threshold are discarded. (ii) open-reference OTU-picking:
the remaining sequences after a closed-reference calling go through a de novo clustering. This allows for
using the whole sequences as well as capturing sequences belonging to new communities which are absent
in the reference databases [50]. (iii) pure de novo OTU-picking: sequences (or reads) are only compared
among themselves and no reference database is used. The third strategy is more appropriate for novel
species absent in the current reference. Although OTU clustering reduces the analysis of millions of reads
to working with only thousands of OTUs and simplifies the subsequent phylogeny estimation and multiple
sequence alignment, OTU representations have several shortcomings: (i) All three OTU-picking strategies
involve massive amounts of sequence alignments either to the reference genomes (in closed/opened-
reference strategies) or to the sequences present in the sample (in open-reference and de novo strategies)
which makes them very expensive [51] in comparison with reference-free/alignment-free representations.
(ii) Overall sequence similarity is not a proper condition for grouping sequences and OTUs can be
phylogenetically incoherent. For instance, a single mutation between two sequences is mostly ignored
by OTU-picking algorithms. However, if the mutation does not occur within the sample, it might be a
signal for assigning a new group. In addition, several mutations within a group most likely are not going
to be tolerated by OTU-picking algorithms. However, having the same ratio across samples may suggest
that the mutated sequences belong to the same group [52, 47]. (iii) The number of OTUs and even their
contents are very sensitive to the pipeline and parameters, and this makes them difficult to reproduce [53].

k-mer representations
k-mer count vectors have been shown to be successful input features for performing machine learning on
biological sequences for a variety of bioinformatics tasks [54]. In particular, recently k-mer count features
have been largely used for taxonomic classifications of microbial metagenomics sequences [55–60].
However, to the best of our knowledge, k-mer features have not been explored for phenotypical and
environmental characterizations of 16S rRNA gene sequencing. The advantages of using k-mer features
over OTUs are later discussed in the discussion section.

In this paper we propose using shallow sub-samples for predicting environments and host phenotypes
from 16S rRNA sequencing. Our approach is fast, reference-free and alignment-free, while contributing
in building accurate classifiers outperforming conventional OTU features in body-site identification and
Crohn’s disease classification. We propose a bootstrapping framework to investigate the sufficiency of
shallow sub-samples for the prediction of the phenotype of interest, which proves the sufficiency of
short-length and shallow sequencing of 16S rRNA. In addition, we explore deep learning methods as
well as classical approaches for the classification and show that for large datasets, deep learning can
outperform classical methods. Furthermore, we explore PCA, t-SNE, and supervised deep representation
learning for visualization of microbial samples/sequences of different phenotypes. We also show that
k-mer features can be used to predict representative 16S rRNA gene sequences belonging to 18 ecological
environments and 5 organismal environments with high macro-F1s.

2 Material and Methods
2.1 Datasets
Body-site identification
We employ the metagenomic 16S rRNA gene sequence dataset provided by the NIH Human Microbiome
Project (HMP) [61, 62]1. In particular, we use processed, annotated 16S rRNA gene sequences of up
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to 300 healthy individuals, each sampled at 4 major body-sites (oral, airways, gut, vagina) and up to
three time points. For each major body-site, a number of sub-sites were sampled. We focus on 5 body
sub-sites: anterior nares (nasal) with 295 samples, saliva (oral) with 299 samples, stool (gut) with 325
samples, posterior fornix (urogenital) with 136 samples, and mid vagina (urogenital) with 137 samples,
in total 1192 samples. These body-sites are selected to represent differing levels of spatial and biological
proximity to one another, based on relevance to pertinent human health conditions potentially influenced
by the human microbiome. In order to compare k-mer based approach with state-of-the-art OTU features
we collect the closed-reference OTU representations of the same samples in HMP [62] 2 obtained using
the QIIME pipeline [50].

Crohn’s disease prediction
For the classification of Crohns disease, we use the metagenomics 16S rRNA gene sequence dataset
described in [14]3, which is currently the largest pediatric Crohns disease dataset available. This dataset
included annotated 16S rRNA gene sequence data for 731 pediatric (≤ 17 years old) patients with
Crohns disease and 628 samples verified as healthy or diagnosed with other diseases, making a total
of 1359 samples. The 16S rRNA sequencing dataset was targeted towards the V4 hypervariable region
of the 16S rRNA gene. Similar to the body-site dataset, in order to compare the k-mer based approach
with the approach based on OTU features we collect the OTU representations of the same samples from
Qiita repository 4 obtained using QIIME pipeline [50].

Prediction of the environment for representative 16S rRNA gene sequences
MetaMetaDB provides a comprehensive dataset of representative 16S rRNA gene sequences of various
ecological and organismal environments collected from existing 16S rRNA databases spanning almost
181 million raw sequences. In the MetaMetaDB pipeline, low-quality nucleotides, adaptors, ambiguous
sequences, homopolymers, duplicates, and reads shorter than 200bp, as well as chimera have been
removed and finally 16S rRNA sequences are clustered with 97% identity generating 1,241,213 rep-
resentative 16S rRNA sequences marked by their environment [63]. MetaMetaDB divides its ecological
environments into 34 categories and its organismal environments into 28 categories. We create three
datasets which are subsets of MetaMetaDB to investigate the discriminative power of k-mers in predicting
microbial habitability. Since the sequences in MetaMetaDB were already filtered and semi-identical
sequences were removed, OTU-picking would not be relevant as it would result in an almost one-to-one
mapping between the sequences and OTUs (we verified this using QIIME).

