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ABSTRACT 
Phosphatase and tensin homolog (PTEN) is a tumor suppressor frequently mutated in diverse cancers. 
Germline PTEN mutations are also associated with a range of clinical outcomes, including PTEN hamartoma 
tumor syndrome (PHTS) and autism spectrum disorder (ASD). To empower new insights into PTEN function 
and clinically relevant genotype-phenotype relationships, we systematically evaluated the effect of PTEN 
mutations on lipid phosphatase activity in vivo. Using a massively parallel approach that leverages an artificial 
humanized yeast model, we derived high-confidence estimates of functional impact for 7,244 single amino acid 
PTEN variants (86% of possible). These data uncovered novel insights into PTEN protein structure, 
biochemistry, and mutation tolerance. Variant functional scores can reliably discriminate likely pathogenic from 
benign alleles. Further, 32% of ClinVar unclassified missense variants are phosphatase deficient in our assay, 
supporting their reclassification. ASD associated mutations generally had less severe fitness scores relative to 
PHTS associated mutations (p = 7.16x10-5) and a higher fraction of hypomorphic mutations, arguing for 
continued genotype-phenotype studies in larger clinical datasets that can further leverage these rich functional 
data. 
 
 
MAIN TEXT 
 
Recent large-scale exome sequencing studies have highlighted the abundance of protein-coding variation in 
the human population1. It remains challenging to predict variant pathogenicity and clinical outcomes, especially 
for genes with pleiotropic effects. With most rare variants private to a single family or individual, using 
traditional approaches to establish pathogenicity such as variant segregation within a pedigree or identification 
in independent patients is infeasible. Even for well-studied genes, hundreds of variants are currently defined as 
variants of uncertain significance (VUS). Moreover, purely computational approaches still suffer from high false 
positive rates2 and subjective interpretations that limit the clinical utility of these predictions.  

To address these challenges for genes of clinical importance, one proposed approach is to 
prospectively measure the functional effects of all possible mutations, allowing these empirical data to be 
integrated into the clinical assessment of novel rare variants3,4. Historically, these types of functional assays 
have been conducted in a serial nature, which limits scalability, and often only within a portion of the protein of 
interest. While there are some notable examples of whole-gene brute force saturation mutagenesis, e.g., 
TP535, new more scalable experimental paradigms are being developed that allow the functional dissection of 
the effects of thousands of genetic mutations in parallel6. These approaches leverage recent advances in DNA 
synthesis and sequencing technologies and have proven particularly valuable in understanding the effects of 
mutations in cancer-associated genes7,8.  

With these issues in mind, we have developed a saturation mutagenesis approach to comprehensively 
assess the effect of nonsynonymous mutations on the lipid phosphatase activity of phosphatase and tensin 
homolog (PTEN). PTEN antagonizes the phosphoinositide 3-kinase (PI3K) signaling pathway through its lipid 
phosphatase activity toward the signaling lipid phosphatidylinositol (3,4,5)-trisphosphate (PIP3)9,10. In mice, loss 
of this activity increases tumor susceptibility in a dose dependent manner11. This observation led to a 
continuum model for PTEN’s role in cancer development, with the level of phenotypic severity tightly coupled to 
the level of lipid phosphatase activity12.  

Germline PTEN mutations are associated with a diverse range of clinical outcomes, including autism 
spectrum disorder (ASD)13–15 and tumor predisposition phenotypes collectively known as PTEN hamartoma 
tumor syndrome (PHTS)16–18. Germline mutation carriers often share the common feature of increased head 
size or macrocephaly19. However, there is substantial variability in the neurological and tumor phenotypes 
present in these individuals. PHTS is an umbrella term that encompasses Cowden syndrome, Bannayan-Riley-
Ruvalcaba-syndrome, and PTEN-related Proteus syndrome20. PHTS-affected individuals typically present with 
macrocephaly, hamartomatous polyps, and have an extremely high life-time risk of cancer20. PTEN mutations 
have been identified in macrocephaly cohorts of individuals with formal ASD diagnoses or developmental delay 
(DD)/intellectual disability (ID)13,21,22 as well as idiopathic ASD14,23,24. 

