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Abstract  

Incomplete annotation of cell-to-cell state variance and widespread linkage 

disequilibrium in the human genome represent significant challenges to elucidating mechanisms 

of trait-associated genetic variation. Here, using data from the UK Biobank, we perform genetic 

fine-mapping for 16 blood cell traits to quantify posterior probabilities of association while 

allowing for multiple independent signals per region. We observe an enrichment of fine-mapped 

variants in accessible chromatin of lineage-committed hematopoietic progenitor cells. Further, 

we develop a novel analytic framework that identifies “core gene” cell type enrichments and 

show that this approach uniquely resolves relevant cell types within closely related populations. 

Applying our approach to single cell chromatin accessibility data, we discover significant 

heterogeneity within classically defined multipotential progenitor populations. Finally, using 

several lines of empirical evidence, we identify relevant cell types, predict target genes, and 

propose putative causal mechanisms for fine-mapped variants. In total, our study provides an 

analytic framework for single-variant and single-cell analyses to elucidate putative causal 

variants and cell types from GWAS and high-resolution epigenomic assays. 
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Introduction 

Hematopoiesis is a well-characterized paradigm of cellular differentiation that is highly 

coordinated and regulated to ensure balanced proportions of mature blood cells.1 Despite our 

sophisticated understanding gained primarily from model organisms, many aspects of this 

process remain poorly understood in humans. At the population level, there is a wide spectrum 

of phenotypic variation in commonly measured blood cell traits, such as hemoglobin levels and 

specific blood cell counts, which can manifest as various diseases at extreme ends of the 

spectrum.2 Identifying genetic variants that drive these differences in blood cell traits in human 

populations may reveal important regulatory mechanisms and genes critical for blood cell 

production and diseases. 

To these ends, genome-wide association studies (GWAS) have identified thousands of 

genomic loci linked to complex phenotypes such as blood cell traits,3 but a major challenge has 

been the identification of causal genetic variants and relevant cell types underlying the observed 

phenotypic associations.4 In particular, linkage disequilibrium (LD) has confounded the precise 

identification of functional variant(s). In an effort to better identify casual variants, several 

statistical approaches have been developed. The first, termed genetic fine-mapping, attempts to 

resolve trait-associated loci to likely causal variants by modeling LD structure and the strength 

of associations. In practice, a major limitation has been that most of these methods assume 

exactly one causal variant per locus,5,6 despite strong evidence that a substantial number of 

these loci contain multiple independent associations.7-10 The second type of approach instead 

focuses on identifying functional tissue enrichments. It has now been well established that ~80-

90% of associated loci do not tag coding variants and that ~40-80% of the narrow-sense 

heritability of many complex traits can be resolved to genomic regulatory regions.11,12 Given this 

observation, tissue-specific measurements of regulatory element activity are often overlapped 

with significant association loci (e.g. epigenomic fine-mapping) or investigated genome-wide 

(e.g. partitioned heritability) in order to identify variants and cell types most likely to underlie the 
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measured phenotypic trait.11,13 These enrichment methods have revealed causal tissues for 

diseases, such as pancreatic islets in diabetes13 and central nervous system cells in 

schizophrenia,11 but these methods are only beginning to be applied to highly related traits and 

cell types within single systems, such as the hematopoietic hierarchy.  

 Recently, advances in single cell genomic approaches have allowed us to define 

discrete cell types in complex systems and have been used to further revise our understanding 

of the hematopoietic hierarchy. For example, single-cell transcriptomic and chromatin 

accessibility studies have identified previously undescribed progenitor populations, subdivided 

classically defined populations into distinct cell types, and revealed that lineage commitment 

occurs in earlier progenitors than previously appreciated.14-19 Nevertheless, the functional 

consequences of human genetic variation in relation to these refined models of cell fate 

commitment in hematopoiesis, as reflected in peripheral blood measurements, have not yet 

been explored. 

Given that blood cell counts provide direct phenotypic readouts of hematopoietic lineage 

commitment and differentiation, we reasoned that we could use variants significantly associated 

with these phenotypes to dissect hematopoiesis in an unbiased fashion. In this study, we 

performed a GWAS on ~113,000 “White British” individuals from the UK Biobank, similar to a 

previously described study.3 Leveraging this large sample size and precise population LD 

information, we fine-mapped multiple causal variants in hundreds of individual regions. 

Furthermore, we describe and validate a method (g-chromVAR) to discriminate between closely 

related cell types in an effort to identify relevant stages of hematopoiesis that are affected by 

these common genetic variants. Here, rather than utilizing summary statistics from all variants 

(for an “omnigenic” trait4), we demonstrate specificity using our “core” subset of fine-mapped 

variants. We show that this approach can be used to score chromatin accessibility from 

individual cells for GWAS enrichment, and we use these enrichments to interrogate both the 

timing and variability of lineage commitment in 2,034 single cells. Finally, we provide a 
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community resource comprised of our fine-mapping results combined with several layers of 

functional evidence. 

 

Results 

Fine-mapping pinpoints hundreds of likely causal variants 

We performed genome-wide association studies (GWASs) for 16 blood cell traits on the 

UK Biobank (UKBB), which consists of 113,000 individuals of predominantly European descent. 

These blood cell traits represent several important and distinct hematopoietic lineages, including 

red blood cells (RBCs), platelets, lymphocytes (T and B cells), neutrophils, monocytes, 

eosinophils, and basophils (Fig. 1A). Using LD-score regression (LDSR),20 we found that 

common variants of minor allele frequency (MAF) > 1% captured moderately high narrow sense 

heritability (ℎ"#) in most traits, with an average of 15.4%, ranging from 4% (basophil count) to 

32% (mean platelet volume) (Fig. S1A). In general, traits from the same lineage, such as RBC 

count and hemoglobin, had high genetic correlations (R2 = 0.91, Bonferroni p < 0.001) (Fig. 

S1C). However, several traits from distinct lineages also had significant genetic correlations, 

such as platelet count and lymphocyte count (R2 = 0.29, Bonferroni p < 0.001), underscoring the 

presence of genetic pleiotropy among the hematopoietic traits (Fig. S1B). These analyses 

confirmed that common genetic variants contribute substantially to blood cell trait heritability and 

that regulation of hematopoiesis could potentially occur across various stages of hematopoiesis. 

To begin to dissect the nature and timing of the effects of common genetic variation 

during hematopoiesis, we performed genetic fine-mapping to identify high confidence variants. 

Traditional fine-mapping approaches operate under the assumption that there is only one causal 

variant per locus and are either agnostic to LD or use small whole genome sequencing (WGS) 

reference panels from “matched” populations, which have been shown to be inaccurate when 

scaled to large sample sizes.21 To overcome these limitations, we first identified 2,178 regions 

(each 3 MB in size) across the genome, excluding the HLA region due to its notoriously complex 
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LD structure, that were associated with at least one blood cell trait (minimum p-value < 5 x 10-8; 

see Online Methods). For each region, we calculated LD directly from the imputed genotype 

probabilities (dosages) using all individuals included in our blood cell trait GWASs, rather than 

from a hard-called reference panel (Fig. 1B). Finally, we performed Bayesian fine-mapping on 

all common variants (MAF > 0.1%) with satisfactory imputation (INFO > 0.6).22 

 Across these 2,178 regions, our method identified 36,919 variants with >1% posterior 

probability (PP) of being causal for a trait association (Table S1, S2), and 1,110 regions (51%) 

contained at least one variant with >50% PP (Fig. 1C), providing strong evidence that our 

approach was successful in pinpointing causal variants. One advantage of our approach is that 

it allows for the identification of multiple independent signals per associated locus: starting with 

a conservative prior, the posterior expected number of independent causal variants was >2 for 

36% of regions and >3 for 13% of regions (Fig. 1D). Moreover, the fine-mapped variants 

captured a significant proportion of narrow sense heritability (trait average of ℎ"# = 24.9% for PP 

> 1%) (Fig. S1A), suggesting that our approach identifies a core subset of variants that explains 

a large amount of phenotypic variation. 