Ecological environment prediction: MetaMetaDB is imbalanced in terms of the number of repre-
sentative sequences per environment. For this study, we pick the ecological environments with more
than 10,000 samples, ending up with 18 classes of ecological environments: activated sludge, ant fungus
garden, aquatic, bioreactor, bioreactor sludge, compost, food, food fermentation, freshwater, freshwater
sediment, groundwater, hot springs, hydrocarbon, marine, marine sediment, rhizosphere, sediment, and
soil 5. We make two datasets out of the sequences in these environments: ECO-18K containing 1000
randomly selected instances per class (a total of 18K sequences) and ECO-180K, which is 10 times larger
than ECO-18K, i.e. contains 10,000 randomly selected instances per class (a total of 180K sequences).

Organismal environment prediction: from the organismal environments in MetaMetaDB we select
a subset containing gut microbiomes of 5 different organisms (bovine gut, chicken gut, human gut,
mouse gut, termite gut) and down-sample each class to the size of the smallest class ending up having
620 sample per class (in total containing 3100 sequences) we call this dataset 5GUTS-3100.

2.2 MicroPheno computational workflow
We describe using deep learning and classical methods for classification of the environments or host
phenotypes of microbial communities using k-mer frequency representations obtained from shallow
sub-sampling of 16S rRNA gene sequences. We propose a bootstrapping framework to confirm the
sufficiency of using a small portion of the sequences within a 16S rRNA sample for determining the
underlying phenotype.
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Figure 1: The components and the data flow in the MicroPheno computational workflow

The MicroPheno computational workflow has the following steps (Figure 1): (i) to find the proper size
N for the sample, such that it stays representative of the data and produces a stable k-mer profile, the 16S
rRNA sequences go through a bootstrapping phase. (ii) Afterwards, the sub-sampled sequences are used
to find the best value for k for classification, to produce the k-mer representations of the samples. (iii)
The k-mer representations are used for classification with Deep Neural Networks (DNN), Random Forest
(RF), and Linear SVM. (iv) Finally, the k-mer representations as well as the supervised representations
trained using DNNs are used for visualization of the 16S rRNA gene sequences or samples. In what
follows, these steps are explained in detail.

Bootstrapping: Confirming the sufficiency of only a small portion of 16S rRNA sequences for envi-
ronment or host phenotype classification is important because (i) sub-sampling reduces the preprocessing
run-time, and (ii) more importantly, it proves that even a shallow 16S rRNA sequencing is enough.
For this purpose we propose a resampling framework to give us quantitative measures for finding the
proper sampling size. Let θk(Xi) be the normalized k-mer distribution of Xi, a set of sequences in the
ith 16S rRNA sample. We investigate whether only a portion of Xi, which we represent as x̃i j, i.e. jth

resample of Xi with sample size N, would be sufficient for producing a proper representation of Xi.
To quantitatively find a sufficient sample size for Xi we propose the following criteria in a resampling
scheme. (i) Self-consistency: resamples for a given size N from Xi produce consistent θk(̃xi j)’s, i.e.
resamples should have similar representations. (ii) Representativeness: resamples for a given size N
from Xi produce θk(̃xi j)’s similar to θk(Xi), i.e. similar to the case where all sequences are used.

We quantitatively define self-inconsistency and unrepresentativeness and seek parameter values that
minimize them. We measure the self-inconsistency (D̄S)of the resamples’ representations by calculating
the average Kullback Leibler divergence among normalized k-mer distributions for NR resamples (here
NR=10) with sequences of size N from the ith 16S rRNA sample:

D̄Si(N,k,NR)=
1

NR(NR−1)∑ ∀p,q
(p6=q)∈{1,2,···,NR}

DKL(θk(̃xip),θk(̃xiq)),

where |x̃il|=N; ∀l∈{1,2,···,NR}. We calculate the average of the values of D̄Si(N,k,NR) over the
M different 16S rRNA samples:

D̄S(N,k,NR)=
1
M∑

M
i=1D̄Si(N,k,NR).

We measure the unrepresentativeness (D̄R) of the resamples by calculating the average Kullback
Leibler divergence between normalized k-mer distributions for NR resamples (NR=10) with size N and
using all the sequences in Xi for the ith 16S rRNA sample:

D̄Ri(N,k,NR)=
1

NR
∑∀p∈{1,2,···,NR}DKL(θk(̃xip),θk(Xi)),

where |x̃il|=N; ∀l∈{1,2,···,NR}. We calculate the average over D̄Ri(N,k)’s for the M 16S rRNA
samples:

D̄R(N,k,NR)=
1
M∑

M
i=1D̄Ri(N,k,NR).