It is currently impossible to predict the phenotypic outcome of a given PTEN mutation. Even predicting 
whether a PTEN mutation will have a pathogenic effect is still challenging. This is exemplified by the fact that a 
majority of missense variants (131/241, 54%) in ClinVar are considered VUS and the pathogenicity of 12 
additional variants is inconsistently reported across laboratories. Recent evidence from functional assays on a 
limited number of mutations and using diverse models, including humanized yeast25, cultured human cells26, 
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and in vivo mouse neurons27, suggest that mutations identified in individuals with ASD or DD without obvious 
PHTS features tend to have hypomorphic lipid phosphatase activity, while PHTS-associated mutations more 
frequently show complete loss of lipid phosphatase activity. Further supporting this hypomorphic hypothesis, 
the distributions of mutation types are consistent with ASD associated mutations being generally less severe, 
with reported missense mutations three to four times as common in ASD compared with PHTS26,28. These 
findings, as well as the established genotype-phenotype relationships for PTEN in cancer, led us to 
hypothesize that, at the population level, ASD-associated PTEN variants are hypomorphic compared to PHTS-
associated PTEN variants. 
 To systematically test this hypothesis and improve our ability to interpret the functional effects of any 
PTEN mutation, we modified a previously validated humanized yeast model for massively parallel functional 
testing of the effects of PTEN mutations on lipid phosphatase activity in vivo25,29. Given that yeast do not signal 
through PIP3 dependent pathways30, this model system challenges PTEN protein variants to act on their 
preferred substrate in a cellular environment, but removes the confounding signaling and regulatory milieu 
present in mammalian cells. Accordingly, the model is more sensitive than in vitro assays in which PTEN 
dephosphorylates a water-soluble substrate31. The utility of the yeast model for measuring lipid phosphatase 
activity has been demonstrated through validation of mutation effects on downstream Akt1 activation in 
mammalian cells, exhibiting complete concordance for the variants tested31. 
 With this system, we analyzed the functional effect of 86% of all possible single amino acid alterations. 
Overlaying these data onto PTEN secondary and tertiary structures recapitulated many known or predicted 
structure-function and biochemical relationships but also revealed surprising patterns of mutational tolerance. 
We discovered that several residues within the catalytic pocket are surprisingly tolerant to mutation, and we 
identify residues that are critical for membrane interaction. Moreover, we demonstrate these functional fitness 
scores have clinical utility by showing that they can outperform in silico-based approaches in characterizing 
likely pathogenic and benign variants. Finally, we provide compelling support for the existence of germline 
PTEN genotype-phenotype relationships that should be further explored in larger longitudinal clinical cohorts.  
 
RESULTS 
 
Establishing a massively parallel functional assay for PTEN lipid phosphatase activity. We leveraged an 
artificial humanized yeast model in order to assess the relative phosphatase activity of PTEN variants25,29. In 
this system, the human PI3K catalytic subunit p110α (encoded by the PIK3CA gene) is expressed in 
Saccharomyces cerevisiae and artificially directed to the membrane by a C-terminal prenylation box29. At the 
membrane, p110α is able to catalyze the conversion of the essential pool of phosphatidylinositol (4,5)-
bisphosphate (PIP2) to PIP3, which potently inhibits growth through cytoskeletal disruption29. Upon induction of 
gene expression, cells proliferate at a rate that is proportional to the ability of the PTEN variant to convert PIP3 
to PIP2

31. Co-expression of wild-type PTEN, but not catalytically dead mutants, e.g., C124S, catalyzes the 
reverse reaction, restoring the PIP2 pool and allowing the yeast to grow and survive (Fig. 1a). Moreover, 
growth rate provides a quantitative surrogate of lipid phosphatase activity with partial loss of function mutations 
showing intermediate growth phenotypes25.  
 We made several modifications to this system that allowed for massively parallel testing of 
preprogrammed mutations. First, to allow for parallel testing, rather than serial plating of single mutations, we 
modified the assay to support complex populations of PTEN-bearing yeast in liquid culture and sequencing as 
a readout of growth (Fig. 1b,c, Supplementary Fig. 1). We then introduced the yeast-preferred codon for each 
non-wild-type amino acid, stop codon, and single residue deletion at all PTEN codons en masse, utilizing a 
homologous recombination-based mutagenesis approach32,33 (Methods, Fig. 1b, Supplementary Fig. 2a, 
Supplementary Table 1). To allow direct sequencing of each mutagenized region, mutational space was 
separated into ~300 base-pair quadrants (Supplementary Fig. 2a).  
 We transformed two independent yeast populations with our mutagenesis library. Sequencing of naïve 
yeast libraries indicated that 95% of all intended mutations were present (Fig. 1b, Supplementary Fig. 2a). No 
position had less than 33% mutational coverage. Mutation dropout was largely confined to a single oligo pool in 
the C2 domain of the protein, which repeatedly performed poorly. We then performed selection experiments on 
these two independent yeast populations, each with three selection replicates (Fig. 1b).  We calculated natural 
log-scaled and wild-type normalized fitness scores for each variant, along with standard error-based 
confidence intervals34 (Methods, Supplementary Fig. 2b). Score estimates were generated for 8,019 (95% of 
intended) PTEN nonsynonymous mutations and between mutational libraries fitness scores were highly 
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correlated (Pearson’s r = 0.76, Table 1, Supplementary Fig. 3a,b, Supplementary Table 2). The distribution of 
fitness effects illustrates two major populations corresponding to likely damaging and wild-type-like mutations 
(Supplementary Fig. 3a). Based on low standard error or replicate concordance, scores for 7,244 mutations 
(86% of intended) were classified as high-confidence (Methods, Table 1, Supplementary Fig. 3c, 
Supplementary Table 2). Mutations were classified as wild-type like if their average fitness score was within the 
95th percentile (two-tailed) of observed synonymous mutations (Supplementary Fig. 3d). We identified 2,273 
likely damaging mutations (31%), 4,872 wild-type-like mutations (67%), and 99 mutations that performed better 
than wild-type (1%) (Table 1). Among the likely damaging missense mutations, 1,243 (17%) fell within the 
observed distribution for programmed premature truncations (excluding C terminal tail), with the remainder 
having intermediate phenotypes in this assay. 
 