As an example of a locus with multiple independent signals, we investigated the CCND3 

locus in which we previously used trans-ethnic fine-mapping and functional assays to identify a 

causal variant and associated gene leading to variation in RBC count.23 Our approach correctly 

identified the known causal variant (rs9349205) as the primary association, as well as ~4 

additional independent signals in this locus, including a secondary imputed variant 

(rs112233623) associated with decreased RBC count (Fig. 2A-C). As further validation of our 

approach, stepwise conditional analysis also identified 4 independent significant signals and the 

same secondary variant (rs112233623) in this locus (Fig. 2B). Importantly, this secondary 

variant was not identified by fine-mapping if we instead used LD estimated from either the 

UK10K WGS reference panel (Fig. 2D) or hard-called variants from the UKBB population (Fig. 

S2), highlighting the value of calculating LD using imputed genotype dosages from the GWAS 
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population itself (note that BOLT-LMM uses these dosages when determining associations). 

Interestingly, rs112233623 is only 161 bases from the original causal variant (rs9349205), and 

both lie within an erythroid-specific nucleosome depleted region (NDR) (Fig. 2E). We 

investigated the potential synergy between these two variants using luciferase reporter assays 

and found that each variant affected enhancer activity independently (p = 0.00178 for 

rs9349205; p = 2.86e-06 for rs112233623) with minor allele effects in opposing directions, 

consistent with the genetic directionality and our previous functional work23 on rs9349205 and 

RBC count (Fig. 2F). We further verified independent effects for two fine-mapped variants 

(rs49950 and rs12005199; PP > 0.999; 123 base pairs apart) associated with platelet count 

within a single NDR ~20kb upstream of AK3, a gene whose zebrafish homolog is essential for 

platelet (thrombocyte) formation (Fig. S3).24 Notably, we did not observe a significant 

multiplicative (epistatic) effect at either locus (p = 0.129 for CCND3; p = 0.238 for AK3). Thus, 

our statistical and genetic characterization of the CCND3 and AK3 loci show that multiple 

independent causal variants can occur not only in the same LD-block but in the same regulatory 

element. These results indicate that other fine-mapping methodologies that assume one causal 

variant per locus likely miss true independent effects.  

In order to further validate our fine-mapping approach, we investigated the overlap of our 

fine-mapped variant sets (binned by PP) with several key genomic annotations previously 

shown to be enriched for GWAS signals.11,12 To generate a null distribution, we locally shifted 

annotations within a 3 MB window, similar to the method implemented in GoShifter.25 We 

observed minimal enrichment for intronic and untranslated regions of genes across all bins, but 

found strong, focal, and stepwise enrichments across higher PP bins for hematopoietic NDRs, 

promoters, and coding regions (OR=4.2, 2.9, and 8.5 for PP > 75% respectively), consistent 

with the enrichments reported in these annotations for other complex traits (Fig. 2G).11,12,25 

When we excluded all variants with high correlation (R2 > 0.8) to the sentinel variants, we found 

similarly strong enrichments in hematopoietic NDRs (Fig. S2), further suggesting that the fine-
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mapped secondary and tertiary signals are likely to be functional. Overall, an average of 62% of 

the most fine-mapped variants (PP > 75%) were either protein coding variants or resided within 

hematopoietic enhancers (Fig. 2H). Notably, the large proportion of fine-mapped coding 

variants can be attributed to the dense genotyping and large sample size from the UKBB that 

was well-powered to detect associations for lower frequency variants.  

 

Development of g-chromVAR, a novel method to measure fine-mapped GWAS set 

enrichment in continuous annotations 

 We next set out to determine the exact stages of human hematopoiesis at which 

regulatory genetic variation underlying each blood cell trait was most likely acting. In this well-

defined system of cellular differentiation, a strong association in a specific cell population would 

provide evidence that genetic variation is regulating the transcription of genes important for a 

particular phenotype (e.g. RBC count, lymphocyte count) in that specific cell type. Although 

recent methods11,25 have been developed to calculate enrichment of genetic variation with 

genomic annotations, a method which takes into account both (1) the strength and specificity of 

the genomic annotation and (2) the probability of variant causality, accounting for LD structure, 

is needed to resolve associations within the stepwise hierarchies that define hematopoiesis. To 

these ends, we developed a new approach called genetic-chromVAR (g-chromVAR), a 

generalization of the recently described chromVAR method26 to measure the enrichment of 

regulatory variants in each cell state using uncertainties in fine-mapped genetic variants and 

quantitative measurements of regulatory activity (Fig. 3A, see online methods for additional 

details). Briefly, this method weights chromatin features by variant posterior probabilities and 

computes the enrichment for each cell type versus an empirical background matched for GC 

content and feature intensity (g-chromVAR is thus intuitively a competitive method across cell 

types). We show that g-chromVAR is generally robust to variant posterior probability thresholds 
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and numbers of background peaks (Fig. S4B,C) and captures true enrichments in a simulated 

setting (Fig. S5).  

We applied g-chromVAR to each of the 16 blood cell traits and 18 chromatin 

accessibility profiles (ATAC-seq) of hematopoietic progenitor and terminal populations primarily 

sorted from the bone marrow or blood of multiple healthy donors (Fig. 1A, Table S3).27,28 We 

compared g-chromVAR to two state-of-the-art methods: LDSR,11 which calculates the 

enrichment for genome-wide heritability using binary annotations after accounting for LD and 

overlapping annotations, and GoShifter,25 which calculates the enrichment of tight LD blocks 

containing sentinel GWAS single nucleotide variants for binary annotations. Using a Bonferroni 

correction, g-chromVAR identified 22 trait-tissue enrichments, LDSR identified 71, GoShifter 

identified 39, and chromVAR identified 79 (Fig. 3C). 

 In order to compare the performance of these enrichment tools, we leveraged our 

knowledge of the hematopoietic system and devised a lineage specificity test. For any 

measured cell trait, we identified all possible upstream progenitor populations that could be 

passed through before terminal differentiation (Fig. 1A). For example, the differentiation of an 

RBC is thought to begin at the hematopoietic stem cell (HSC) and progress through multipotent 

progenitor (MPP), common myeloid progenitor (CMP), and megakaryocyte erythroid progenitor 

(MEP) before reaching the erythroid progenitor (Ery) stage. The lineage specificity test is a 

nonparametric rank-sum test that measures the relative ranking of lineage specific trait-cell type 

pairs relative to the non-lineage specific traits for each of the compared methodologies. Using 

this metric for specificity, we found that g-chromVAR vastly outperformed all three other 

methods (Fig 3D). Additionally, we found that 21/22 (95%) of g-chromVAR trait-cell type 

enrichments were supported by LDSR, all of which were lineage specific (Fig. 3C, Table S4). 