For the experiments on body-site and the dataset for Crohn’s disease, we measure self-inconsistency
5
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D̄S and unrepresentativeness D̄R for NR=10 and M=10 for any 8≥k≥3 with sampling sizes ranging
from 20 to 10000. Each point in Figure 4 represents the average of 100 (M×NR) resamples belonging
to M randomly selected 16S rRNA samples, each of which is resampled NR=10 times. Since in the
ecological and organismal datasets each sample is a single sequence, the bootstrapping step is skipped.

k-mer representation: We propose l1 normalized k-mer distribution of 16S rRNA gene sequences
as input features for the down-stream machine learning classification algorithms as well as visualization.
Normalizing the representation allows for having a consistent representation even when the sampling size
is changed. For each k-value we pick a sampling size that gives us a self-consistent and representative
representation measured by D̄S(N,k,NR) and D̄R(N,k,NR), respectively, as explained above.

Classification: Random Forests and linear SVM are the state-of-the-art classical approaches for
categorical prediction on 16S rRNA sequencing [31, 39, 34] and in general for many machine learning
problems in bioinformatics [64]. These two approaches, which are respectively instances of non-linear and
linear classifiers, are both adopted in this study. In addition to these classical approaches, we also evaluate
the performance of deep Neural Network classifiers in predicting environments and host phenotypes.

We evaluate and tune the model parameter in a stratified 10 fold cross-validation scheme. To ensure
optimizing for both precision and recall, we optimize the classifiers for the harmonic mean of precision
and recall, i.e. F1. In particular, to give equal importance to the classification categories, specifically
when we have imbalanced classes, we use macro-F1, which is the average of F1’s over categories. Finally
the evaluation metrics are averaged over the folds and the standard deviation is also reported.

Classical learning algorithms: We use a one-versus-rest strategy for multi-class linear SVM [65] and
tune parameter C, the penalty term for regularization. Random Forest [66] classifiers are tuned for (i)
the number of decision trees in the ensemble, (ii) the number of features for computing the best node
split, and (iii) the function to measure the quality of a split.

Figure 2: General architecture of the MLP Neural Networks that have been used
in this study for multi-class classification of environment and host phenotypes.

Deep learning: We
use the Multi-Layer-
Perceptrons (MLP) Neu-
ral Network architec-
ture with several hidden
layers using Rectified
Linear Unit (ReLU) as
the nonlinear activation
function. We use the
softmax activation func-
tion at the last layer to
produce the probability
vector that can be re-
garded as representing
posterior probabilities [67]. To avoid overfitting, we perform early stopping and also use dropout at
hidden layers [68]. A schematic visualization of our Neural Networks is depicted in Figure 2. Our
objective is minimizing the loss, i.e. cross entropy between output and the one-hot vector representation
of the target class. The error (the distance between the output and the target) is used to update the
network parameters via a Back-propagation algorithm using Adaptive Moment Estimation (Adam) as the
optimizer [69]. We start with a single hidden layer and incrementally increase the number of layers with
systematic exploration of the number of hidden units and dropout rates to find a proper architecture. We
stop adding layers when increasing the number of layers does not result in achieving a higher macro-F1
anymore. In addition, for the visualization of samples we use the output of the (n−1)th hidden layer.
Later in the results DNN-nL is a short form for a MLP Neural Network with n layers.

Visualization: To project 16S rRNA sequencing samples to 2D for visualization purposes, we explore
Principal Component Analysis (PCA) [70] as well as t-Distributed Stochastic Neighbor Embedding
(t-SNE) [71] as instances of respectively linear and non-linear dimensionality reduction methods. In
addition, we explore the use of supervised deep representation learning in visualization of data [72],
i.e. we visualize the activation function of the last hidden layer of the Neural Network trained for
prediction of environments or host phenotypes to be compared with unsupervised methods. More details
on visualization methods are provided as supplementary materials.
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Implementations: MicroPheno uses implementations of Random Forest, SVM, t-SNE, and PCA in the
Python library scikit-learn [73] and Deep Neural Networks are implemented in the Keras6 deep learning
framework using TensorFlow back-end.

3 Results
In this section, the results are organized based on datasets. As discussed in Section 2.2 we have several
choices in each step in the computational workflow: choosing the value of k in k-mer, the sampling
rate, and the classifiers. To explore the parameter space more systematically we followed the steps
demonstrated in Figure 3. (i) In the first step, for each value of 8≥k≥3, we pick a stable sample size
based on the output of bootstrapping. (ii) We perform the classification task using tuned Random Forest
for different k values and their selected sampling sizes based on boostrapping. We selected Random
Forest because we found it easy to tune and because it oftentimes outperforms linear SVM [31, 64].
(iii) As the third step, for a selected k we investigate the role of sampling size (N) in classification. (iv)
Finally, we compare different classifiers for the selected k and N. We also compare the performance of
our proposed k-mer features with that of OTU features in classification tasks.