High-resolution mutation data reveal structure-function insights. Using the high-confidence data, we first 
analyzed structure-function relationships, including known or predicted functional domains. Our complete 
sequence function map recapitulates many known features of PTEN biochemistry. For example, early 
truncating mutations are uniformly damaging through the phosphatase and C2 domain, but are tolerated in the 
regulatory tail31 (Fig. 2a). Overlaying the median fitness score of each position onto the partial crystal structure 
of PTEN (including residues 7-285 and 310-353) reveals strong intolerance of positions in the phosphatase 
domain, especially those positions near the catalytic pocket (Fig. 2b). The median fitness scores are also 
correlated with evolutionary conservation (Spearman, ρ = 0.58, Supplementary Fig. 3e). When compared to 
positions in alpha helices and beta strands, unstructured positions are very tolerant to mutation 
(Supplementary Fig. 3f).  

The catalytic pocket of PTEN is composed of the WPD, P, and TI loops (Fig. 2c). This motif has 
sequence homology to dual specificity protein phosphatases, especially within the signature motif (123-
HCXXGXXR-130)35. R130 is a hot-spot for somatic cancer associated mutations with multiple different 
missense and truncations frequently reported36. We observed this critical position was intolerant to all 
mutations (Fig. 2e). Compared to other phosphatases, PTEN also has unique sequence features in order to 
accommodate the highly acidic and bulky PIP3 substrate. Residues H93, K125, and K128 impart a basic 
character on the pocket35, the importance of which is demonstrated by the mutational intolerance at these 
positions (Fig 2d,e). D92 is a critical residue for PTEN catalysis, but its exact role remains uncertain25,37. We 
find that the only substitution with wild-type like activity is asparagine. Additionally, the PTEN catalytic pocket is 
larger compared to other dual specificity phosphatases35. The Cowden-associated G129E mutation has been 
shown to abolish lipid phosphatase while preserving protein phosphatase activity38. Our data show G129 is 
intolerant to all mutations except to alanine and serine, the two next smallest amino acids (Fig. 2e). 
Unexpectedly, despite their presence in the catalytic pocket, several residues in the WPD and TI loops are 
highly tolerant to mutations (Fig. 2d,f), highlighting the power of functional data to delineate truly functional 
from non-functional alterations within highly conserved protein domains.  

PTEN associates with the plasma membrane through multiple domains. A PIP2 binding motif in the 
phosphatase domain (residues 6-15) is rich in positively charged amino acids and allosterically promotes 
catalysis upon PIP2 binding39,40. An additional positively charged residue, R47, contributes to this interaction41. 
Our data suggest that R15, K13, and R47 are the most critical of the positively charged residues in this motif42 
(Supplementary Fig. 4a). Additionally, an intramolecular regulatory interaction between the C-terminal tail and 
the phosphatase domain is controlled by phosphorylation at four sites in the tail, in mammalian cells43. We find 
that individual phosphomimetic substitutions at these sites are insufficient to decrease activity in our assay 
(Supplementary Fig. 4b).  
 
Protein positions cluster into stereotyped patterns of mutational sensitivity. In order to identify patterns 
of mutational sensitivity among PTEN positions and amino acid substitutions, we performed hierarchical 
clustering with all positions at which we measured effects of all missense substitutions (including high and low 
confidence, n = 326, Fig. 3a). We found that positions clustered into two major clades, corresponding to 
positions broadly tolerant/intolerant to proline or highly sensitive positions. We identified solvent exposure as a 
highly discriminatory feature between sensitive and tolerant clades, with 80/88 (91%) positions in the sensitive 
clade being in buried positions, while only 44/170 (26%) are buried in the tolerant clade (Fig. 3a). The tolerant 
clade splits into two major groups with a sub-clade broadly tolerant to all substitutions (beige) and a second 
sub-clade where positions are either sensitive to proline alone or proline and hydrophobic residues (purple). 
The proline sensitive positions generally are part of secondary structures that are not buried in the hydrophobic 
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core (Fig. 3a). The sensitive clade positions split into three groups (green shaded sub-clades), which differ in 
their tolerance to charged, polar, or hydrophobic residues. The dark green clade represents the most 
constrained positions, and includes position 92, 123, 124, and 130; all of which are in the catalytic pocket and 
critical for catalysis. Overlaying the sub-clade assignment of each position onto the crystal structure highlights 
the intolerance of mutations within the hydrophobic core of the phosphatase domain. Many of the solvent 
exposed positions in the C2 domain are tolerant to mutation (Fig. 3b). 
 Clustering by amino acid substitutions recapitulated known functional relationships with proline 
correlated poorly with other substitutions (Fig. 3a). We sought to leverage these patterns of correlation to 
predict the fitness scores of mutations that were not present in our mutagenesis library or that were low-
confidence44. We developed a heuristic for using only the most closely correlated observed substitutions45 at 
the site of interest to compute an “informed position average” (Supplementary Fig. 5a). We combined this with 
several other prediction based, evolutionary, and biophysical features to train and test a random forest 
regression algorithm on our high-confidence measurements44 (Methods, Supplementary Fig. 5b,c, 
Supplementary Table 6). We used 10-fold cross validation to confirm that this approach can predict unseen 
data with high confidence (Pearson’s  r = 0.80, Supplementary Fig. 5e). We further performed a down-
sampling analysis to assess the expected accuracy of imputing scores at different levels of saturation, finding 
that reductions of 10-20% (65.8-74% of saturation) achieve similar performance (Supplementary Fig. 5f). 
Finally, we generated imputations for all variants that were absent from our library or measured with low-
confidence (Supplementary Fig. 6).  
 