For certain traits such as monocyte count, we found highly similar enrichment patterns for g-

chromVAR and LDSR, but non-lineage enrichments for chromVAR (Fig. S6). For other traits, 

such as mean reticulocyte volume, g-chromVAR identified only the two most terminally proximal 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2018. ; https://doi.org/10.1101/255224doi: bioRxiv preprint 

https://doi.org/10.1101/255224
http://creativecommons.org/licenses/by-nd/4.0/


 
10 

cell types (MEP and Ery) as significantly enriched for the trait, whereas LDSR non-specifically 

identified 15/18 of the investigated cell types as enriched after Bonferroni correction (Fig. S6). 

We note that we can improve the lineage specificity of LDSR by including all hematopoietic 

ATAC-seq annotations in the model as covariates, but this results in a loss of statistical power 

(Fig S6). 

We further tested g-chromVAR on chromatin accessibility profiles for 53 tissues across 

the human body29 and identified 40 additional trait-cell type enrichments at an FDR of 1%, 

including 9 traits in CD8 T-cells and 13 total from 3 human embryonic stem cell lines (Fig. S7A, 

Table S5). Extending to non-hematopoietic tissues yielded some compelling findings, such as 

an enrichment of platelet count in a lung fibroblast cell line (IMR90), consistent with a recent 

study implicating the lung as a key site of platelet production.30 However, increasing the number 

of non-hematopoietic tissues impairs the background model, resulting in false positive 

enrichments. Thus, we suggest that g-chromVAR is best suited to resolve specific cell types 

within individual systems containing closely related cells (e.g. hematopoiesis) rather than a 

breadth of samples across diverse tissues. Finally, in order to test if alternative fine-mapping 

methods could be used with g-chromVAR, we investigated 39 predominately immune-related 

disorders that had previously been fine-mapped with PICS5 for enrichments with the 18 

hematopoietic progenitor populations. We identified 20 trait-cell type enrichments at an FDR of 

1% (Fig. S7B, Table S6), including RBC traits with erythroid precursors, and multiple auto-

immune traits with immune subsets, such as multiple sclerosis with CD8+ T, CD4+ T, B, and NK 

cells; Crohn’s disease with CD4+ T cells; and Kawasaki disease with B cells. Of particular 

interest was the observation that variants associated with C-reactive protein (CRP) levels, a 

non-specific biomarker of inflammation, were most strongly enriched for myeloid dendritic cells 

(mDCs) and other myeloid cell types, further implicating the role of myeloid cells in acute-phase 

inflammation.31-33 
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Having validated our approach, we investigated cell type enrichments for each of the 16 

traits. We found that the most lineage-restricted populations were typically most strongly 

enriched (Fig. 3E-H). For example, RBC count was most strongly enriched in erythroid 

progenitors (Fig. 3E), platelet count was most strongly enriched in megakaryocytes (Fig. 3F), 

and lymphocyte count was most strongly enriched in CD4+ and CD8+ T cells (Fig. 3H). In 

several instances, we observed significant enrichments for traits in earlier progenitor cell types 

within each lineage, including enrichment for platelet traits in CMPs and enrichment for 

monocyte traits in a specific subpopulation of GMPs (Fig. S4A). Building on several studies that 

recently demonstrated transcriptomic14-19 and chromatin accessibility heterogeneity27 within 

these populations, we next sought to apply g-chromVAR to single-cell ATAC-seq (scATAC-seq) 

data in order to interrogate the impact of common genetic variation underlying blood cell traits in 

heterogeneous cell populations. 

 

GWAS enrichment in single-cell chromatin accessibility data 

We applied g-chromVAR to 2,034 single bone-marrow derived hematopoietic progenitor 

cells profiled using scATAC-seq.27 Although our strongest g-chromVAR enrichments for blood 

traits were in the most lineage restricted precursors which are not represented in this dataset, 

we reasoned that investigating progenitor populations that did have robust enrichment signals, 

such as CMPs and MEPs, could inform principles of terminal blood cell production at the single 

cell level and may allow us to infer subpopulations of lineage-biased progenitors that exist within 

these heterogeneous populations. To these ends, we scored each single cell for GWAS 

enrichment for the 16 traits using g-chromVAR (Fig. 4A). In order to validate our approach, 

since only a small number of NDRs are measured for each cell (~10,000 detected per cell), we 

compared GWAS enrichments in the composite profiles of each of the 11 immunophenotypically 

sorted single cell populations to the enrichments in the bulk profiles and observed that they 

were highly correlated (r = 0.84) (Fig. 4B). As such, we reasoned that aggregating cells by 
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either pseudotime trajectories or clustering of single-cell data could provide new biological 

insights into the effects of genetic variation on dynamic cell fate decisions in hematopoiesis. 

In order to model the relatedness and heterogeneity of single cell measurements, we 

inferred pseudotime trajectories for the megakaryocyte and erythroid lineage (Meg/Ery), the 

myeloid and monocyte lineage (Myel), and the lymphoid lineage (Lymph) (Fig. 4C). We then 

used local regression to investigate the timing of blood trait GWAS enrichments during lineage 

commitment. Interestingly, we found that along these trajectories we could reconstruct our 

observations from bulk data, albeit with finer granularity. For example, we found that platelet 

count showed enrichment early along Meg/Ery differentiation with a sharp increase at firmly 

committed MEPs (Fig. 4D). This enrichment along the Meg/Ery commitment path coincided with 

negative enrichments along the alternative Myel and Lymph paths (Fig. 4D). This suggests that 

although the majority of variants act in committed progenitors, a subset of regulatory variants 

act in multipotential progenitors – in fact, we could identify many distinctly fine-mapped variants 

that only overlapped with bipotential or multipotential progenitor populations (Fig. 2H). 

 

Regulatory heterogeneity within classically defined hematopoietic populations 

Although our developmental trajectories revealed initial insight into the regulation of 

hematopoietic lineage commitment, GWAS enrichments in each immunophenotypically similar 

population showed large within-group variation. We thus sought to determine the extent to 

which this heterogeneity was due to true cell-cell biological differences in regulatory variation. 

For each of the 16 blood cell traits, we calculated variance in regulatory GWAS enrichment for 

each of the 11 available hematopoietic progenitor populations. Interestingly, we found that CMP 

(n=502 cells) and MEP (n=138 cells) populations, in which we identified trait enrichments in the 

bulk profiles, demonstrated significant heterogeneity in g-chromVAR enrichments for both 

erythroid and megakaryocyte traits (Fig. 5A). 
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To resolve this heterogeneity, we compared enrichment scores for myeloid and erythroid 

traits between the CMP and MEP populations. We hypothesized that the CMP population could 

be subdivided into megakaryocyte/erythrocyte-primed and monocyte-primed subtypes, whereas 

the MEP population could be further subdivided into erythrocyte-primed and megakaryocyte-

primed subtypes. To test this hypothesis, we divided the CMP population into two unsupervised 

clusters by applying k-medoids to the first 5 principal components of global chromatin 

accessibility (and naive to g-chromVAR enrichments) (Fig. S8). Of note, CMP cluster 1 had 

significantly higher g-chromVAR enrichments for megakaryocyte and erythrocyte traits, whereas 

cluster 2 had a significantly higher enrichment for monocyte count (RBC count, FDR=0.000128; 

MPV, FDR=0.000236; platelet count, FDR=1.399e-05; monocyte count, FDR=0.0221; Fig. 5B). 