Figure 3: Steps we take to explore parameters for the representations and how we choose the classifier for prediction
of the phenotype of interest in this study

3.1 Body-site identification

(i) Bootstrapping
for sampling rate
selection for k-mers:
Higher k values require
higher sampling rates to
produce self-consistent
and representative
representations (Fig-
ure 4). For each k,
we consider a certain
threshold on D̄S and
D̄R to ensure picking a
sampling size resulting
in self-consistent
and representative
representations.

0 2000 4000 6000 8000 10000
Resample size (N)
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(i) Self-inconsistency D̄S, with respect to resample size (N)
demonstrated for different k values in the body-site dataset

k = 3
k = 4
k = 5
k = 6
k = 7
k = 8

0 2000 4000 6000 8000 10000
Resample size (N)

0.00

0.02

0.04

0.06

0.08

0.10

D̄
R
(N
,k

)

(ii) Unrepresentativeness D̄R, with respect to resample size (N)
demonstrated for different k values in the body-site dataset

k = 3
k = 4
k = 5
k = 6
k = 7
k = 8

Figure 4: Measuring (i) self-inconsistency (D̄S), and unrepresentativeness
(D̄R) for the body-site dataset. Each point represents an average of 100 resamples
belonging to 10 randomly selected 16S rRNA samples. Higher k values require
higher sampling rates to produce self-consistent and representative samples.

(ii) Classification for different values of k with a sampling size selected based on the output of
bootstrapping: Interestingly, using only 3-mer features with a very low sampling rate (≈20/15000=0.0013)
provides a relatively high performance for 5-way classification. The value of macro-F1 increases with the
value of k from 3 to 6, but increasing k further than that does not have any additional effect on macro-F1
(Table 1, step (ii)).
(iii) Exploring the sampling size (N) for a selected k-mer: For a selected k-value (k=6), using the
Random Forest classifier for different sampling sizes are presented in Table 1, step (iii). The results
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Step Representation Resample size/≈15000/fasta Classifier
Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

(ii)

3-mers 20

RF

0.84± 0.02 0.84± 0.02 0.84± 0.02 0.75± 0.03 0.75± 0.03 0.74± 0.03
4-mers 100 0.86± 0.03 0.86± 0.03 0.86± 0.03 0.77± 0.03 0.77± 0.03 0.77± 0.03
5-mers 500 0.89± 0.02 0.89± 0.02 0.89± 0.02 0.82± 0.03 0.82± 0.03 0.82± 0.03
6-mers 2000 0.91± 0.03 0.91± 0.03 0.91± 0.03 0.85± 0.05 0.85± 0.04 0.84± 0.05
7-mers 5000 0.91± 0.03 0.91± 0.03 0.91± 0.03 0.85± 0.05 0.85± 0.05 0.85± 0.05
8-mers 8000 0.9± 0.03 0.9± 0.03 0.9± 0.03 0.85± 0.05 0.84± 0.05 0.84± 0.05

(iii) 6-mers

100

RF

0.89± 0.02 0.89± 0.02 0.89± 0.02 0.82± 0.04 0.82± 0.03 0.81± 0.03
1000 0.9± 0.03 0.9± 0.03 0.9± 0.03 0.83± 0.04 0.83± 0.04 0.83± 0.04
2000 0.91± 0.03 0.91± 0.03 0.91± 0.03 0.85± 0.05 0.85± 0.04 0.84± 0.05
5000 0.9± 0.03 0.9± 0.03 0.9± 0.03 0.85± 0.04 0.84± 0.04 0.84± 0.04
10000 0.9± 0.03 0.9± 0.03 0.9± 0.03 0.84± 0.05 0.84± 0.05 0.84± 0.05

All sequences 0.9± 0.03 0.9± 0.03 0.9± 0.03 0.84± 0.05 0.84± 0.04 0.84± 0.05

(iv) 6-mers 5000
RF 0.9± 0.03 0.9± 0.03 0.9± 0.03 0.85± 0.04 0.84± 0.04 0.84± 0.04

SVM 0.86± 0.02 0.86± 0.02 0.86± 0.02 0.76± 0.06 0.76± 0.03 0.74± 0.04
DNN-5L 0.87± 0.01 0.87± 0.01 0.87± 0.01 0.79± 0.02 0.79± 0.03 0.79± 0.02

- 6-mers 5000 DNN-4L (4 classes) 0.99± 0.01 0.99± 0.01 0.99± 0.01 0.99± 0.01 0.99± 0.01 0.99± 0.01

Table 1: The results for classification of major body-sites using k-mer representations. The set of rows
matches the steps (ii to iv) mentioned in Figure 3, i.e k-mer selection, N (sample size) selection, and finally
selection of the classifier. The classifiers (Random Forest, Support Vector Machine and Neural Network classifiers)
are tuned and evaluated in a stratified 10xfold cross-validation setting. The step column refers to the steps in
Figure 3. The last row shows the Neural Network’s performance in the classification of body-sites when the
urogenital body-sites are combined.

suggest that changing the sampling size from 0.6% to 100% of the sequences will not change the
classification results substantially, suggesting that in body-site identification, a very shallow sub-sampling
of the sequences is sufficient for a reliable prediction. Using more sequences does not necessarily
increase the discriminative power and may even result in over-fitting. We selected a sampling size of
5000 for 6-mers (the sampling size with the highest macro-F1 and the minimum standard deviation) for
comparison between classifiers in the next step.