Fitness scores discriminate between likely pathogenic and benign alleles. To determine if our empirically 
determined fitness scores were informative for discriminating between germline likely pathogenic and benign 
alleles, we collected germline missense mutations reported as pathogenic or likely pathogenic from ClinVar46 
and rare variants from gnomAD1 (excluding R173H and K289E, which are reported pathogenic in ClinVar, 
Methods, Supplementary Tables 3,4). Fitness scores alone discriminated pathogenic from benign germline 
alleles (Fig. 4a). We found that the F0.5 score, which weights predictive value (PPV) over sensitivity, reaches its 
maximum at a cutoff based on the synonymous distribution (<= -1, ~95th percentile, PPV = 0.93, sensitivity 
0.83), and outperforms several in silico mutation effect prediction algorithms (Fig. 4c). PPV was maximized 
(0.98) at a more conservative cutoff based on the 95th percentile of the truncation distribution, but with reduced 
sensitivity (0.60) (Fig. 4a,c). Given the high PPV of our scores, we evaluated distribution of fitness scores 
among ClinVar missense VUS (Fig. 4b).  We found that 21/127 (17%) VUS with high-confidence data met the 
strict truncation-based cutoff and 41/127 (32%) met the synonymous cutoff, suggesting that fitness scores 
could be used to reclassify a major fraction of VUS.   

PTEN mutations are extremely frequent in somatic cancer. We extracted nonsynonymous mutations 
from The Cancer Genome Atlas (TCGA) and observed a multimodal and wide distribution of fitness scores 
(Fig. 4d,e, Supplementary Table 5). This is likely due to the presence of both driver and passenger mutations 
in these data. Similar to the germline analysis, to test if fitness scores could discriminate somatic mutations 
that are likely pathogenic, we evaluated mutations from Onco-KB, a precision oncology database with expert 
annotation of somatic mutations47 (Supplementary Table 5). We found that fitness scores of PTEN mutations 
considered “oncogenic” or “likely oncogenic” were substantially more negative than those considered “likely 
neutral.” Of the missense likely oncogenic, 86/124 (69%) and 56/124 (45%) were below the synonymous and 
truncation thresholds, respectively. In contrast, of the 8 variants considered likely neutral (all missense), only 
one (A121V) had a fitness score marginally below the synonymous cutoff (fitness score, -1.3). Taken together, 
these findings emphasize the ability of empirically determined fitness scores to discriminate between 
pathogenic and benign human alleles, in both the germline and somatic setting.  
 Finally, we evaluated potential genotype-phenotype relationships for germline PTEN mutations. We first 
compared the fitness scores of PTEN mutations associated with various clinical presentations acquired from 
multiple sources (Methods, Fig. 4c, Supplementary Table 5). We found that, as a population, fitness scores of 
nonsynonymous mutations exclusively reported in ASD/DD cohorts were less severe than PHTS-associated 
mutations (Mann-Whitney U-test, two-sided, p = 7.16 x 10-5). Comparing only the missense we found that this 
significant difference persists (Mann-Whitney U-test, two-sided, p = 2.89 x 10-4), indicating that the mutation 
type alone does not drive these differences. We found 12/29 (41%) and 21/105 (20%) of the ASD and PHTS 
missense mutation fell within the hypomorphic activity range, respectively. Overall, these data provide strong 
support for the hypothesis that ASD/DD associated mutations often retain hypomorphic PTEN phosphatase 
activity.  
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DISCUSSION 
 
Massively multiplexed functional assays represent a promising approach to understanding the effect of 
mutations on protein function, which can provide immediate insights into structure-function relationships and 
clinical interpretation. Modifying a humanized yeast assay that uses growth to readout relative phosphatase 
activity, we were able to assess the functional effects of human PTEN mutations on a massive scale. Our 
approach yielded high-confidence measurements of 86% of the possible single residue nonsynonymous 
mutations. A limited number of human proteins have been subjected to full length massively multiplexed 
functional assessment, and very few have been assayed at the depth we achieved7,8,44,48–52. Similar 
approaches could be used with this model to the study of various aspects of the PI3K/Akt pathway at scale, 
including mutations in PIK3CA/B (p110α/β)31,	 PIK3R1 (p85α)53, and AKT154 as well as drug screening for 
PIK3CA inhibitors55.  

Several features of the data support the validity of these function estimates and their relevance to 
human health. We observed high correlation between biological replicates and recapitulated known features of 
PTEN function. For example, the set of early terminating mutations confirm that the minimal catalytic unit 
includes the phosphatase and C2 domains, but not the C-terminal tail31. Likewise, we found that position C124, 
which takes part directly in phosphatase catalysis, and position R130, which is a hotspot for cancer mutations, 
are completely mutation intolerant. Additionally, we found that mutations are not well tolerated within the loops 
forming catalytic pocket or residues mediating interactions with PIP2. Finally, we found that proline was the 
most damaging substitution, consistent with a recent meta-analysis of massively multiplexed experiments45 
and decades of biochemistry56. 

