
Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Studies of Phenotypes and Clinical Applications

COSSMO: Predicting Competitive Alternative
Splice Site Selection using Deep Learning
Hannes Bretschneider 1,2, Shreshth Gandhi 1, Amit G Deshwar 1,3, Khalid Zuberi 1 and
Brendan J Frey 1,2,3∗

1Deep Genomics Inc., Toronto ON, M5G 1L7, Canada
2Department of Computer Science, University of Toronto,Toronto ON, M5S 2E4, Canada and
3Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto ON, M5S 2E3, Canada.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Alternative splice site selection is inherently competitive and the probability of a given splice
site to be used also depends strongly on the strength of neighboring sites. Here we present a new model
named Competitive Splice Site Model (COSSMO), which explicitly models these competitive effects and
predict the PSI distribution over any number of putative splice sites. We model an alternative splicing event
as the choice of a 3’ acceptor site conditional on a fixed upstream 5’ donor site, or the choice of a 5’ donor
site conditional on a fixed 3’ acceptor site. We build four different architectures that use convolutional
layers, communication layers, LSTMS, and residual networks, respectively, to learn relevant motifs from
sequence alone. We also construct a new dataset from genome annotations and RNA-Seq read data that
we use to train our model.
Results: COSSMO is able to predict the most frequently used splice site with an accuracy of 70% on
unseen test data, and achieve an R2 of 60% in modeling the PSI distribution. We visualize the motifs that
COSSMO learns from sequence and show that COSSMO recognizes the consensus splice site sequences
as well as many known splicing factors with high specificity.
Availability: Our dataset is available from http://cossmo.deepgenomics.com.
Contact: frey@deepgenomics.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
RNA splicing has long been known as a main driver of transcriptional
diversity and a large number of regulatory mechanisms have been
described. More recently, efforts have shifted from describing isolated
regulatory mechanisms to building computational models, known as
splicing codes (Wang and Burge, 2008), which can predict splice site usage
from sequence directly or from a library of hand-engineered, sequence-
derived features. Mis-splicing is also one of the leading mechanisms for
genetic disease (Scotti and Swanson, 2015), which creates an important
need for algorithms to accurately predict splicing in-silico, for example,
to score the splicing effect of variants or design splicing-modulating
therapies.

The first practical splicing code was introduced by Barash et al. (2010)
and predicted tissue differences of cassette splicing events in mouse.
Subsequent versions of the splicing code introduced a Bayesian neural
network and predicted absolute splicing levels (Xiong et al., 2011). Since
then, Bayesian neural networks (Xiong et al., 2015) and deep neural
networks (Leung et al., 2014) have further improved on the state of art
in predicting exon skipping.

These splicing codes have so far all modeled cassette splicing events.
Busch and Hertel (2015) present a model that uses support vector machines
to predict whether an exon is constitutively spliced, undergoes alternative
5’ or 3’ splice-site selection, or is an alternative cassette-type exon.
However, their model does only predict the class of an exon, not the isoform
or splice site utilization levels.

Splice sites are often seen as belonging to discrete categories such as
constitutive and alternative sites. However, these are functional descriptors

© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) isthis version posted March 25, 2018. ; https://doi.org/10.1101/255257doi: bioRxiv preprint 

https://doi.org/10.1101/255257


2 COSSMO

rather than properties of the splice site itself. For example, a constitutive
splice site may be close to a cryptic splice site that is normally not
recognized. However, a variant may activate the cryptic site such that the
previously constitutive splice site is now alternatively used (Vaz-Drago
et al., 2017). There are therefore two aspects that may affect the utilization
of a splice site: The inherent strength of the splice site itself, determined
by, for example, nearby binding motifs for splicing enhancers. But the
utilization also depends on the strength of neighboring splice sites that
could be used alternatively and compete with each other for recognition
by the spliceosome. We therefore believe it is necessary to model the
competitive aspect of splice site selection in addition to modeling the splice
site itself.

Another development in the field is to learn features from sequence
directly, rather than constructing feature libraries by hand. Constructing
feature sets by hand can be extremely laborious and computational
constraints may limit the size of the dataset that can be used for training.
Convolutional networks that learn from sequence directly have already
been used successfully in learning transcription factor binding motifs
(Alipanahi et al., 2015), predicting the function of non-coding DNA
(Quang and Xie, 2016), and predicting a large number of epigenetic and
transcriptional profiles (Kelley et al., 2018).

