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Abstract

Antibiotic resistance constitutes a major public health crisis, and finding new sources of
antimicrobial drugs is crucial to solving it. Bacteriocins, which are bacterially-produced
antimicrobial peptide products, are candidates for broadening the available choices of an-
timicrobials. However, the discovery of new bacteriocins by genomic mining is hampered by
their sequences’ low complexity and high variance, which frustrates sequence similarity-based
searches. Here we use word embeddings of protein sequences to represent bacteriocins, and
apply a word embedding method that accounts for amino acid order in protein sequences,
to predict novel bacteriocins from protein sequences without using sequence similarity. Our
method predicts, with a high probability, six yet unknown putative bacteriocins in Lactobacil-
lus. Generalized, the representation of sequences with word embeddings preserving sequence
order information can be applied to protein classification problems for which sequence simi-
larity cannot be used.

Introduction 1

The discovery of antibiotics ranks among the greatest achievements of modern medicine. Antibi- 2

otics have eradicated many infectious diseases and enabled many medical procedures that would 3

have otherwise been fatal, including modern surgery, organ transplants, and immunosupressive 4

treatments. However, due to the prevalent use of antibiotics in healthcare and agriculture, antibi- 5

otic resistant bacteria have been emerging in unprecedented scales. Each year, 23,000 people in 6

the US alone die from infections caused by antibiotic resistant bacteria [1]. One strategy to combat 7

antibiotic resistance is to search for antimicrobial compounds other than antibiotics, and which 8

may not be as prone to resistance. A promising class of such compounds are the peptide-based 9

antimicrobials known as bacteriocins [2, 3]. Bacteriocins comprise a broad spectrum of bacterial 10
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Figure 1: Inset: sequence similarity network for all of the bacteriocins present in the BAGEL dataset. Each node
is a bacteriocin. There exists an edge between two nodes if the sequence identity between them is ≥ 35% using
pairwise all-vs-all BLAST. The barchart shows cluster sizes.

ribosomal products, and with the increased sequencing of genomes and metagenomes, we are pre- 11

sented with a wealth of data that also include genes encoding bacteriocins. Bacteriocins generally 12

have a narrow killing spectrum making them attractive antimicrobials that would generate less 13

resistance [4]. 14

Several computational tools and databases have been developed to aid discovery and identifi- 15

cation of bacteriocins. BAGEL [5] is a database and a homology-based search tool that includes 16

a large number of annotated bacteriocin sequences. BACTIBASE [6] is a similar tool, which also 17

contains predicted sequences. AntiSMASH [7] is a platform for genome mining for secondary 18

metabolite producers, which also includes bacteriocin discovery. BOA (Bacteriocin Operon Asso- 19

ciator) [8] identifies possible bacteriocins by searching for homologs of context genes : genes that 20

are associated with the transport, immunity, regulation, and post-translational modification of 21

bacteriocins. RiPPquest [9] is an automated mass spectrometry based method towards finding 22

Ribosomally synthesized and posttransationally modified peptides (RiPPs) which may include bac- 23

teriocins. Recently, MetaRiPPquest [10] improved upon RiPPquest by using high-resolution mass 24

spectrometry, and increasing the search space for RiPPs. However, bacteriocins are hard to find 25
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using standard bioinformatics methods. The challenge in detecting bacteriocins is twofold: first, 26

a small number of positive examples of known bacteriocin sequences, and second, bacteriocins are 27

highly diverse in sequence, and therefore challenging to discover using standard sequence-similarity 28

based methods, (Figure 1). 29

To address these challenges we present a novel method to identify bacteriocins using word 30

embedding. We represent protein sequences using Word2vec [11]. Using this representation, 31

we use a deep Recurrent Neural Network (RNN) to distinguish between bacteriocin and non- 32

bacteriocin sequences. Our results show that a word embedding representation with RNNs can 33

classify bacteriocins better than current tools and algorithms for biological sequence classification. 34

Methods 35

The Representation of Proteins with Word Embedding Vectors 36

Word embedding is a set of techniques in natural language processing in which words from 37

a vocabulary are represented as vectors using a large corpus of text as the input. One word 38

embedding technique is Word2vec, where similar vector representations are assigned to words 39

that appear in similar contexts based on word proximity as gathered from a large corpus of 40

documents. After training on a large corpus of text, the vectors representing many words show 41

interesting and useful contextual properties. For example, after training on a large corpus of 42

English language documents, given vectors representing words that are countries and capitals, 43

−−−−−→
Madrid−−−−→Spain+

−−−−→
France will result in a vector that is similar to

−−−→
Paris, more than other vectors 44

in the corpus [11]. This type of representation have led to better performance in downstream 45

classification problems, including in biomedical literature classification [12], annotations [13, 14], 46

and genomic sequence classifications [15, 16]. 47
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(a) Generating training instances from an
amino acid sequence

(b) Neural network architecture for a single
training instance with MKL and input. In prac-
tice, all training instances with MKL as input
and its context windows neighbors are used to
generate the dense word vector associated with
MKL.