While the humanized yeast system faithfully reports on intrinsic lipid phosphatase activity, mutations 
that functionally disrupt protein-protein interactions, subcellular localization, post-translational modifications, or 
function through a dominant negative mechanism57 in mammalian cells will not be captured. PTEN has 
relatively low thermostability58, and protein destabilization is a known mechanism for PTEN loss-of-function26,59. 
A concurrent functional screen assaying protein stability found ~1/4th of mutations alter steady state stability51. 
Six mutations that destabilized PTEN in breast cancer cell lines also decreased steady state abundance in this 
yeast model31, suggesting that mutations affecting thermostability will be detected in our screen. However, our 
sensitivity to detect destabilizing mutations is unknown, as is whether mutations specifically altering the rate of 
proteasome-mediated degradation60 will be reported on. We believe that independently assaying these 
important factors at similar scale would provide useful complementary insights into PTEN function. 

We discovered that approximately half of all positions in PTEN were broadly tolerant to substitutions, 
suggesting that they are not required for lipid phosphatase activity. While there is a degree of correlation 
between the median fitness score and the evolutionary conservation of each position, we identified positions 
within the highly conserved catalytic pocket and elsewhere in the protein that are highly tolerant to specific 
mutations. This is in apparent contradiction with PTEN’s high evolutionary conservation (99.75% identity 
between human and mouse28) and constraint in humans1. This suggests that many PTEN positions are 
potentially under selection due to phosphatase independent functions. 
 Our high-resolution mutation data empowered unique insights into PTEN biochemistry and structure. 
G129E is a well-known Cowden-associated mutation that disrupts lipid phosphatase activity while maintaining 
protein phosphatase activity38. We found that substitutions to alanine and valine are tolerated at this position, 
while mutations to bulkier residues are damaging. This suggests that there is a size limit for the amino acid that 
occupies this position. D92 matches the position of aspartic acid in the WPD loop of PTP1B, which acts as a 
general acid in the catalytic mechanism37. D92 is a critical residue in the PTEN catalytic pocket, but its role in 
the reaction mechanism remains uncertain25,37,61. Our data support previous findings that all mutations except 
D92N are damaging25. However, a D92N mutation has been reported in an individual with ASD indicating that 
it still may have a clinical effect62.  Asparagine deamidation is a spontaneous, intramolecular reaction that can 
result in the conversion of asparagine to aspartic acid63. We propose that D92N could be showing wild-type like 
activity as a result of this reaction in our assay. In mammalian cells, this spontaneous conversion may not be 
sufficient to fully rescue PTEN activity.  

Similar to previous studies5,64, we used hierarchical clustering to look for patterns amongst the positions 
and amino acid substitutions. We found that PTEN positions fall into a few stereotyped patterns of mutational 
tolerance and that a critical determinant of mutational tolerance is the relative solvent exposure of the position. 
These findings are consistent with a recent meta-analysis of similar experiments65. We leveraged the 
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correlation amongst amino acid substitutions, along with several other features, to generate a random forest 
regression model that could accurately predict the fitness scores of unseen mutations and create a 
comprehensive functional map encompassing the effects of all possible single nonsynonymous mutations. To 
guide future studies of similar proteins, we performed a downsampling analysis of the training data and found 
that for similar accuracy, ~70% mutation saturation would likely be sufficient. Moreover, proline substitutions 
predict poorly and should be directly assayed.  
  A critical hurdle for the application of massively multiplexed functional assays is bridging the gap 
between molecular phenotype and human phenotype66. We found that fitness scores are able to discriminate 
between likely pathogenic and benign human alleles in both the germline and somatic condition. On this basis, 
we expect that these scores will be of tremendous clinical value for reclassifying VUS4 and also predicting the 
effects of private alleles that remain to be identified. A major question related to PTEN genetics is whether 
genotype-phenotype relationships can explain the heterogeneity in clinical presentation for carriers of germline 
mutations. Our comprehensive dataset provides strong evidence that the mutations associated with ASD/DD 
are hypomorphic for lipid phosphatase activity and are significantly more active than the mutations that lead to 
PHTS. This suggests that distinct biological mechanisms underlie the differential presentations, and 
understanding these differences will be critical to the eventual treatment of these disorders. While it is possible 
that these different mechanisms are the direct result of lipid phosphatase activity at the plasma membrane, 
ASD-associated mutations may specifically disrupt another of PTEN’s cellular functions67,68. Supporting this 
idea, some ASD-associated mutations are excluded from the nucleus and lead to neuronal hypertrophy, but 
this phenotype can be rescued by artificial direction to the nucleus69.  

While massively parallel functional data is a significant advance for understanding function-specific 
mutation effects, further untangling complex genotype-phenotype relationships will require similar advances in 
clinical genetics databases with standardized descriptors of clinical presentations and symptoms28. Our study 
was limited by both the number of publicly available mutations and associated clinical information. Since there 
are no variants considered benign in ClinVar, we used PTEN variants in the gnomAD database as a proxy for 
likely benign mutations. While these mutations are on average wild-type like, we recognize that this is an 
imperfect approach and it is possible that some of the variants in gnomAD are pathogenic. We excluded 
variants that were only in ClinVar from our genotype-phenotype analysis because of their ambiguous 
annotation and lack of clinical data. For example, 17% of the pathogenic/likely pathogenic mutation 
submissions had no indicating condition provided and 36% of all missense entries use the ambiguous term 
“hereditary cancer-predisposing syndrome.” Requiring submitters to provide more information in a consistent 
way will maximize the utility of massively multiplexed functional data. Finally, it is still unclear if individuals 
ascertained for neurological phenotypes as children will have a higher risk to develop PHTS like or cancer 
presentations later in life70. Moving forward, large-scale sequencing efforts that permit longitudinal assessment 
as well as patient re-contact will be instrumental. A new initiative, SPARK, aims to partner with 50,000 
individuals with ASD and their families to create the largest genetically characterized ASD cohort to date71. It is 
likely that hundreds of new PTEN mutation carriers will be identified in SPARK and would be available for re-
contact and detailed prospective study.  
 We demonstrate that comprehensively assaying the molecular phenotypes of thousands of mutations 
to a human protein can yield clinically relevant insights, even for proteins with pleiotropic effects. Future efforts 
that combine multiple functional modalities and rich clinical datasets may allow for the precision needed to fully 
realize personalized genomic medicine.  
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METHODS 
 