(iv) Comparison of classifiers for the se-
lected N, k: In the body-site prediction task, the
Random Forest classifier obtained the top macro-
F1 (0.84) for this 5-way classification (Table 1,
step (iv)). The confusion matrix in Figure 5 shows
that the most difficult decision for the classifier
is to distinguish between mid vagina and poste-
rior fornix, both of which are urogenital body-
sites. The visualizations of body-site samples
obtained through using PCA, t-SNE, and t-SNE
on the activation function of the last layer of the
trained 5-layered Neural Network are presented
in Figure 6. These results suggest that supervised
training of representations using Neural Networks
provides a non-linear transformation of data that
can discriminate between dissimilar body-sites
with reasonably accuracy. As shown in the last
row of Table 1, combining the urogenital body-
sites increases the macro-F1 to 0.99±0.01 using
the Neural Network.
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Figure 5: The confusion matrix for the classification of
5 major body-sites, using Random Forest classifier in a
10xfold cross-validation scheme. The presented body-sites
are saliva (o: oral), mid-vagina (u: urogenital), anterior nares
(n: nasal), stool (g: gut), and posterior fornix (u: urogenital).

Comparison of k-mer and OTU features in body-site identification: For a comparison between
OTU features and k-mer representations in body-site identification, the Random Forest classifier (as an
instance of non-linear classifier) and linear SVM (as an instance of linear classifier) were tuned and
evaluated in a stratified 10xfold cross-validation setting. Our results suggest that for both k-mer features
and OTUs, Random Forest is the best choice (Table 2). In addition, with almost 1

5 of the size of OTU
features and in spite of being considerably less expensive to calculate, k-mers marginally outperforms
OTU features in body-site identification.
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Figure 6: Visualization of the body-site dataset using different projection methods: (i) PCA over 6-mer
distributions with unsupervised training, (ii) t-SNE over 6-mer distributions with unsupervised training, (iii)
visualization of the activation function of the last layer of the trained Neural Network (projected to 2D using
t-SNE).

Features Classifiers
Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

6-mer features (size: 4096)
RF 0.9± 0.03 0.9± 0.03 0.9± 0.03 0.85± 0.04 0.84± 0.04 0.84± 0.04
SVM 0.86± 0.02 0.86± 0.02 0.86± 0.02 0.76± 0.06 0.76± 0.03 0.74± 0.04

OTU features (size: 20589)
RF 0.89± 0.02 0.89± 0.02 0.89± 0.02 0.83± 0.03 0.83± 0.03 0.83± 0.03
SVM 0.85± 0.03 0.85± 0.03 0.85± 0.03 0.77± 0.05 0.78± 0.04 0.76± 0.04

Table 2: Comparison of k-mer and OTU features in body-site identification.

3.2 Crohn’s disease prediction
(i) Bootstrapping for sampling rate selection for k-mers: Similar to bootstrapping for the body-site
dataset (Figure 4), D̄S and D̄R for different values of k with respect to sampling sizes were calculated. As
the structure of the curve is similar to the body-site dataset, to avoid redundancy, the figure is provided as
supplementary material.
(ii) Classification for different values of k with a sampling size selected based on the output
of bootstrapping: Choosing k=6 with a sampling size of 2000 (≈2,000/38,000 = 0.05) provided a
macro-F1 of 0.75 which is the minimum k with top performance (Table 3, step (ii)).
(iii) Exploring the sampling size (N) for a selected k-mer: For a selected k-value (k=6), using the
Random Forest classifier for different sampling sizes while ncreasing the sampling size from 100
(100/38000=0.003) to 5000 (5000/38000=0.13) increased the macro-F1 from 0.7 to 0.75 (Table 3,
step (iii)). However, using all sequences instead of 0.13 of them in each sample, did not increase the
discriminative power.
(iv) Comparison of classifiers for the selected N, k: For selected values of k and N, the results

of the Crohn’s disease prediction using Random Forest, SVM, and Neural Network classifiers are
provided (Table 3, step (iv)). The Random Forest classifier obtained the top macro-F1 (0.75) for this
binary classification. The projection of the Crohn’s disease dataset using with PCA and t-SNE over
raw k-mer representations, as well as t-SNE over the representation learned though the supervised
learning of the Neural Network are visualized in Figure 7. The trained Neural Network provides
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Figure 7: Visualization of the Crohn’s disease dataset using different projection methods: (i) PCA over
6-mer distributions with unsupervised training, (ii) t-SNE over 6-mer distributions with unsupervised training,
(iii) visualization of the activation function of the last layer of the trained Neural Network (projected to 2D using
t-SNE).