Concomitantly, CMP cluster 1 showed higher chromatin accessibility of motifs for erythroid-

specific TFs, including GATA1 and KLF1, whereas cluster 2 was enriched for motifs predicted to 

be bound by the monocyte TFs, CEBPA and IRF8 (GATA1, FDR=1.759e-82; KLF1, 

FDR=4.328e-03; CEBPA, FDR=2.575e-16; IRF8, FDR=4.651e-15; Fig. 5B). Similarly, we 

clustered the MEP population into two distinct clusters (Fig. S5) and found that these clusters 

were characterized by differences in erythroid and megakaryocyte traits (RBC count, 

FDR=0.155; HCT, FDR=0.0398; platelet count, FDR=0.0765), as well as chromatin accessibility 

of motifs for TFs such as MEF2C, a key regulator of megakaryopoiesis (GATA1, FDR=2.175e-

04; KLF1, FDR=4.015e-06; MEF2C, FDR=2.520e-03; Fig. 5C).34 Although additional studies 

with higher-throughput single cell data are needed to determine whether these differences are 

due to distinct lineage-biased subpopulations or whether they reflect gradations along a 

common axis of differentiation, our findings show that heterogeneity in hematopoietic progenitor 

populations can be linked to putative functional consequences on blood production, reflected in 

measurable blood cell traits.  

 

Dissecting the mechanisms of core gene regulation in blood production 
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Finally, we sought to better understand the precise regulatory mechanisms underlying 

how fine-mapped genetic variants influence hematopoietic traits. For all 140,750 variants with 

PP > 0.1%, we combined several lines of functional and predictive evidence to better 

understand the transcriptional mechanisms and “core genes” involved in blood cell production 

and to help prioritize variants for experimental validation (Fig. 6A). Briefly, we (1) calculated TF 

motif overlap and disruption by each variant for 640 human motifs,35,36 (2) investigated TF 

occupancy overlap from 2,115 publicly available ChIP-seq datasets in hematopoietic tissues 

and cell lines,37 (3) predicted the effects of each variant on open chromatin in a TF agnostic 

manner using gkm-SVM,38 (4) identified empirical target genes by correlating our ATAC-seq 

with matching RNA-seq data across 17 hematopoietic populations as well as by calculating 

overlap with recent promoter capture Hi-C,39 (5) combined our results with whole blood 

expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTL), and (6) 

performed phenome-wide association studies (pheWAS) for each variant for 642 unique 

medical ICD-10 diagnoses (Fig. 6A). In this effort, we observed that specific fine-mapped 

variants for blood traits are associated with common diseases such as ischemic heart disease 

and mineral metabolism disorders (Fig. 6B). Furthermore, we verified the reported mechanisms 

of 9 previously reported causal variants that we were able to fine-map (Fig. 2, Fig. S9). We 

provide this compendium of information in an interactive web-based portal as a publicly-

accessible resource (Fig. S10, see URLs). 

To elucidate putative regulatory consequences of our fine-mapped variants, we sought 

to identify high confidence trans-acting factors that were modulated by GWAS regulatory 

variants. We identified that IRF8 and CEBPA, two TFs involved in monocyte specification and 

differentiation,40,41 are targets of fine-mapped monocyte count associated variants (Fig. 6C). 

Both variants are within NDRs that are specific to monocyte precursor cells. Similarly, we 

determined that GFI1B, KLF2, and MEF2C were targets of fine-mapped variants for mean 

reticulocyte volume, lymphocyte count, and platelet count, respectively, each within a similar 
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progenitor-specific NDR (Fig. 6C, Fig. S11). In some cases, such as for IKZF1, which is broadly 

expressed in hematopoiesis, several fine-mapped variants for different blood cell traits were 

determined to interact with the IKZF1 promoter in a cell type-specific manner (an MCV-

associated variant was within an erythroid-specific loop, while a lymphocyte count-associated 

variant was within a B and T cell-specific loop), consistent with a previous eQTL study of this 

locus (Fig. S11).42  

Next, we attempted to identify precise cis-regulatory mechanisms of fine-mapped 

variants. Restricting our hypotheses to the overlap of both biochemical (ChIP-seq) and 

statistical (canonical motif breaking) results, we posit mechanisms of fine-mapped variants that 

putatively disrupt TF occupancy in hematopoietic tissues. For example, Fig. 6D and Fig. S11 

highlight three fine-mapped variants associated with RBC traits that were within erythroid-

specific NDRs, bound by erythroid master TF GATA1, and predicted to disrupt its short DNA 

binding motif (AGATAA), similar to previously reported functional variants that we had identified 

proximal to this TF’s binding motif.43 We also found fine-mapped variants that were predicted to 

disrupt RUNX1 binding that were associated with both platelet count44 and lymph count,45 

reflecting the diverse roles of RUNX1 in hematopoiesis (Fig. 6D). Interestingly, we were able to 

identify fine-mapped variants that were predicted to disrupt IRF and MEF2 protein binding in cis 

(Fig. 6D, Fig. S11). These variants were associated with the same traits as the variants 

targeting the trans-acting factors (IRF8 and MEF2C), suggesting that cis- and trans- effects of 

GWAS may converge as sample size, experimental data, and predictive models evolve and 

improve.4 Given the resolution of our fine-mapped variants, the comprehensiveness of 

hematopoietic epigenomic measurements, and the breadth of orthogonal measures of function, 

we believe that our resource will expedite investigation into how these and other fine-mapped 

variants regulate hematopoietic lineage specification and differentiation. 

 

Discussion 
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 Two outstanding challenges in the post-GWAS era are (1) the precise identification of 

causal variants within associated loci and (2) determining the exact mechanisms by which these 

variants result in the observed phenotypes, starting with identification of the pertinent cell types. 

To address (1), we used robust genetic fine-mapping to identify hundreds of putative causal 

variants for 16 blood cell traits, allowing for up to 5 causal variants in each locus. We combined 

our fine-mapping results with high resolution chromatin accessibility data for 18 primary 

hematopoietic populations and derived functional annotations to identify putative target genes, 

regulatory mechanisms, and disease relevance. Moreover, we highlight several compelling 

anecdotes for the utility of our approach and provide our fully integrated framework as a 

community resource. 

To address (2), we developed a novel enrichment method (g-chromVAR) that can 

discriminate between closely related cell types and score single cells for GWAS enrichment, an 

approach complementary to heritability enrichment methods, such as LDSR. Our new approach 

allowed us to directly probe the regulatory dynamics of hematopoiesis. Specifically, several 

recent studies have used various single cell assays to suggest that lineage commitment in 

hematopoiesis is more complex and occurs earlier than has been classically considered.17,46 

Here, we used direct phenotypic measurements of blood production at a population level to 

show that this regulation likely does not occur homogeneously within classically defined 

populations and is capable of being regulated at the single-cell level by common genetic 

variation.  