In this paper, we present a new splicing code that we call COSSMO,
for competitive splice site model. COSSMO is more general than previous
splicing models and is capable of predicting a usage distribution of multiple
splice sites, conditional on a constitutive opposite site. In particular, we
can model the usage distribution of multiple alternative acceptor sites
conditional on a constitutive donor site or vice versa.

We train two versions of this model, one for alternative acceptor sites
and one for alternative donor sites. Figure 1a shows an example of an
alternative acceptor event. In the case of alternative acceptors we always
condition on a constitutive donor site. In this example we model four
alternative acceptor sites, but the model can dynamically adapt to any
number of sites. COSSMO uses these alternative sites along with the
constitutive site as input and predict a discrete probability distribution over
the alternative sites indicating the frequency with which they are selected.

Figure 1b shows an analogous case of alternative donor selection,
where multiple donor sites are selected amongst to be spliced to a
constitutive acceptor site.

2 Dataset Construction
In this section we describe how to construct a genome-wide dataset
of quantified percent selected index (PSI) values of splicing events
from genome annotations and RNA-Seq data from the Genotype-Tissue
Expression Project (GTEx) (GTEx Consortium, 2013). An event, in this
context, means a training example consisting of multiple putative splice
sites that can be used alternatively. The PSI value is the frequency with
which each splice-site is selected versus all other splice sites in the same
event with PSI values for each event summing up to one.

We create two datasets: one of alternative acceptor events conditional
on constitutive donor sites and one of alternative donor sites conditional
on constitutive acceptor sites.

We mine an initial set of splicing events from genome annotations
and then expand it with de-novo splicing events detected from the aligned
GTEx RNA-Seq data. We further augment this set with non-splice sites.
This is to increase the variability of features seen by the model and to help
train the model to discriminate between splice sites and non-splice sites.

Each example in the alternative acceptor dataset consists of multiple
putative acceptor splice sites and a constitutive donor splice site. In the
alternative donor dataset, each example consists of multiple putative donor
splice sites and a constitutive acceptor splice site.

Table 1. Dataset statistics.

Acceptor Donor

Number of events 173,164 169,650
Avg # of annotated sites/event 1.158 1.184
Avg # of de-novo sites/event 3.744 3.696
Avg # of decoy sites/event 22.451 11.877
Avg # of negative sites/event 61.443 56.612

Each splicing event or training example consists of multiple
putative splice sites each belonging to one of four types.
Annotated sites are found in the Gencode v19 genome
annotations. De-novo are not annotated but have RNA-Seq
support in GTEx. Decoy sites have a MaxEntScan score
greater than 3.0, but are not annotated and have no read
support. Negative sites are random genomic locations.

Following the construction of these events, we quantify the PSI
distribution for each example from RNA-Seq junction reads using the
Bayesian bootstrap estimation method from Xiong et al. (2016). This
allows us to quantify the uncertainty of our PSI values by estimating a
posterior distribution.

2.1 Genome Annotations

We use the Gencode v19 annotations (Harrow et al., 2012) to construct
our initial dataset. We start with a dataset of all exon-exon junctions by
creating a training example for each annotated donor site and adding all
acceptor sites that splice to this donor to the training example as alternative
acceptors of type annotated.

Then we construct the initial alternative donor dataset analogously by
finding the set of donors that splice to each acceptor site.

Figure 2 shows histograms of the number of alternative acceptors per
donor and alternative donors per acceptor, respectively. As can be seen
from the histogram, we do not only include splice sites that are annotated
as alternatively spliced, but also constitutive exons. We do this to learn a
general model of splice site strength. Summary statistics of the dataset are
given in Table 1.

2.2 De-novo Splice Sites from Gapped RNA-Seq
Alignments

Genome annotations provide us with an initial set of alternative splicing
events to form the core of our dataset. Next, we add de-novo splice sites
from the GTEx RNA-Seq data. We start by aligning the GTEx RNA-Seq
reads to the genome using the HISAT2 aligner (Kim et al., 2015). Next,
we iterate through the dataset we built in Section 2.1. For the alternative
acceptor dataset we iterate through all donor sites and for each site, we
add all junction reads in GTEx that use this site as one end of a gapped
alignment. We then add the other side of the gapped alignment as an
alternative acceptor to the example. The procedure for adding de-novo
splice sites to the alternative donor dataset is analogous: we iterate over
all acceptor sites, find junction reads that use that acceptor site as one side
of a gapped alignment and add the other end of the gap as an alternative
donor site.