Step Representation Resample size/≈38000/fasta Classifier
Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

(ii)

3-mers 20

RF

0.62± 0.05 0.62± 0.05 0.62± 0.05 0.62± 0.05 0.61± 0.05 0.61± 0.05
4-mers 100 0.7± 0.05 0.7± 0.05 0.7± 0.05 0.69± 0.05 0.69± 0.05 0.69± 0.05
5-mers 500 0.74± 0.05 0.74± 0.05 0.74± 0.05 0.74± 0.05 0.74± 0.05 0.74± 0.05
6-mers 2000 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.75± 0.04
7-mers 5000 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.75± 0.04
8-mers 8000 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.75± 0.04

(iii) 6-mers

100

RF

0.71± 0.04 0.71± 0.04 0.71± 0.04 0.71± 0.04 0.7± 0.04 0.7± 0.04
1000 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.76± 0.04 0.75± 0.04 0.75± 0.04
2000 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.75± 0.04 0.75± 0.04
5000 0.76± 0.04 0.76± 0.04 0.76± 0.04 0.76± 0.04 0.75± 0.04 0.75± 0.04
10000 0.76± 0.04 0.76± 0.04 0.76± 0.04 0.76± 0.05 0.75± 0.04 0.75± 0.05

All sequences 0.76± 0.04 0.76± 0.04 0.76± 0.04 0.76± 0.05 0.75± 0.04 0.75± 0.05

(iv) 6-mers 5000
RF 0.76± 0.04 0.76± 0.04 0.76± 0.04 0.76± 0.04 0.75± 0.04 0.75± 0.04

SVM 0.68± 0.04 0.68± 0.04 0.68± 0.04 0.68± 0.04 0.67± 0.04 0.67± 0.04
DNN-7L 0.7± 0.02 0.7± 0.02 0.7± 0.02 0.7± 0.03 0.7± 0.02 0.7± 0.03

Table 3: The results for classification of Crohn’s disease prediction using k-mer representations. The set
of rows matches the steps (ii to iv) mentioned in Figure 3, i.e k-mer selection, N (sample size) selection, and finally
selection of the classifier. The classifiers (Random Forest, Support Vector Machine and Neural Network classifiers)
are tuned and evaluated in a stratified 10xfold cross-validation setting. The step column refers to the steps in
Figure 3.

Features Classifiers
Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

6-mer features (size: 4096)
RF 0.76± 0.04 0.76± 0.04 0.76± 0.04 0.76± 0.04 0.75± 0.04 0.75± 0.04
SVM 0.68± 0.04 0.68± 0.04 0.68± 0.04 0.68± 0.04 0.67± 0.04 0.67± 0.04

OTU features (size: 9511)
RF 0.74± 0.04 0.74± 0.04 0.74± 0.04 0.74± 0.04 0.74± 0.04 0.74± 0.04
SVM 0.68± 0.04 0.68± 0.04 0.68± 0.04 0.68± 0.04 0.68± 0.04 0.68± 0.04

Table 4: Comparison of k-mers and OTU features in the detection of the Crohn’s disease phenotype. For
this comparison, Random Forest classifier (as an instance of non-linear classifiers) and linear SVM (as an instance
of linear classifiers) have been used. The classifiers are tuned and evaluated in a stratified 10xfold cross-validation
setting.

a non-linear transformation of data that can identify subjects diagnosed with Crohn’s disease with
reasonable performance.

Comparison of k-mer and OTU features in Crohn’s disease classification: For a comparison
between OTU features and our proposed k-mer representations in detecting Crohns disease from
metagenomic samples, the Random Forest classifier (as an instance of non-linear classifiers) and linear
SVM (as an instance of linear classifiers) were tuned and evaluated in a stratified 10xfold cross-validation.
For both k-mer features and OTUs, the Random Forest classifier performed best (Table 4). In addition,
even though only half of the number of features were used and in spite of being considerably less
expensive to calculate, k-mers marginally outperformed OTU features in the detection of Crohns disease.
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3.3 Ecological environment prediction
(ii) Classification for different values of k: As stated before,
for the ecological and organismal datasets we do not need
to perform resampling as we classify single 16S rRNA gene
representative sequences. We thus can skip steps (i) and (iii)
(Figure 3). Step (ii) in Table 5 shows the effect of k in the
performance of the classification of the 18 environments for the
ECO-18K dataset. Using k=6 provides the best classification
performance, with a macro-F1 of 0.73 which is relatively high
for a 18-way classification (has a mere 0.06 chance of randomly
being assigned correctly for balanced dataset).
(iv) Comparison of classifiers for the selected k: For se-