 Our integrated approach is designed to distinguish closely-related cell types using 

quantitative chromatin data and reveal specific populations in which trait-associated regulatory 

variation acts. We suggest that using a well-powered method to identify single cells and cell 

populations that are trait-relevant provides a critical first step in broadly deciphering causal 

mechanisms underlying phenotypic variation. Our combined approach further facilitates the 

identification of cis- and trans- regulatory programs that are modulated by common genetic 
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variation. As relevant primary tissues and single-cell assays become increasingly available and 

affordable, we believe that our overall approach will similarly allow for the interrogation of other 

complex traits at the single-variant and single-cell level.  

 

Code availability. g-chromVAR is available as an open source R-package distributed freely at 

http://caleblareau.github.io/gchromVAR. All code required for reproducing results discussed 

herein is made available at http://github.com/caleblareau/singlecell_bloodtraits. 

 

URLs. A UCSC Genome Browser visualization hub for all bulk ATAC data is available with this 

hub URL: https://s3.amazonaws.com/atachematopoesis/hub.txt. The web app to visualize 

putative causal variants and corresponding annotations is available at 

http://molpath.shinyapps.io/ShinyHeme. 
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Online Methods 

Genome-wide association studies 

Genome-wide association studies were carried out for 16 different blood cell indices in 

114,910-116,667 “white British” individuals from UK Biobank. Imputation was performed using 

the combined 1000 Genomes Phase 3-UK10K panel 

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020). To account for population 

substructure in blood cell traits, we regressed each phenotype against the first 10 principal 

components, age, and sex. We then inverse normalized the residuals, which were used as the 

phenotype measurements for the genetic association tests. Specifically, we regressed each 

phenotype measurement against the probabilistic imputed allele dosage using a linear mixed 

model approach as implemented in BOLT-LMM v2.2.47 Genome-wide significance was defined 

as a p-value < 5 x 10-8. 

 

Fine-mapping 

Sentinel association regions were constructed as follows: first, all variants were ranked 

by decreasing $#	statistics. Next, we derived 3MB regions centered at the top variant - each 

region is ~3 cMs, so all relevant LD structure should be fully captured for nearly every region 

(Yu et al.48 reported that 95% of region recombination rates fall within 3MB). This process was 

repeated for each top association variant that did not overlap any 3MB regions created thus far 

until there were no genome-wide significant variants remaining in undefined regions. Within 

each region, we identified all imputed variants with MAF > 0.1% and imputation quality > 0.6 

and calculated z-scores from the summary statistics for each. We next derived dosage LD 

matrices for each region using LDstore21 on the genotype probability files (.bgen) used for the 

association studies. To be exact, we computed LD matrices from 120,086 individuals who had a 

phenotype for at least one of the 16 blood cell traits. 
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Fine-mapping was performed on genome-wide significant GWAS regions using the 

FINEMAP software with the z-score and LD matrices as input.22 The output from FINEMAP is 

(1) a list of potential causal configurations together with their posterior probabilities and Bayes 

Factors (2) the posterior probability marginalized over the causal configurations that individual 

variants are causal, and (3) the posterior probabilities that there are a specific number (between 

1 and 5) of statistically independent associations in each region. Default FINEMAP settings 

were used and we kept all variants with posterior probabilities > 0.1% for downstream analyses. 

For the CCND3 and AK3 regions in which follow-up luciferase reporters were performed, we 

reran FINEMAP allowing for up to 10 causal variants, confirming ~4 independent effects in the 

CCND3 locus (60.6% posterior probability) but revealing ~8 independent effects for the AK3 

locus (59.9% posterior probability).  

To confirm select regions with multiple putative causal variants, we performed 

conditional analysis using BOLT-LMM by first conditioning on the variant with the lowest p-value 

in the region and then stepwise adding to the model the variant with the lowest conditional p-

value until no additional variant reached the genome-wide significance threshold of 5×10−8 in 

the combined model. 

 

ATAC and scATAC sequencing and data preprocessing 

Chromatin accessibility profiles for a total of 18 populations, including 15 previously 

reported,27,28 were assayed using FastATAC, an optimized ATAC-seq protocol optimized for 

primary blood cells, as previously described.28,49 Sequencing data for each of the 18 populations 

was uniformly processed using a custom pipeline that includes sequencing adaptor removal, 

alignment using Bowtie2,50 and PCR duplicate removal with Picard RemoveDups command.  

Accessible chromatin peaks were called from the 18 sorted populations of blood cells 

using MACS2.51 To derive a consensus set of loci for downstream analysis, individual peaks 

were resized to a uniform width of 500 bp, centered at the summit from the MACS2 call as 
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previously described.28 To derive a consensus peak set for the blood cell types, peaks were 

combined by removing any other peak overlapping with a peak with greater signal at the summit 

within a particular cell type. A total of 451,283 peaks representing a consensus set across these 

18 sorted bulk populations were called. The average number of fragments in this consensus 

peak set ranged from 4.4 million (pDCs) to 37.1 million (CMPs) for a mean of 19.3 million reads 

in peaks per sorted cell type (Table S3).  

FACS-sorted cells from 9 distinct cellular populations from CD34+ human bone marrow, 

which included cell types spanning the myeloid, erythroid, and lymphoid lineages, were 

additionally profiled as previously described.27,28 Single-cells were sorted then assayed using 

scATAC-seq27,52 across a total of 30 independent single-cell experiments representing 6 human 

donors, with each population assayed from two or more distinct donors. In total, our raw data 

set comprised 3,072 single-cell chromatin accessibility landscapes with 2,034 cells passing 

stringent quality filtering. These cells yielding a median of 8,268 fragments per cell with 76% of 

those fragments mapping to peaks, resulting in a median of 6,442 fragments in peaks per cell 

again using a consensus peak set that was inferred for these specific progenitor populations.27 

To infer dynamic GWAS enrichments across hematopoietic differentiation, pseudotime 

orderings of single cells across three lineages (erythroid, lymphoid, and myeloid) were 

estimated using an adaptation of the Waterfall algorithm53 as previously described.27 To assess 

regulatory heterogeneity of single cells, we computed a chi-squared statistic for each trait/cell 

type’s z-scores to test whether the observed variance was greater than expected. Under the 

null, the variance of z-scores is 1 from the definition of our statistic (see g-chromVAR methods 

below), and we observed greater variation than expected only for traits within the CMP and 

MEP populations. Within CMP and MEP populations, we applied k-medoids clustering on the 

first 5 principal components within each sorted population from global chromatin accessibility 

profiles for each cell.27 For both the CMPs and MEPs, the optimal cluster number was 

determined by maximum average silhouette width. Post-hoc analyses of heterogeneity within 
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the partitioned clusters of the erythroid-enriched CMPs confirmed that megakaryocyte-erythroid 

enrichment was not distinct within CMPs. 

 

g-chromVAR 

 The bias-corrected enrichment statistics for T traits and a set of S samples (chromatin 

cell type profiles) with P peaks computed by g-chromVAR is a generalization of the chromVAR 

method.26 Intuitively, our implementation of g-chromVAR relaxes the requirement in chromVAR 

that trait-peak annotations be binary, allowing for uncertainty in annotations such as 

transcription factor binding or in our case, localization of GWAS variants. Specifically, the 

chromVAR implementation requires a binarized matrix & (dimension P by S) where '(,* is 1 if 

annotation + is present in peak , and 0 otherwise. For example, in our examination of 

chromVAR (Figure 3b,d),	& represents a binary matrix where '(,* = 1	if a genome-wide 

significant variant for trait + was present in peak ,. However, our application of chromVAR to 

variant association data for our 16 hematopoietic traits revealed inflated summary statistics and 

poor lineage-specific enrichments without modeling the posterior confidence of variants (Figure 

3a). We note that if FINEMAP identified only 1 causal variant per region with a posterior 

probability of 1, g-chromVAR and chromVAR would yield identical results.  