PTEN saturation mutagenesis. Our mutagenesis approach was similar to the Mutagenesis by Integrated 
TilEs (MITE) approach32. We designed a series of “tiles” that were complementary to wild-type PTEN except 
for one codon (Supplementary Fig. 1a). At this single codon, each molecule bore a substitution to the yeast-
optimized codon for each non-wild-type amino acid, the yeast-preferred stop codon, or an in-frame, single 
codon deletion. Additionally, each set of “tiles” contained unique DNA adapters on either end to allow PCR 
retrieval of individual tiles from the pool (using primers with prefix: PTEN_sliceprimer, Supplementary Table 1). 
These DNA “tiles” were synthesized as 130-mers as part of a 12,000-feature oligo pool by CustomArray 
(Bothell, WA prefix: PTENTile). For each “tile”, we designed inverse PCR primers that linearized the pYES2-
PTEN wild-type sequence, excluding the portion encoded by the corresponding tile. Following amplification the 
“tile” PCR products were incorporated into the appropriate linear pYES2-PTEN by SLiCE mediated 
recombination33. SLiCE reactions were 10 µL and consisted of 100 ng of linearized vector with 15 ng of “tile” 
DNA, along with 1x SLiCE buffer and 1x SLiCE extract (SLiCE extract and buffer were prepared as 
described72). Reactions were incubated for 60 minutes at 37°C, then diluted 1:10 in water and 2.5 µL used to 
electroporate 50 µL of NEB 10-beta electrocompetent E. Coli. Transformation reactions were plated on LB 
agar plates with 100mg/mL Carbenecillin (GoldBio) and grown overnight at 37°C. Colonies were collected and 
plasmids isolated with the QIAprep Spin Miniprep Kit (Qiagen). 
 
Yeast selection experiments. Plasmid libraries were normalized and pooled into 4 mega-pools, each 
representing saturation mutagenesis for one quadrant (quadrants 1-3 = 100 codons, quadrant 4 = 103 
codons).  One µg of each mega-pool was transformed into the S. cerevisiae strain YPH-499 already containing 
YCpLG-p110α-CAAX using the Li-Ac/SS carrier DNA/PEG method73 resulting in >50,000 colony forming units 
per reaction. Libraries were grown overnight in SC-glucose –leu –ura (synthetic complete medium lacking 
leucine and uracil, using glucose as carbon source), pelleted and frozen down in 15% glycerol in -80°C.  

Selection experiments began with overnight outgrowth of frozen stocks in SC-raffinose –leu –ura 
(raffinose neither induces nor represses GAL1/10 promoter). Following outgrowth, 25 or 30 million cells 
(replicate A or B) were pelleted for each quadrant as the “input” sample and frozen at -20°C.  Also, 25 or 30 
million cells were seeded into each of (3) 50 mL SC-galactose –leu –ura, and (1) SC-raf –leu –ura. Cultures 
were incubated at 30°C with 185 rpm shaking. After 24 hours of growth, cell concentrations were measured 
with TC-20 Automated Cell Counter, and for each replicate 20 million cells were passaged into fresh medium. 
At 36 and 48 hours, the same was done, except that 20 million cells of each sample were also kept as a 
timepoint sample. Samples were spun down with 13,000 x g for 30 seconds, medium withdrawn, and frozen in 
-20°C. 
 
Library prep and sequencing. Plasmid DNA was isolated from pelleted cells with Zymoprep Yeast Plasmid 
Miniprep II kit (Zymo Research). Stage-one PCR to append partial Illumina adapters was performed on 5 ng 
DNA with primers pYES2-PTEN_Q[1-4][F/R]_S1 and using KAPA HiFi Hotstart Readymix (KHF) in 25 µL 
reactions (1x KHF, 0.5 uM each primer, 2.5 ng DNA, 1x SYBR Green). Reactions were monitored by qPCR 
with cycling conditions: [95°C 3 minutes (98°C 20 seconds, 55°C 30 seconds, 72°C 15 seconds, plate read, 
72°C 8 seconds) x 28-36 cycles]. Reactions were removed during or immediately following exponential phase 
of amplification. Stage-two PCR was then done in 25 µL reaction volumes on 1 µL of uncleaned stage-one 
product using 0.5 µM of primers pYES2-PTEN_4Q_S2_F_[1-2] and pYES2-PTEN_4Q_S2_R_[1-44], 1x KHF, 
and 1x SYBR Green. Reactions were cycled with [95°C 3 minutes (98°C 20 seconds, 55°C 15 seconds, 72°C 
15 seconds, plate read, 72°C 8 seconds) x 6 cycles]. Reaction products were checked on a 1.5% agarose gel, 
purified using NucleoSpin PCR Clean-up (Machery-Nagel), and concentrations were measured using 
Nanodrop. Samples were normalized and combined into a common pool that was sequenced across multiple 
runs using paired-end 300 base-pair reads on Illumina MiSeq platform (v3 Reagent kit). 
	