Some filtering of those de-novo sites is necessary both because the
RNA splicing process itself is noisy and because sequencing and alignment
introduce their own biases and artifacts, which would otherwise result
in large numbers of low-certainty splice sites. We only utilize de-novo
sites that are observed in at least two tissues from at least two subjects.
This procedure results in a large expansion of possible splice sites, adding
an average of 3.74 de-novo splice sites to each acceptor event, and 3.70
de-novo sites to each donor event (Table 1).
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(a) Alternative acceptor event. (a) Alternative donor event.

Fig. 1. Illustration of alternative acceptor and donor events modeled by COSSMO.
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Fig. 2. Histogram showing the complexity of annotated splicing events. For each annotated
donor we count how many acceptors splice to it (left) and for each annotated acceptor we
count how many donor sites are spliced to it (right).

2.3 Negative Splice Site Examples

The above procedure gives us a dataset of high-confidence annotated and
de-novo splice sites. However, we supplement this dataset with additional,
verified, non-splice sites. This is done to increase the amount of variation in
the features when training the model. For example, the core dinucleotides
GU at the donor site and AG at the acceptor site are almost always a
necessary feature for splicing to occur and will, therefore, be present in
all examples of real splice sites (apart from examples using the minor
spliceosome, Turunen et al. (2013)). If we trained a splicing model only
on true splice sites, the model might learn to ignore the core dinucleotide
motif since it will not provide any signal to the model. However, if we
add some examples of non-splice sites to the dataset, then the model has
an opportunity to learn that the presence of a core dinucleotide motif is
necessary for recognition of the site. We call examples like this negative
sites and we select them by sampling random locations from a region that
(when constructing an alternative acceptor dataset) starts 20nt downstream
of the donor site and ends 300nt downstream of the most distant alternative
acceptor site.

Secondly, the genome also contains a large number of decoy splice
sites. These are sites that look very similar to real splice sites and in many
cases have a core dinucleotide motif, but are nevertheless not used as
splice sites. For example, they may lack other necessary features such
as a polypyrimidine tract or a branch point, or are adjacent to a silencer
motif. These cases are also beneficial to include in our training set because
they help the model detect the more subtle signals beyond the consensus
sequence that are necessary for a splice site to be recognized by the
spliceosome. We sample decoy splice sites by using MaxEntScan (Yeo
and Burge, 2004) to scan the intron and exon for any sites that have a
score greater than 3.0. We then remove from this set all sites that are either
annotated as splice sites or if there are any junction reads aligned to them
in the GTEx RNA-Seq data. The remaining sites are, therefore, locations
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Fig. 3. Kernel density estimator plot of PSI values in constitutively versus alternatively
spliced events. Constitutively spliced events are defined as having exactly one annotated
splice site while alternatively spliced events are all events with two or more annotated sites.
Only acceptor dataset is shown.

that are assigned a high score by MaxEntScan and look very similar to
true splice sites but for which there is no evidence that they are ever used
as splice sites from annotations or GTEx.

On average, each acceptor event contains 22.45 decoy sites and 61.44
negative sites. Each donor event has, on average, 11.88 decoy sites and
56.61 negative sites (Table 1).

2.4 PSI Estimation

After building the datasets of alternative acceptors and donors, we quantify
the frequency with which these sites are used. Our method for estimating
PSI values is based on counting the number of junction reads that are
aligned to a splice site pair.

Assuming we are interested in a constitutive donor site with multiple
alternative acceptor sites, we could obtain a naive PSI estimate by counting
the number of junction reads spanning from the donor to each alternative
acceptor and normalizing those values to obtain a probability distribution.
In practice, it is well known that RNA-Seq alignments exhibit many biases
such as read stacks and other positional biases that make such naive
estimates unreliable. Many methods have been developed to ameliorate
these issues as well as to obtain confidence estimates of PSI values. We
use the positional bootstrap method by Xiong et al. (2016). This method
estimates a non-parametric posterior distribution of PSI using a Bayesian
positional bootstrap procedure. For the purposes of this paper, we do not
focus on tissue differences in splicing and instead investigate splicing
regulation more generally. Therefore, to estimate PSI from the GTEx
RNA-Seq data, we pool the reads from all GTEx samples to estimate
an average PSI across all subjects and tissues, excluding cancer tissues
and cell lines. This means for any biological replicates as well as different
tissues we simply use all available reads at any given position for our PSI
estimates.
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3 Model

3.1 Motivation

The primary design goal of COSSMO is to construct a model that can
dynamically predict the relative utilization of any number of competing
putative splice sites. We achieve this by a network architecture that uses
the same weights to score all splice sites and uses a dynamic softmax
function at the output to adjust the size of the output layer to the number
of alternative splice sites in the example.