 Instead, our methodology, g-chromVAR, uses a matrix of variant posterior probabilities 

/, where 0(,* is the sum of the posterior probabilities of the variants contained in the genomic 

coordinates of peak , for each trait +. Using the matrix of fragment counts in peaks 1, where xi,j 

represents the number of fragments from peak , in sample 2, a matrix multiplication 13 ∙ /	yields 

the total number of fragments weighted by the fine-mapped variant posterior probabilities for S 

samples (rows) and T traits (columns). To compute a raw weighted accessibility deviation, we 

compute the expected number of fragments per peak per sample in 5, where 6(,7	is computed as 
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the proportion of all fragments across all samples mapping to the specific peak multiplied by the 

total number of fragments in peaks for that sample:  

6(,7 =
8(,77

8(,7(7
Σ(8(,7 

Analogously, 13 ∙ 5	yields the expected number of fragments weighted by the fine-mapped 

variant posterior probabilities for S samples (rows) and T traits (columns). Using the /, 1, and 5 

matrices, we then compute the raw weighted accessibility deviation matrix : for each sample 2 

and trait + (;7,*) as follows: 

;7,* =
8(,70(,* −=

(>? 6(,70(,*=
(>?

6(,70(,*=
(>?

 

 To correct for technical confounders present in assays (differential PCR amplification or 

variable Tn5 tagmentation conditions), g-chromVAR borrows the strategy implemented in 

chromVAR by generating a background set of peaks intrinsic to the set of epigenetic data 

examined. We note that other GWAS enrichment tools such as LDSR or GoShifter ignore 

biases prevalent in epigenomic assays that are explicitly corrected by g-chromVAR. In 

particular, variance in PCR or Tn5 tagmentation quality can lead to substantial differences in the 

number of observed fragment counts between cells based on an individual peak’s GC content 

or average accessibility,26 leading to errant GWAS-cell type enrichments. To correct for these 

technical confounders, each peak is assigned a background set of peaks that are matched in 

mean nucleotide GC content and average fragment accessibility between the sums of the cell 

types. An inverse Cholesky transformation is applied to a P by 2 matrix containing these 

variables to generate two uncorrelated dimensions describing the per-peak confounding. This 

two-dimensional space is divided into a pre-defined number of equally spaced bins where bin i 

is indicated @(. Each peak A is assigned a bin from the shortest Euclidean distance between the 

bin’s centroid and the individual peak in this transformed space. The probability that a peak AB	in 
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bin j is selected as a background peak for peak A is proportional to the distance between bins i 

and j over the total number of peaks in bin j @7 : 

C A′	 ∈ @7 	A	 ∈ @() ∝
H(@(	, @7)

@7
 

where the distance function H contains hyperparameters which, along with the total number of 

bins, have been previously discussed.26 

 By default, the framework samples a background set of 50 background elements per 

peak, which we’ve verified to be robust (Fig. S4B). The matrix	J(K) encodes this background 

peak mapping where L(,7
(M)is 1 if peak	, has peak 2 as its background peak in the L background 

set (L ∈ {1,2, … ,50}) and 0 otherwise. The matrices J(K) ∙ 1 and J(K) ∙ 5 thus give an 

intermediate for the observed and expected counts also of dimension P by S. For each 

background set L, sample 2, and trait	+, the elements ;7,*
(M) of the background weighted 

accessibility deviations matrix :(K) are computed as follows:  

;7,*
(M) =

(J(K) ∙ 1)(,*0(,* −=
(>? (J(K) ∙ 5)(,*0(,*=

(>?
(J(K) ∙ 5)(,*0(,*=

(>?
 

After the background deviations are computed over the 50 sets, the bias-corrected matrix Z for 

sample 2 and trait + (T7,*) can be computed as follows: 

T7,* =
;7,* − mean(;7,*

(M))

Yd(;7,*
(M))

 

where the mean and variance of ;7,*
(M) is taken over all values of L (L ∈ {1,2, … ,50}).  Sample-trait 

p-values can then be computed from the one-tailed normal distribution of these z-scores using 

the pnorm function in R. Our implementation of g-chromVAR utilizes efficient matrix operations 

for each step and can compute pair-wise trait-cell type enrichments in ~1 minute on a standard 

laptop computer.  
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Simulations 

 To verify that enrichments computed by g-chromVAR were well-calibrated in our system, 

we devised a general simulation framework that computes enrichments for the 18 bulk 

hematopoietic cell types for an arbitrary simulated phenotype. Using the same matrix of 

fragment counts in peaks 1, where xi,j represents the number of fragments from peak , in 

sample 2, we simulated a causal relationship between one of the accessibility samples 2 by 

performing a weighted draw of observed variant posterior probabilities /, where 0(,* is the sum 

of the posterior probabilities of the variants contained in the genomic coordinates of peak , for 

each trait +.  

 Specially, we first perform a counts-per-million (CPM) transformation of the fragment 

counts in peaks matrix to account for uneven sequencing depth between samples. Next, we z-

transform the CPM-normalized matrix row wise to yield a matrix termed 1∗ where 8(,7∗  represents 

the amount of open chromatin observed in sample 2 in peak , relative to other samples. 

Intuitively, elements of the z-score matrix 1∗ yield larger positive numbers for cell type-specific 

peaks in specific samples (values 8(,7∗  range from -3.46 to 4.01). This matrix 1∗ serves as a 

basis for determining the celltype specificity of an individual regulatory element.  

 To generate simulated elements of /, we define a sorted vector \ of length T * P (where 

99.7% of values were zero) from the observed elements of / for our T = 16 hematopoietic traits 

and P = 451,283 regulatory peak elements. This vector \ thus represents empirically derived 

values from the hematopoietic system studied that serve as input into g-chromVAR. Then, for a 

fixed causal cell-type 2, we generate matrix ] of A	 ∈ (1, 2, … , 100) simulated traits, where entries 

are defined as follows: 

Y(,^~`a,b 	b Φ(8(,7∗ ) 	, 1	  
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Here, b is a linear function that maps the normal cumulative distribution function (CDF) 

transformation of the 8(,7∗  z-score to a (0, 1) real number and is calibrated to yield phenotypic 

values similar to those observed empirically (matched mean column sum of /). The Y(,^	value 

thus is a randomly generated (0, 1) real number skewed toward 1 when peak , contains cell 

type-specific chromatin for the fixed cell-type 2. A final transformation of ] maps these (0, 1) real 

number values to observed weights (elements of / or equivalently \) using the inverse CDF of \ 

to index values. This final matrix, which serves as the input for g-chromVAR, is simulated to be 

enriched for cell-type 2 and null for all others. For the fully null simulation, elements of Y(,^ were 

populated from random draws of a `a,b 	0	, 1	 . 