Sequencing data analysis. Paired end reads were merged with PEAR74 and common priming sequences 
were trimmed from the 5’ and 3’ ends using cutadapt75. For each quadrant, a purely wild-type sample was 
sequenced in order to identify the sequencing error profiles. Counts of error reads were normalized to wild-type 
counts, then this normalized amount of reads were removed from all experimental samples7. Sequence 
variants were identified and counted with custom python scripts. These raw variant counts files were analyzed 
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with Enrich2 v1.2.0 (https://github.com/FowlerLab/Enrich2)34 to calculate scores and standard errors for each 
variant. 
 
Mutation collation. We collected ASD-associated variants from SFARI Gene76 (accessed 10/09/17) and the 
literature. We collected PHTS-associated mutations from the literature. A mutation was considered ASD/DD-
associated if the report did not include symptoms of PHTS, and the mutation had not been reported in another 
individual with PHTS. If an individual had ASD/DD and PHTS features, or was observed in multiple individuals 
representing both presentations, we considered it PHTS. We considered any PTEN missense or nonsense 
(excluding frameshifts) mutation in the gnomAD database1 (accessed 11/19/17) to be benign, with the 
exception of two mutations that are considered pathogenic in ClinVar (K289E and R173H). We considered 
single-residue missense mutations from ClinVar (accessed 09/30/17) that were considered either pathogenic 
or likely pathogenic, were submitted with criteria, and had no conflicting reports to be pathogenic. 
 
Protein positional features and modeling. Conservation values were acquired from Consurf DB77 with 
default settings. Relative solvent exposure was calculated with GETAREA web tool78. For Figure 3, a position 
was considered exposed if its ratio of side-chain surface area to “random-coil” surface area exceeded 50, 
intermediate if the ratio was between 20 and 50, and buried if its ratio was less than 20. Secondary structure 
assignments were enumerated with STRIDE79. Pymol (https://pymol.org/2/) was used to generate structural 
representations with pdb entry 1D5R. Clustering was performed on the 326 positions with all 19 missense 
mutations measured (including high and low confidence). Clustering was performed with 
scipy.cluster.hierarchy.linkage, method= “ward”. 
 
Mutation effect predictors. We obtained Provean and SIFT predictions from Provean Protein 
(http://provean.jcvi.org/seq_submit.php) with default settings. We considered “Deleterious” Provean predictions 
as pathogenic and “neutral” Provean predictions as benign. For SIFT, we considered “Damaging” predictions 
as pathogenic and “Tolerated” predictions as benign.  We obtained Polyphen-2 predictions from Polyphen-2 
batch query web server (http://genetics.bwh.harvard.edu/pph2/bgi.shtml). For Polyphen-2, “probably 
damaging” or “possibly damaging” predictions were considered pathogenic, whereas “benign” predictions were 
considered benign. 
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Fig. 1 | A framework for massively parallel functional testing of PTEN mutations. a, Humanized yeast 
model for evaluating the effect of PTEN mutations on lipid phosphatase activity. Exogenous expression of the 
catalytic subunit of human PI3K with a membrane-targeting prenylation motif  (p110α-CAAX) in yeast is toxic. 
However, co-expression of human PTEN wild-type, but not catalytically-dead PTEN C124S, can rescue 
growth. Both genes are under the control of a galactose inducible promoter (GAL). b-c, Modifications to allow 
massively parallel variant assessment. b, We generated a comprehensive PTEN allelic series, introduced 
these variants into yeast en masse, and subjected them to  p110α-CAAX-mediated selection in liquid culture. 
We performed two biological replicates, each consisting of three technical replicates. c, We collected input and 
selected timepoints and subjected these to deep sequencing. We used read counts to calculate fitness scores 
and used these scores to highlight structure-function insights as well as genotype-phenotype relationships.  
  

Uninduced Induced 

PTEN C124S 

p110α-CAAX GAL 

GAL 

PTEN WT GAL 
+	

a 

c 

b 

p110α-CAAX GAL 
+	

PTEN WT GAL 

PTEN allelic series 

Input Selected 
A1 

A2 

A3 

B1 

B2 

B3 

Structure-Function 
Massively Parallel  

Sequencing 
Genotype-Phenotype 

Relationships 

AAT (x5) 
CAT(x5) 
TAA(x5) 
GAA(x5) 
CTT(x5) 

Input 
AAT(x8) 
CAT(x4) 
TAA(x9) 
GAA(x1) 
CTT (x6) 

Selected 

Position 

Va
ri

an
t 

Fitness Scores 

Fitness Score 

Va
ri

an
ts

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/255265doi: bioRxiv preprint 

https://doi.org/10.1101/255265


	 15 

 
 