lected values of k, the results of the environment prediction with
the Random Forest, SVM, and Neural Network classifiers are
provided (Table 5, step (iv), ECO-18K dataset). SVM classifier
obtained the top macro-F1 (0.79) for 18-way classification. To
see the effect of increasing the number of data points in classi-
fication performance we repeat the classifier comparison (step
iv) for the ECO-180K dataset. The results are summarized in
Table 5-ECO-18K dataset, showing that feeding more training
instances results in better training for the deep learning approach,
which outperformed the SVM and achieved a macro-F1 of 0.88,
which is very high for a 18-way classification task. In training
the Neural Networks for the ECO-18K dataset, increasing the
number of hidden layers from 3 to more did not help result in
improvements. However, using the ECO-180K dataset, which
is 10 times larger, allowed us to train a deeper network and
increased the macro-F1 by 5 percent going from 3 layers to 5
layers. Increasing the number of layers further did not result in
any improvements.
Neural Network Visualization: Visualizations of representa-
tive 16S rRNA gene sequences in 18 ecological environments
obtained through using PCA, t-SNE, and t-SNE on the activa-
tion function of the last layer of the trained Neural Network are
presented in Figure 8. For ease of visualization, we randomly
picked 100 samples per class. These results suggest that super-
vised training of representations using Neural Networks provides
a non-linear transformation of data containing information about
high-level similarities between environments in the sub-plot on
the right (scatter plot (iii)), where such structures appeared in
the visualization only when more hidden layers were used: (i)
On the left, the environments containing water are clustered in a
dense neighborhood: marine, aquatic, freshwater, hot springs,
bioreactor sludge (described in the source: “Bioreactor sludge is
usually the sludge inside the bioreactor that treats waste-water.”),
groundwater, and, surprisingly, rhizosphere (an environment
where plants, soil, water, microorganisms, and nutrients meet
and interact). (ii) In the middle, environments labeled related
to sediment are found: sediment, freshwater sediment, marine
sediment, and soil. (iii) Environments containing food, like food,
food fermentation, and compost are at the bottom of the plot.
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Figure 8: Visualization of 18 ecological microbial en-
vironments using different projection methods: (i)
PCA over 6-mer distributions with unsupervised training,
(ii) t-SNE over 6-mer distributions with unsupervised
training, (iii) visualization of the activation function of
the last layer of the trained Neural Network (projected
to 2D using t-SNE).11
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Step Representation Dataset Classifier
Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

(ii)

3-mers

ECO-18K RF

0.6± 0.01 0.6± 0.01 0.6± 0.01 0.63± 0.02 0.6± 0.01 0.57± 0.01
4-mers 0.67± 0.01 0.67± 0.01 0.67± 0.01 0.7± 0.01 0.67± 0.01 0.65± 0.01
5-mers 0.72± 0.01 0.72± 0.01 0.72± 0.01 0.74± 0.01 0.72± 0.01 0.71± 0.01
6-mers 0.75± 0.01 0.75± 0.01 0.75± 0.01 0.76± 0.01 0.75± 0.01 0.73± 0.01
7-mers 0.74± 0.01 0.74± 0.01 0.74± 0.01 0.76± 0.01 0.74± 0.01 0.73± 0.01
8-mers 0.72± 0.01 0.72± 0.01 0.72± 0.01 0.74± 0.01 0.72± 0.01 0.71± 0.01

(iv) 6-mers ECO-18K
RF 0.75± 0.01 0.75± 0.01 0.75± 0.01 0.76± 0.01 0.75± 0.01 0.73± 0.01

SVM 0.79± 0.01 0.79± 0.01 0.79± 0.01 0.79± 0.01 0.79± 0.01 0.79± 0.01
DNN-3L 0.78± 0.01 0.78± 0.01 0.78± 0.01 0.78± 0.01 0.78± 0.01 0.78± 0.01

(iv) 6-mers
ECO-180K RF 0.83± 0.0 0.83± 0.0 0.83± 0.0 0.84± 0.0 0.83± 0.0 0.83± 0.0

(10x larger)
SVM 0.86± 0.0 0.86± 0.0 0.86± 0.0 0.87± 0.01 0.86± 0.0 0.86± 0.0

DNN-5L 0.88± 0.0 0.88± 0.0 0.88± 0.0 0.88± 0.0 0.88± 0.0 0.88± 0.0

Table 5: The results for the task of selecting between 18 ecological environments. The classifiers (Random
Forest, Support Vector Machine and Neural Network classifiers) are tuned and evaluated in a stratified 10xfold
cross-validation setting over both ECO-18K and ECO-180K datasets. The step column refers to the steps in
Figure 3.
Step Representation Dataset Classifier

Micro-metrics (averaged over samples) Macro-metrics (averaged over classes)
Precision Recall F1 Precision Recall F1

(ii)

3-mers

5GUTS-3100 RF

0.8± 0.02 0.8± 0.02 0.8± 0.02 0.8± 0.02 0.8± 0.02 0.79± 0.02
4-mers 0.84± 0.01 0.84± 0.01 0.84± 0.01 0.84± 0.01 0.84± 0.01 0.83± 0.01
5-mers 0.86± 0.02 0.86± 0.02 0.86± 0.02 0.86± 0.02 0.86± 0.02 0.85± 0.02
6-mers 0.87± 0.01 0.87± 0.01 0.87± 0.01 0.87± 0.01 0.87± 0.01 0.87± 0.01
7-mers 0.87± 0.01 0.87± 0.01 0.87± 0.01 0.88± 0.02 0.87± 0.01 0.87± 0.01
8-mers 0.86± 0.01 0.86± 0.01 0.86± 0.01 0.87± 0.01 0.86± 0.01 0.86± 0.01