For each putative splice site, the inputs to the model are DNA and RNA
sequences from 80nt wide windows around the alternative splice sites and
the paired constitutive splice site, as well as the intron length (distance
between acceptor and donor sites). The model’s output is a PSI estimate
for each putative splice site.

We first present the acceptor model, which predicts the PSI of multiple
acceptor sites conditional on a constitutive donor site, but the donor model
is constructed completely analogously by swapping acceptor and donor,
as well as 3’ and 5’ everywhere.

Given a constitutive donor splice site const andK alternative acceptor
splice sites alt1, alt2, . . . , altK , COSSMO is a function f that predicts
the probability of selecting the k-th splice site conditional on the donor
site,

p(altk|altk′ 6=k, const) = fk(alt1, . . . , altK , const), k ∈ 1, . . . ,K.

(1)

3.2 Features

All sequence features are represented as one-hot encoding using four
channels that represent the four possible nucleotides.

For each splice site we extract the following sequence inputs:

Alternative DNA sequence: This is the pre-splicing sequence from a
80nt window around the alternative acceptor site.
Constitutive DNA sequence: This is the pre-splicing sequence from a
80nt window around the constitutive donor site (and thus it is the same
for all splice sites in the same event).
mRNA sequence: This is the spliced mRNA sequence obtained by
concatenating 40bp of exonic sequence upstream of the donor site and
40nt of exonic sequence downstream from the acceptor site.

To these sequence inputs we add a single feature representing the intron
length, obtained by computing the distance between the constitutive donor
and alternative acceptor site and normalizing this distance by the mean and
standard deviation of the length of an intron in the human genome (Hong
et al., 2006) to make it more numerically stable.

COSSMO consists of two primary components: a scoring network that
produces a scalar unnormalized score for a single splice site and a softmax
layer that normalizes scores from multiple scoring networks.

The requirements for the scoring network are that it takes a single
splice site’s sequence as input and produces a single scalar score. The
output layer simply accepts the scalar scores as input, normalizes them,
and then outputs the predicted PSI distribution over the alternative splice
sites. The high-level architecture is illustrated in Figure 4.

While the scoring network’s task is to predict a scalar score for each
alternative splice site, we also need an output layer that normalizes those
scores to obtain a valid probability distribution over the splice sites. The
output layer applies a softmax function to the splice site strength score
from the scoring network. The softmax layer itself does not contain any
variables, so it is compatible with any number of alternative splice sites.

. . .
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Fig. 4. COSSMO Architecture. A score is computed for each putative splice site separately
using identical sub-networks with weight sharing. The scores are then normalized with a
softmax layer, allowing the number of splice sites to vary.

3.3 Scoring Network

The scoring network takes inputs derived from one alternative splice site
and outputs an unnormalized strength score. Let si denote the strength of
the k-th alternative splice site such that

si = S(alti, const|θ), (2)

where S denotes the scoring network and θ represents the parameters of
the scoring network S. Importantly, the parameters θ do not depend on k,
but are shared between all splice sites.

We implement four different architectures for the scoring network and
evaluate their performance carefully. The simpler architectures we evaluate
use scoring networks that are independent, such that the competitive
behavior of the model is achieved only through the requirement that the
PSIk, k ∈ 1, 2, . . . ,K sum to 1.

However, we also evaluate a number of architectures in which we
allow lateral connections between the alternative splice sites within the
same event. In particular, we utilize communication networks (Sukhbaatar
et al., 2016) and LSTMs, which are described in Sections 3.3.2, 3.3.3, and
3.3.4 respectively.

3.3.1 Independent scoring networks
These types of networks take as input a set of splice site sequences
and predict a scalar unnormalized score as in Eq (2) without any lateral
connections to the other scoring networks. We use an architecture in which
we use a stack of multiple convolutional layers on each of the input
sequences. The outputs of each stack are concatenated with the intron
length feature and followed by multiple fully connected layers.

Figure 5c shows the architecture of the independent convolutional
scoring network. We use three columns of stacked convolutions with
independent parameters that each use one of the three sequence windows
described in Section 3.2 as input. A convolution module contains the
convolutional layer itself, followed by a ReLU non-linearity, and a batch-
normalization layer (Ioffe and Szegedy, 2015). We do not use pooling,
because some filters, like the core splice site motif, can be highly sensitive
to the precise location and are not invariant to shifts.