 

Linkage disequilibrium score regression 

We used LD score regression (LDSR) to compute the narrow-sense heritability 

estimates and genetic correlations of the 16 blood cell traits in the UKBB. Reference LD scores 

were computed with a subset of unrelated European individuals from the UK10K cohort. To 

remove genetically related individuals, we first used Plink to construct a filtered list of variants 

with MAF > 0.10 and no pair of variants with R2 > 0.10. These LD and MAF-pruned variants 

were then used to calculate an identity-by-descent (IBD) matrix, and one individual in each pair 

of samples with proportion IBD (d) > 0.125 were removed to produce a final subset of 3,677 

unrelated individuals to serve as the reference panel for LDSR. After applying the 

recommended variant filtering, z-scores for an average of 6,655,000 variants per trait were used 

as input to LDSR. For heritability estimates for variants identified by fine-mapping or by linkage 

to the sentinel, we note that these estimates may be either over-estimated or under-estimated 

from the reported values as previously noted.54 

To estimate cell type enrichment for each trait, stratified LDSR was used to partition 

each trait’s heritability into the baseline model of 53 annotations, as well as each of the 18 
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hematopoietic ATAC-seq annotations (one at a time). P-values for cell-type enrichment were 

derived from the z-scores of the coefficients for each hematopoietic annotation with statistical 

significance assessed at a stringent Bonferroni threshold of 0.00017 (corrected for 16 traits and 

18 cell types).  

 

Local Annotation Shifting 

       We implemented a slightly modified version of GoShifter to calculate the enrichment 

between fine-mapped variants with PP>0.01 for every trait and 5 different genomic annotations. 

To obtain the annotation for hematopoietic nucleosome-depleted regions (NDRs), we used the 

consensus peak set for all blood cell types, performed row and column quantile normalization 

on the counts matrix, and kept only peaks that had a maximum count in the top 80% for at least 

one of the 18 cell types. The coding, intron, promoter, and 5' untranslated region annotations 

were obtained from the UCSC Genome Browser as previously processed.55  

 To calculate enrichments, we calculated the overlap between the fine-mapped variant 

set of each trait (16 total) with each of the 5 genomic annotations. To define the null distribution 

of annotation overlap, we performed 10,000 locally shifting permutations; with every 

permutation, we shifted the genomic coordinates of the fine-mapped variant set by a random 

distance between -1.5MB and 1.5MB (this approach is equivalent to shifting the annotations). 

This was performed using the permTest function of the regioneR package. The final odds ratio 

was calculated by dividing the number of overlaps between the original fine-mapped variant set 

and a genomic annotation by the mean number of overlaps between the 10,000 permuted sets 

and the same genomic annotation. To test if the association between a fine-mapped variant set 

and a genomic annotation (e.g. hematopoietic NDRs) was highly dependent on their exact 

position, we used the localZScore function to calculate enrichment scores after various 

increments of shifting the fine-mapped variant set. 
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Bulk RNA-seq samples and peak-gene correlations 

Raw sequencing reads from sorted populations from bulk RNA-seq experiments 

previously described27,28 were aligned to the hg19 reference genome using STAR version 

2.5.1b56 with default parameters. Per-gene transcript quantifications were summed over 

biological and technical replicates to provide a single transcript count per sorted cell type for 17 

total populations matching the analogous bulk ATAC profiles (RNA for megakaryocytes was 

absent). To determine empirical peak-gene associations, Pearson correlation was computed for 

each peak within a 1MB window of the transcription start site per gene using the log counts per 

million value for each feature. 

 

Luciferase Reporter Analysis 

Firefly luciferase reporter constructs (pGL4.24) were generated by cloning the variant(s) 

of interest centered in 300-400 nucleotides (AK3 325bp; CCND3 363bp) of genomic context 

upstream of the minimal promoter using BglII and XhoI sites. The Firefly constructs (500ng) 

were co-transfected with a pRL-SV40 Renilla luciferase construct (50ng) into 100,000 K562 

cells using Lipofectamine LTX (Invitrogen) according to manufacturer’s protocol. After 48 hours, 

luciferase activity was measured by Dual-Glo Luciferase assay system (Promega) according to 

manufacturer’s protocol. For each sample, the ratio of Firefly to Renilla luminescence was 

measured and normalized to the empty pGL4.24 construct. 

A total of four haplotypes were constructed per locus to examine the effects of two fine-

mapped putative causal variants. For the CCND3 locus, we examined the effects of 

rs112233623 (ref: C, alt: T) and rs9349205 (ref: G, alt: A), which are 161 base pairs apart. For 

the AK3 locus, we examined rs409950 (ref: A; alt: C) and rs12005199 (ref: A, alt: G), which are 

separated by 123 base pairs. A total of nine (n = 9) experimental replicates per haplotype (four 

haplotypes per locus), including the empty pGL construct, were measured across two 

experimental batches.  
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To compute the additive and multiplicative effects of each variant, we used a generalized 

linear model of the following form for both of the AK3 and CCND3 loci separately:  

eaf6aY,f;	~	@g + @?SNP?lmn + @#SNP#lmn + @o(SNP?lmn ∗ SNP#lmn) + @pB 

Here, the luciferase intensity is defined as the ratio of Firefly to Renilla luminescence normalized 

to the empty vector for each experimental replicate. The additive effects of the two SNPs were 

estimated using @? and @# whereas the multiplicative effect of both SNPs on the same haplotype 

was computed using an interaction term, @o. We encoded each variable such that the reference 

allele was a 0 whereas the alternate allele was a 1 for each experimental sample. Finally, we 

adjusted for variable infection efficiency between the experimental batches using a fixed effect 

variable B (B ∈ {0,1}). To increase power, point estimates and standard errors were realized 

directly from the linear model using the @ coefficients from each reporter set rather than the 

mean of the specific haplotype. 

 

Transcription factor motif analysis 

Prediction of the effects of fine-mapped variants on transcription factor binding sites 

(TFBS) was performed using the motifbreakR package36 and a comprehensive collection of 

human TFBS models (HOCOMOCO35). All fine-mapped variants with PP>0.1%, a single-

nucleotide substitution, and a dbSNP rsID were supplied as input. We applied the “information 

content” scoring algorithm and used a p-value cutoff at 5×10–4 for a TFBS match; all other 

parameters were kept at default settings.  

 

PheWAS 

To identify potential disease roles for our fine-mapped variants, we performed a 

phenome-wide association study (pheWAS) for each variant using publicly available summary 

statistics from the UK BioBank (http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-

of-phenotypes-for-337000-samples-in-the-uk-biobank). We investigated 642 unique 
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International Statistical Classification of Diseases and Related Health Problems, 10th Revision 

(ICD-10) medical billing codes. Each individual with a code was treated as a case and all 

remaining individuals were treated as controls. We investigated whether 729 distinct variants 

with a FINEMAP PP > 50% were also associated with these 642 medical diagnoses, resulting in 

468,018 (729*642) tests, leading to a Bonferroni-adjusted threshold of 1.07×10-7.  

 

gkm-SVM 

 We used gkm-SVM38 to predict the effects of our fine-mapped variants on open 

chromatin in silico. Specifically, we selected ATAC peaks (peaks with counts > 90th percentile) 

from each of the 18 cell types (~ 50,000 to 60,000 for each cell type) as positive sequence sets. 

We generated 81,763 negative control peaks matching the GC, length, and repeat content of 

the full peak set. We then trained gkm-SVMs for each cell type using 11-mers and 5-fold cross 

validation (average area under the precision recall curve was 93%). For each variant, we 

calculated a score using the deltaSVM method, where we sum all possible spanning 11-mers 

for the alternate allele and subtract the same sum from the reference allele. 