Fig. 2 | High-resolution map of the functional effects of PTEN mutations. a, Heatmap schematic showing 
High-confidence fitness scores for 7,244 PTEN missense, nonsense, or in-frame deletion mutations (86% of 
possible). Columns are each protein position and amino acids are listed in rows ordered according to 
biophysical characteristics. Variants with fitness scores within the 95th percentile (two-sided) of synonymous 
wild-type like mutations are colored gray. Variants with fitness scores lower than the synonymous distribution 
are colored blue while variants with higher fitness scores are colored red. The major protein domains, as well 
as the secondary structure features are indicated in the track below the heatmap (α-helices as yellow 
rectangles and β-strands as green pentagons). b, Ribbon diagram of PTEN crystal structure with residues 
colored by average fitness score. Darker purple corresponds to more damaging scores. c, Ribbon diagram 
highlighting the crystal structure of the PTEN catalytic pocket, composed of the WPD (orange), P (green), and 
TI-loops (salmon). d-f, The fitness scores of mutations at the residues composing the three catalytic pocket 
loops. Beneath each position is the Consurf grade (Methods), which represents the relative evolutionary 
conservation, with nine being the most conserved and one being the least conserved.  
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Fig. 3 | Hierarchical clustering reveals patterns of mutational tolerance among protein positions and 
amino acid substitutions. a, Hierarchical clustering of the 326 sites with all missense mutations measured. 
Clustering was performed by positions and amino acid substitutions (positions are columns and amino acid 
positions are rows). Overlaid on this heatmap is a top track showing the solvent exposure of each position in 
the crystal structure (1D5R), with solvent exposed positions colored green, intermediate positions orange, and 
buried positions brown. We identified two major clades, which partitioned into five sub-clades with prevailing 
characteristics indicated and represented in the bottom track. We further divided the purple clade to reflect 
major differences in mutational tolerance. b, Ribbon diagram of PTEN crystal structure with residues colored 
according to clade assignment. 
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Fig. 4 | Fitness scores discriminate between 
likely pathogenic and benign variants and 
support genotype-phenotype relationships. 
a, Fitness scores for missense variants 
considered pathogenic or likely pathogenic in 
ClinVar (orange) and putatively benign variants 
from gnomAD (green). Dashed lines at -2.15 
and -1 represent the approximate 95% two-
tailed distribution of truncations (before 
regulatory tail) and synonymous mutations, 
respectively. b, Fitness scores of ClinVar VUS 
(purple), with truncation and synonymous 
distributions and 95% limits. c, To test the 
ability of fitness scores to discriminate likely 
pathogenic from likely benign missense 
mutations, we calculated positive predictive 
value (PPV), sensitivity, and F0.5 scores for our 
fitness scores (“< Trunc” represents the 
threshold at -2.15, “< Syn” represents the 
threshold at -1). In these tests, a true positive 
represented a ClinVar pathogenic allele having 
a fitness score less than or equal to the 
threshold. We compared the performance of 
the fitness scores at these two thresholds with 
in silico pathogenicity predictors for missense 
mutations (Methods). d, Fitness scores of all 
curated mutations associated with the indicated 
phenotype (Methods). ASD/DD= autism 
spectrum disorder/developmental delay, 
PHTS= PTEN hamartoma tumor syndrome, 
TCGA= The Cancer Genome Atlas, Onco-O= 
OncoKB mutations considered “oncogenic” or 
“likely oncogenic”, Onco-N= OncoKB mutations 
considered “likely neutral.” 
 
  

a 

b 

c 

d 

e 
n= 79 33 172 292 487 130 8 

n= 75 29 105 292 296 124 8 

Germline Somatic Synthetic 

p =  7.16 x 10-5 

p =  2.89 x 10-4 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/255265doi: bioRxiv preprint 

https://doi.org/10.1101/255265


	 18 

Table 1 | Summary of PTEN mutagenesis and high-confidence effect classifications.  
 
 Mutagenesis summary HC classifications 

Mut. Type Designed Created HC Total < Wt Trunc.-likea Hypo.b Wt-likec > Wtd 

Missense 7,657 7,260 (0.95) 6,564 (0.86) 1,900 (0.29) 1,249 (0.19) 540 (0.08) 4,679 (0.71) 96 (0.015) 

A.A. del 403 377 (0.94) 340 (0.84) 193 (0.57) 168 (0.49) 25 (0.07) 144 (0.42) 3 (0.007) 

Trunc. 403 375 (0.93) 340 (0.84) 291 (0.86) 284 (0.84) 7 (0.02) 49 (0.14)e 0 (-) 

Total  8,463   8,012 (0.95) 7,244 (0.86) 2,384 (0.33) 1,701 (0.23) 572 (0.08) 4,758 (0.67) 99 (0.014) 
a Trunc.-like= truncation-like; within the 95th percentile (two-tailed) of the distribution of nonsense mutations at positions 1-349. 
b Hypo=hypomorphic; between -1.11 and -2.13 (synonymous and truncation distribution limits). 
c Wt-like=wild-type like; within the 95th percentile (two-tailed) of the distribution of synonymous mutations. 
d> Wt=greater than wild-type; exceeding the 95th percentile (two-tailed) of the distribution of synonymous mutations. 
e48 of these truncating mutations fall within regulatory tail, positions 352-403.  
Abbreviations: A.A. del= single amino acid deletion; HC= High-confidence; Hypo.=hypomorphic; Mut.=mutation; Trunc.=nonsense; 
truncations; Wt=wild-type. 
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