(iv) 6-mers 5GUTS-3100
RF 0.87± 0.01 0.87± 0.01 0.87± 0.01 0.87± 0.01 0.87± 0.01 0.87± 0.01

SVM 0.88± 0.02 0.88± 0.02 0.88± 0.02 0.89± 0.01 0.88± 0.02 0.88± 0.02
DNN-5L 0.87± 0.01 0.87± 0.01 0.87± 0.01 0.87± 0.01 0.87± 0.01 0.87± 0.01

Table 6: The results for the task of classifying 5 organismal environments belonging to 5 organisms’ gut.
The classifiers (Random Forest, Support Vector Machine and Neural Network classifiers) are tuned and evaluated
in a stratified 10xfold cross-validation setting over 5GUTS-3100 dataset. The step column refers to the steps in
Figure 3.

3.4 Organismal environment identification
(ii) Classification for different values of k: The results show that k=6 and 7 provide a high classifica-
tion macro-F1 of 0.87 for 5 classes (0.2 chance of randomly occurring), step (ii) in Table 6.
(iv) Comparison of classifiers for the selected k: For selected values of k the results of the organism
prediction using Random Forest, SVM, and Neural Network classifiers are provided (Table 6, step (iv)).
The SVM classifier obtained the top macro-F1 (0.88) for 5-way classification.

4 Conclusion
In this work, MicroPheno, a new approach for predicting environments and host phenotypes on 16S
rRNA gene sequencing has been presented based on k-mer representations of shallow sub-samples. We
conclude with discussing the results of this study in three parts: (1) the use of k-mers versus OTUs, (2)
the benefits of shallow sub-sampling, and (3) classical methods versus the deep learning approach.

K-mers versus OTUs: To evaluate MicroPheno, we compared k-mer representations with OTU
features in two tasks of body-site identification and Crohn’s disease classification. We replicated the
state-of-the-art approach, i.e. Random Forest over OTU features, on datasets larger than those that were
previously explored. We showed that k-mer features outperform conventional OTUs, while having
several advantages over OTUs, as listed below:

p The k-mer representations are easy to compute at no computational cost for any type of alignment to
references or tasks of finding pair-wise sequence similarity within samples as in OTU-picking pipelines.
Just to get an idea of the computational efficiency of k-mer calculation in comparison with OTUs, note
that OTU picking for the Crohn’s disease dataset of 1359 samples required more than 5 hours using 5
threads, while 6-mer distribution calculation took around 5 minutes using the optimal sampling size (N)
for classification using the same number of threads.

p Taxonomy-independent analysis is often the preferred approach for amplicon sequencing when the
samples contains unknown taxa. k-mer features can be used without making any assumptions about the
taxonomy. However, OTU-picking pipelines make assumptions about the taxonomy as discussed in §1.2;
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therefore they can even be phylogenetically incoherent.
p k-mer distribution is a well-defined representation, while OTUs are sensitive to the pipeline and the

parameters.
p Sequence similarities are naturally incorporated in the k-mer representations for the downstream learning

algorithm, while with grouping sequences into certain categories, the sequence similarities between
OTUs are ignored.
The main disadvantage of k-mer features over OTUs is that using short k-mers makes it more difficult to
trace the relevant taxa to the phenotype of interest. When such an analysis is needed, using OTUs or
increasing the size of k would be an alternative solution. However, as long as prediction is concerned,
using a k-mer representation seems to be the best choice for an accurate and rapid detection/diagnosis
over 16S rRNA sequencing samples.
Shallow sub-sampling: We proposed a bootstrapping framework to investigate the consistency and
representativeness of k-mer distributions for different sampling rates. Our results suggest that, depending
on the k-mer size, even very low sub-sampling rates (0.001 to 0.1) (for k between 3 to 7) not only can
provide a consistent representation, but can also result in better predictions while possibly avoiding
overfitting. Setting aside the save in preprocessing time as a natural benefit of sampling, this result also
suggest that at least for similar phenotypes of interest, shallow sequencing of the microbial community
would be sufficient for an accurate prediction.
Classical classifiers versus deep learning: We studied the use of deep learning methods as well as
classic machine learning approaches for distinguishing among human body-sites, diagnosis of Crohn’s
disease, and predicting the environments from representative 16S gene sequences. Studying the role of
dataset size in the classification of ecological environments showed that for large datasets using deep
learning provides us with more accurate predictions. However, when the number of samples are not large
enough, Random Forests performs better on both OTUs and k-mer features. In addition, we observed
that for classification over representative sequences as opposed to samples (pool of sequences), the SVM
outperformed the Random Forest classifier. Another advantage of using deep learning in classification was
that supervised training of a proper representation of data results in a more discriminative representation
for the downstream visualization compared to the unsupervised methods (PCA and t-SNE on the raw
k-mer distributions). For body-site identification and even more clearly in ecological environment
classification, the model was able to extract more high-level similarities between the environments.
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