Following any number of convolution modules, the final filtermaps
from the three convolution columns are flattened and concatenated with
the intron length feature. These activations are the input to the following
sequence of fully connected modules, each consisting of a fully connected
layer, a ReLU function, and a batch-normalization layer.
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Fig. 5. Model architectures. (a) Convolutional layer with communication: This is a variant of the typical 1-D convolutional layer in case we apply a convolution to multiple sequences such
as a set of alternative splice site. For a given sequence k = 1, . . . , K, the output of this layer is the sum of a bias term, the filter responses to the sequence k, and the responses to a second
set of filters applied to the average of all inputs across k. (b) Architecture of our bidirectional LSTM Model: Features for splice site k are extracted from the DNA/RNA sequences using a
series of convolutional modules. The filtermaps for the different sequences are concatenated with the intron length feature. The concatenated features are then further processed by several
fully connected modules and two LSTM cells. The forward cell is connected to splice site k − 1 and the backwards cell is connected to splice site k + 1. (c) Independent convolutional
scoring network: Scoring networks consist of several convolutional layers followed by fully connected layers and are not laterally connected.

The final fully connected module, as in all other architectures, has an
output size of one to connect to the softmax output layer.

3.3.2 Communication networks
When the scoring networks for competing splice sites are independent,
they can only interact linearly through the softmax layer in the output
network. We use an approach that is similar to Communication networks
(Sukhbaatar et al., 2016) to model more complicated interactions between
the splice sites, which we adapt to convolutional layers.

In our version of communication networks, a convolutional layer uses
two sets of filters: one which operates on the current splice site and one
which operates on a shared buffer that contains the average inputs of all
splice sites. Each splice site’s consecutive hidden layer then takes both the

shared communication buffer’s activations and the activations from the
splice site’s own previous hidden layer as input.

We apply communication to the convolutional layers in the following
way: the output of a convolution layer with communication for a given
splice site k is the sum of a global bias term, the response of a filter to the
k-th input and the response of a second set of filters to the inputs averaged
across all splice sites k̃ = 1, . . . ,K.

The output yk,g,j for splice site k, output filter g at position j is

yk,g,j = bg+

F∑
f=1

l∑
i=1

(
wg,f,ixk,f,j+i + vg,f,i

1

K

K∑
k′=1

xk′,f,j+i

)
,

(3)
where bg is the bias of the g-th filter, l is the filter width, wg,f,i is the
filter value of the g-th filter to the f -th channel at position i, xk,f,j+i is
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Fig. 6. Training cross-entropy loss.

the input value of splice site k in the f -th channel at the j + i-th position,
vf,i is the weight of the g-th communication filter to the f -th channel, at
position i, and 1

K

∑K
k′=1 xk′,f,j+i is the input averaged across all splice

sites in channel f at the j + i-th position.
Figure 5a further illustrates the communication network concept.

Table 2. Resnet-26 architecture.

Parameters

Bottleneck Block width out_dim oper_dim stride

1 24 8 1 1

2 8 32 8 1

3 8 64 16 2
8 64 16 1

4 8 128 32 2
8 256 64 1

5 8 256 64 1
8 256 64 1

This residual network replaces the convolutional layers in the
LSTM model for the Resnet+LSTM model. Each bottleneck
block can be skipped with a residual connection. Within each
bottleneck block there are one or more convolutional layers
parametrized by width (the width of the convolutional filter),
out_dim (the number of output filters), oper_dim (the number
of filters in the middle of the bottleneck block), and stride (the
stride of the convolution operation).

3.3.3 Output LSTM
Communication networks are one possibility for modeling the interaction
between splice sites. However, an alternative that explicitly takes the
ordering of the splice sites into account are Long Short-Term Memory
(LSTM) networks (Hochreiter and Schmidhuber, 1997). LSTM networks
are a type of recurrent neural network architecture, that uses memory cells
with gates that control the flow of information and can be learned by
backpropagation.

LSTMs can be used on any kind of sequential or time-series data such
as strings of words in machine translation or frames of speech recordings.
For the purpose of alternative splicing prediction we apply LSTMs to the
sequence of splice sites.

We implement a hybrid architecture in which we keep the
lower convolutional layers from the independent scoring networks
(Section 3.3.1) and replace the model’s fully connected layers with a
bidirectional LSTM which consists of one LSTM running from 3’ to 5’
and the other one from 5’ to 3.

Figure 5b shows the architecture we have chosen. As in the independent
scoring network, three different sequence windows from each splice site
are first processed by a series of 1D convolutional modules before being
concatenated with the intron length and are further passed through several
fully connected modules. However, the signal from splice site k is now
further processed by two LSTM cells which will connect to the adjacent
splice sites k − 1 and k + 1, allowing for propagation of information
between them.