 

eQTL analysis 

To identify putative gene regulatory targets of our fine-mapped variants, we intersected 

variants with a PP > 0.001 with previously reported variant-gene associations (P < 5e-8) derived 

from whole-blood eQTL (both cis and trans) associations from two previous studies of 5,31142 

and 2,76557 individuals. In addition, we intersected fine-mapped variants with previously 

reported variant-CpG methylation status associations (P < 5e-8) from a recent study of 1,366 

individuals58. Data was processed by SMR and downloaded from 

http://cnsgenomics.com/software/smr/. 
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Figure 1. Overview of hematopoiesis, UKBB GWAS, and fine-mapping. (a) Schematic of the 
human hematopoietic hierarchy showing the primary cell types analyzed in this work. ATAC-seq 
and RNA-seq were collected for all sorted cell types except granulocytes (ATAC-seq, RNA-seq) 
and megakaryocytes (RNA-seq). Colors used in this schematic are consistent throughout all 
figures. Mono, monocyte; gran, granulocyte; ery, erythroid; mega, megakaryocyte; CD4, CD4+ T 
cell; CD8, CD8+ T cell; B, B cell; NK, natural killer cell; mDC, myeloid dendritic cell; pDC, 
plasmacytoid dendritic cell. The 16 terminal blood traits that were genetically fine-mapped are 
shown below the hierarchy. (b) Schematic of UKBB GWAS and fine-mapping approach. Briefly, 
blood traits from ~113K individuals were fine-mapped allowing for multiple causal variants and 
using imputed genotype dosages as reference LD. (c) Number of fine-mapped 3MB regions for 
each trait with the best posterior probability for a variant being causal indicated. (d) Kernel density 
of the expected number of causal variants for each region. 
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Figure 2. Characterization and validation of CCND3 intronic region with multiple causal variants. 
Regional association plots for RBC count (a) from the initial GWAS and (b) after conditioning on 
the sentinel variant rs9349205. (c) Fine-mapping identifies two putative causal variants 
(rs9349205, PP=0.94; rs112233623, PP=0.99), but (d) not when performed using an LD 
reference panel of 3,677 WGS individuals from the UK10K study. (e) Both putative causal variants 
(161 base pairs apart) lie within the same erythroid-specific nucleosome-depleted region (NDR). 
(f) Luciferase reporter assays for four haplotypes (left) corroborate independent additive effects 
of rs9349205 (red) and rs112233623 (blue) on RBC count (right). (g) Local-shifting enrichments 
of fine-mapped variants across all traits for varying posterior probability bins. (h) Annotation of PP 
> 0.75 variants per trait indicating overlap in coding and NDR regions across 18 ATAC-seq 
samples. 
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Figure 3. Overview of g-chromVAR and application to hematopoietic cell types. (a) Schematic 
showing inputs for quantitative epigenomic data for each cell type (X) and the matrix of fine-
mapped variant posterior probabilities for GWAS traits (G). Results from the application of g-
chromVAR and three similar methods to 16 blood cell traits for 18 hematopoietic cell types are 
shown in b-d. (b) Quantile-quantile representation of the p-values from each method. (c) Overlap 
between methods for Bonferroni-corrected trait enrichments. (d) Lineage-enrichment of all trait-
pairs for each method. A Mann-Whitney rank-sum test was used to evaluate the relative 
enrichment of lineage-specific trait-cell type pairs (true positives). Representative enrichments for 
4 traits using g-chromVAR: (e) mean corpuscular volume; (f) mean platelet volume; (g) monocyte 
count; (h) lymphocyte count. 
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Figure 4. Application of g-chromVAR to single-cell chromatin accessibility data. (a) 2,034 
hematopoietic single cells projected onto a three-dimensional principal components embedding. 
Single cells colored by g-chromVAR enrichment scores for mean reticulocyte volume reveal 
specific regulatory enrichment in the megakaryocyte-erythroid progenitor population. (b) 
Validation of g-chromVAR enrichments using synthetic bulk populations from sums of single cells. 
Aggregated single-cell g-chromVAR z-scores across all trait-cell type pairs (individual points) 
strongly correlate (r = 0.84) with bulk population z-scores. (c) Representation of inferred pseudo-
time trajectories of 3 hematopoietic lineages from scATAC-seq data. (d) Pseudotime trends of g-
chromVAR scores for platelet count across all single cells corroborates regulatory dynamics of 
megakaryocyte/erythroid differentiation. 
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Figure 5. Inference of variable regulatory enrichment in single hematopoietic cells. (a) Rank order 
plot highlighting the trait-cell type pairs with the greatest variance over that of a !" distribution. 
(b) K-medoids partitioning of ATAC-seq counts in CMP cells reveals two subpopulations: 
monocyte-biased and megakaryocyte/erythroid-biased (RBC count, FDR=0.000128; MPV, 
FDR=0.000236; platelet count, FDR=1.399e-05; monocyte count, FDR=0.0221). ChromVAR 
scores for master transcription factors (TFs) of each blood cell type correspond to the lineage-
biased clusters (GATA1, FDR=1.759e-82; KLF1, FDR=4.328e-03; CEBPA, FDR=2.575e-16; 
IRF8, FDR=4.651e-15). (c) Similar k-medoids partitioning of MEP cells reveals 2 subpopulations 
with differential enrichments for megakaryocyte or erythroid phenotypes (RBC count, FDR=0.155; 
HCT, FDR=0.0398; platelet count, FDR=0.0765), along with consistent differences in chromVAR 
TF-deviation scores for master TFs of each blood cell type (GATA1, FDR=2.175e-04; KLF1, 
FDR=4.015e-06; MEF2C, FDR=2.520e-03).  
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Figure 6. Mechanisms of core gene regulation in blood production. (a) Schematic of auxiliary data 
integrated to predict target genes, mechanisms, and disease relevance for fine-mapped variants. 
All data are available for use on an interactive web application. (b) Top ICD10 codes nominated 
by UKBB pheWAS analysis for fine-mapped variants (PP > 0.5). Variants identified for each 
pheWAS trait passed Bonferroni-correction for multiple testing and are annotated based on the 
lineage of the fine-mapped trait. (c) Combining genetic fine-mapping for blood cell traits with 
dense RNA-seq and ATAC-seq profiling of the hematopoietic tree reveals putative causal variants 
and their target trans-acting TFs (rs11642657 and rs12151289 are associated with platelet traits, 
rs73660574 is associated with red blood cell traits, and rs553535973 is associated with 
lymphocyte count). Target genes were identified using ATAC-RNA correlations, and many are 
additionally supported by promoter-capture Hi-C. Both MEF2A and MEF2C occupied the element 
in the 3rd panel. (d) Additionally combining ChIP-seq with conservation (PhyloP) and motif 
predictions reveals putative causal variants that disrupt cis-binding of hematopoietic TFs known 
to be involved in regulating hematopoietic differentiation for various blood cell traits (rs17534048 
and rs66480687 are associated with red blood cell traits, rs75522380 and rs74340846 are 
associated with platelet traits, and rs79716587 is associated with lymphocyte count; black color 
represents accessibility throughout hematopoiesis). 
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