3.3.4 Resnet + LSTM
Resnets (He et al., 2015) are a class of models that enable training neural
networks that are much deeper than previously possible by explicitly
reformulating the layers as learning residual functions with reference
to the layer inputs. Rather than learning a mapping H(x) directly, a
resnet implements the residual mapping F (x) = H(x)− x. The desired
mapping H(x) can then be reformulated as F (x) + x. In practice,
resnets add shortcut connections that skip one or several layers. These
shortcut connections can be added almost anywhere; for example, around
convolutional or fully connected layers.

In our implementation we replace the convolutional layers from the
LSTM model (Section 3.3.3) with the Resnet-26 model (He et al., 2015),
while keeping the higher level fully-connected layers and LSTM the same.
Table 2 shows the parameters of the Resnet-26 architecture.

4 Results

4.1 Genome-wide Performance

We trained each of the four models presented above on both our acceptor
and donor datasets. We use five-fold cross-validation by splitting our
datasets according to the following method: using a transcript database, we
start with a set of intervals that each span two consecutive genes initially.
Then we iteratively merge all regions that are less than 250nt apart until
merging is no longer possible. This results in a set of 175 distinct genomic
regions. We randomly split the resulting genomic regions into five folds
for cross validation. Each fold uses 135 regions for training, five regions
for validation, and 35 regions as the test set. When training each fold, we
use the validation set for early stopping and hyperparameter optimization.
This procedure results in more balanced splits than splitting by entire
chromosomes, which have very different lengths.

Figure 6 plots the cross-entropy error over time during training. It is
evident that the LSTM and Resnet models are able to fit the training data
significantly better and achieve a lower final training loss.

We compute the accuracy, loss and R2 on each fold and report the
mean score across the folds as well as the standard error. Table 3 shows
the accuracy of the different COSSMO models, as well as MaxEntScan,
on the same data. We define the accuracy as the frequency with which
COSSMO correctly predicts the splice site with the maximal PSI value.

It is not surprising that MaxEntScan, which can predict the strongest
splice site with a probability of 32.2% (acceptor), or 37.1% (donor), is
outperformed by even the simple independent COSSMO model (52.0%
on acceptor and 56.9% on donor). After all, MaxEntScan uses a smaller
sequence window, is trained on a smaller, different, dataset, and does not
utilize the competitive training procedure.

Our best model, which uses an LSTM, achieves 70.0% on the acceptor
dataset and 71.1% on the donor. Despite being a deeper, more powerful
model, the resnet with an LSTM achieves slightly worse performance than
the "LSTM only" model. Our interpretation of this result is that the LSTM
layer is critical for good performance but the convolutional subnetwork in
the LSTM network is sufficient to learn useful features. As a result, the
deeper feature extraction network in the LSTM+Resnet does not achieve
better performance than the slightly simpler LSTM model.
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Fig. 7. Motif visualization. These are matches of motifs learned by the LSTM acceptor and donor models against known splicing regulators. Motifs are extracted using the method by
Alipanahi et al. (2015) and then referenced against the human splice site acceptor consensus motifs (Zhang, 1998) and RNA binding elements from RNAcompete (Ray et al., 2013) with
TOMTOM (Gupta et al., 2007). Reference motifs are on the top and matching motifs learned by COSSMO are on the bottom. The p-values are reported by the TOMTOM algorithm.

Table 3. Accuracy of COSSMO models and MaxEntScan

All events Alternatively spliced

Model Acceptor
n = 172, 940

Donor
n = 175, 000

Acceptor
n = 22, 564

Donor
n = 25, 865

MaxEntScan 0.322 0.371 0.181 0.210
Independent 0.520 (± 0.004) 0.569 (± 0.003) 0.331 (± 0.003) 0.376 (± 0.002)
Comm-net 0.540 (± 0.008) 0.653 (± 0.001) 0.350 (± 0.007) 0.482 (± 0.005)
LSTM 0.700 (± 0.004) 0.711 (± 0.002) 0.533 (± 0.006) 0.548 (± 0.005)
Resnet + LSTM 0.698 (± 0.005) 0.701 (± 0.003) 0.526 (± 0.008) 0.540 (± 0.005)

Accuracy is defined as the frequency at which the model correctly identifies
the splice site with maximum PSI. Accuracies are computed as the average of
five cross-validation folds with standard errors given in parentheses. The right
columns shows accuracy only for those events that contain two or more annotated
splice sites.

Table 4. Cross-entropy error of COSSMO models and MaxEntScan.

All events Alternatively spliced

Model Acceptor
n = 172, 940

Donor
n = 175, 000

Acceptor
n = 22, 564

Donor
n = 25, 865

MaxEntScan 2.836 2.244 3.819 3.043
Independent 1.583 (± 0.008) 1.401 (± 0.020) 2.384 (± 0.006) 2.253 (± 0.041)
Comm-net 1.490 (± 0.021) 1.107 (± 0.003) 2.254 (± 0.018) 1.777 (± 0.020)
LSTM 1.017 (± 0.012) 0.944 (± 0.006) 1.689 (± 0.021) 1.602 (± 0.012)
Resnet + LSTM 1.014 (± 0.010) 0.955 (± 0.009) 1.688 (± 0.010) 1.603 (± 0.009)

Loss is computed as the average of five cross-validation folds with standard errors
given in brackets. The right columns shows loss only for those events that contain
two or more annotated splice sites.

Accuracy is intuitive to interpret but it only takes into account
whether or not COSSMO predicts the strongest splice site in a large set
correctly. Accuracy does not take into account how well the predictions
fit the PSI distribution overall. Tables 4 shows the cross-entropy error of
the four different COSSMO models and Table 5 shows the coefficient

Table 5. Coefficient of determination (R2) of COSSMO models and
MaxEntScan.

All events Alternatively spliced

Model Acceptor
n = 172, 940

Donor
n = 175, 000

Acceptor
n = 22, 564

Donor
n = 25, 865

MaxEntScan 0.080 0.195 -0.105 0.038
Independent 0.389 (± 0.003) 0.438 (± 0.005) 0.187 (± 0.003) 0.208 (± 0.009)
Comm-net 0.421 (± 0.007) 0.552 (± 0.001) 0.229 (± 0.003) 0.372 (± 0.008)
LSTM 0.614 (± 0.005) 0.628 (± 0.003) 0.430 (± 0.006) 0.453 (± 0.005)
Resnet + LSTM 0.612 (± 0.006) 0.618 (± 0.004) 0.420 (± 0.007) 0.448 (± 0.004)

The coefficient of determination is computed using the class prior 1/K (uniform
distribution over alternative splice sites) as baseline. For COSSMO, R2 is
computed as the average of five cross-validation folds with standard errors given
in parentheses. The right columns shows loss only for those events that contain
two or more annotated splice sites.

of determination R2. While MaxEntScan performs relatively well at
predicting the dominant splice, as shown by the accuracy, it performs
much worse at predicting the PSI distribution in general. This should not
be a surprise given that MaxEntScan was designed to score splice sites in
isolation. Still, this demonstrates the need to model splice sites in their
local context if predicting their relative utilization is the goal.

4.2 Performance on Alternatively Spliced Events

The majority of the events in our dataset have only one annotated splice site
(Figure 2). To gain a deeper understanding of COSSMO’s performance, it
also helps to stratify the dataset and only look at events that are alternatively
spliced (have more than one annotated splice site). The performance of
MaxEntScan and COSSMO on this subset is shown in the right hand
columns of Tables 3, 4, and 5. This is a much more challenging subset of
the data and performance of MaxEntScan and COSSMO is both impacted
when more than one annotated site is present. However, while MaxEntScan
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accuracy drops by almost half on this subset, COSSMO’s relative drop in
performance is lower, with the more complicated models (“LSTM” and
“LSTM + Resnet”) seeing a smaller relative drop in accuracy than the
simpler models (“Independent” and “Comm-net”).

Table 5 shows that MaxEntScan breaks down on the alternatively
spliced subset. On the alternative acceptor dataset, MaxEntScan explains
less of the variance than simply predicting a uniform distribution over
splice sites, manifesting as a negativeR2 score. TheR2 of the COSSMO
LSTM model drops from 61% to 43% on this more difficult subset.

4.3 Error analysis

It is helpful to examine the types of errors our predictors make and how the
models differ in their mistakes. Figure 8 shows a breakdown of the types
of splice site out of the different categories presented in Table 1. The bars
show the proportions of the types of the predicted dominant splice site. As
expected, the annotated splice sites almost always have greater true PSI
than de-novo or decoy splice sites in our dataset.

Our best model, which use an LSTM almost never mistakes a negative
site for real. However, it can be fooled by a decoy site approximately
8% of the time. The LSTM model also predicts a de-novo site to be
dominant approximately 20% of the time. The simpler independent and
communication network COSSMO models make the same errors more
often.

MaxEntScan incorrectly predicts a decoy splice site to be dominant
nearly 40% of the time. This is not surprising since the decoy sites are
chosen to be cases that MaxEntScan scores higher than they should be
according to our RNA-Seq data and the data is thus biased to producing
wrong predictions from MaxEntScan. The results, however, show that our
dataset design is relatively successful in producing models that are less
likely to be fooled by cryptic splice sites and other sequences that are not
recognized by the spliceosome, even though they look very similar to true
splice sites.

To examine how much our dataset design disadvantages MaxEntScan,
we remove both decoy and negative sites from the test set and use each
model to predict the dominant site only from the annotated and de-novo
sites. This is a much easier prediction problem because in this setting, the
model must only choose between an average of five putative splice sites
rather than around 80 sites in the full setting.

Even in this scenario, MaxEntScan incorrectly predicts a de-novo site
to be dominant in about 44% of test cases, while the LSTM COSSMO
model has about half the error rate, demonstrating that the performance
gap persists even when we correct for possible bias in the dataset design.

5 Model interpretation
To visualize the motifs COSSMO learns we follow a similar procedure to
Alipanahi et al. (2015). We run approximately 2M splice sites from our test
set through the model and extract the activations after each convolutional
layer, just after applying the ReLU function. We then threshold those
activations at the 99.9% percentile to keep only those input sequences
to which the filter responds the most strongly. Then, we align the input
sequences according to the position of the output unit and compute the
position probability matrix corresponding to each filter.

For both the acceptor and donor LSTM models, we extract motifs
learned for the alternative DNA, constant DNA, and spliced RNA input
sequences by the first, second, and third convolutional layer.

We then use TOMTOM (Gupta et al., 2007) to find matches of the
motifs learned by COSSMO in the RNAcompete database of RNA-binding
elements (Ray et al., 2013) and against the human acceptor and donor site
consensus motifs (Zhang, 1998). We find that COSSMO’s learned motifs

match a large number of the most important known splicing factor binding
sites as well as the acceptor and donor consensus motifs.

Figure 7 shows several examples of high-certainty matches of
COSSMO’s motifs against known motifs. In particular, COSSMO learns
motifs that almost perfectly match the known acceptor and donor site
consensus motifs (a & b). TOMTOM produces a large number of matches
against the RNAcompete motifs, among them many of the most important
splicing factors (e.g. hnRNPA2B1, hnRNPA1L2, hnRNPA1, hnRNPH2,
PTBP1, QK1, SFPQ, SRSF1, SRSF2, SRSF7, SRSF9, SRSF10, U2AF2,
YBX1). In total we find 83 matches against RNAcompete motifs with
p < 10−2 in the acceptor model and 140 matches in the donor model.
Figure 7 shows some examples of strong matches to known splicing
factors:

• hnRNPA1L2 (c, p = 7.32e− 06), which is a member of the hnRNP
family of RNA-protein complexes that are involved in splicing control
(Martinez-Contreras et al., 2007),

• SFPQ (d, p = 3.52e − 04), an essential pre-mRNA splicing factor
required early in spliceosome formation and for splicing catalytic step
II (Patton et al., 1993),

• U2AF2 (e, p = 2.55e − 04), which is a necessary part of the
spliceosome and binds to the polypyrimidine tract (Zamore et al.,
1992), and

• DAZAP1 (f, p = 1.52e − 05), which can activate weak exons by
neutralizing splicing inhibitors (Choudhury et al., 2014).

The full list of motif matches is available in the supplementary materials.

6 Discussion
In this work, we introduced COSSMO, a computational model that enables
accurate prediction of competitive alternative splice site selection from
sequence alone. We describe how we generate a genome-wide dataset for
training and evaluation by combining positive splice site examples from
genome annotations and large-scale RNA-Seq datasets, as well as negative
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examples from random genomic background sequences, and decoy splice
sites that receive high scores from MaxEntScan but lack evidence of splice
site usage from RNA-Seq data.

We design four neural network architectures that adapt to a variable
number of alternative splice sites and carefully evaluate them using
genome-wide cross-validation. We find that all of our models performed
better than MaxEntScan, but we also find large performance differences
between the different COSSMO architectures. Independent scoring
networks achieve decent performance but the best performance depends
on a communication mechanisms between the scoring networks. Of these
models, the recurrent LSTM model achieved better accuracy than the
communication network, which does not take the ordering of the splice
sites into account.

We also demonstrate that COSSMO learns ab-initio, without any
feature engineering or built-in knowledge, a wide array of binding motifs
that correspond to the splice site consensus sequences and known splicing
factors.

Our work demonstrates that it is possible to use deep learning to predict
splice site choice with high accuracy, which can be extended to predict how
genomic variation affects splice site choice through mechanisms like splice
site variants or cryptic splice site activation.
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