Figure 2: A simplified example showing representation learning for trigrams with skip-gram training. For simplic-
ity, in the example, the vocabulary comprises of 16 words, the context window is ±2 (in our study, the vocabulary
size was 8,000, and the context window ±5). (a) For each sequence in the TrEMBL database we created 3 sequences
by starting the sequence from the first, second, and third amino acid as in [17]. This makes sure that we consider all
of the overlapping trigrams for a protein sequence. A protein sequence, is then broken into trigrams, and training
instances (input, output) are generated according to the size of the context window for the subsequent step of
training a neural network. (b) The neural network architecture for training on all of the instances generated at
(a). The diagram shows training on the instance where MKL is input, and IGP is output which is the first instance
generated at (a). At the end of the training, for each trigram a dense word vector of size 200 is produced.

The training for generating the vectors can be done in two ways: the continuous bag of words 48

(CboW) model, or the skip-gram model [11]. We adapted Word2vec for protein representation as 49

in [17], using the skip-gram model. Instead of the common representation of protein sequences as 50

a collection of counts of n-grams (also known as k-mers) using a 20 letter alphabet, we represent 51

protein sequences using embeddings for each n-gram, covering all possible amino-acid n-grams 52

(we used n = 3, leading to 203 = 8, 000 trigrams). Each trigram is a “word”, and the 8,000 53

words constitute the vocabulary. The Uniprot/TrEMBL database [18] constitutes the “document 54

corpus”. 55

The skip-gram model is a neural network where the inputs and outputs of the network are 56

one-hot vectors with our training instance input word and output word. A one-hot vector is a 57

boolean vector of the size of the vocabulary (8,000 in our case, six in Figure 2b), in which only 58
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the entry corresponding to the word of choice has a value of True. We generated the training 59

instances using a context window of size ±5, where we took a word as input and used all of its 60

surrounding words within the context window as outputs. The process is explained in Figure 2. 61

At the end of the training, a 200 dimensional vector for each trigram was generated by the neural 62

network. The goal of this training was to have the 200 dimensional vectors capture information 63

about the surroundings of each trigram that they are representing. In this fashion, we capture 64

the contextual information for each trigram in our corpus of protein sequences. The size of the 65

vector is a hyper-parameter which we decided upon based on the final supervised classification 66

performance. Vectors of sizes 100, 200, and 300 were generated, and size 200 was chosen. Similarly, 67

context window sizes of 3, 5 and 7 were tested, and size 5 was chosen. 68

Word2vec with a Recurrent Neural Network 69

We use the word-embedding representation for each trigram present in a protein sequence. We 70

use a Recurrent neural network (RNN) to take all trigram embedding vectors as its input to 71

represent a certain protein sequence. RNNs share the same weights for all inputs in a temporal 72

sequence. We take advantage of this architecture by using an embedding vector of size 200 for 73

each overlapping trigram in a protein sequence. By using the embedding vectors of overlapping 74

trigrams as temporal inputs to an RNN, we are preserving the order of the trigrams in the protein 75

sequence. Regarding the architecture of the RNN, we used a two-layer Bidirectional RNN with 76

Gated Recurrent Units (GRU) to train on our data. Our hyper-parameters of number of neurons, 77

network depth, and dropout [19] rate were determined with nested cross-validation. Since we had 78

a small dataset, we used a dropout rate of 0.5 for the first layer, and 0.7 for the second layer. 79

Both layers had 32 GRU units. We used a fixed number of 100 epochs for training which was also 80

decided by nested cross-validation. For optimization, the Adam [20] method was used. 81
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Figure 3: We used embedding vectors of each individual overlapping trigram present in a protein sequence as
input into a Recurrent Neural Network. X(t) is the input at time step t. In our case, at each time step t, input
is the embedding vector of the trigram at that time step. h(t) is the hidden state at time step t. It contains
information from the previous inputs as well as the current input. This works like the memory of the network,
and because of its mechanism, modern RNNs can preserve information over long ranges unlike traditional models
like hidden Markov models. U , V , W are weights of the network. As they are being shared over all the inputs,
this greatly reduces the number of parameters of the network helping towards generalization. At the end of the
sequence, the network produces a prediction y of whether the sequence is a bacteriocin or not. In practice, we used
a bidirectional RNN (not shown in figure).

Comparing with baseline methods 82

We compared the performance of our method with three baseline methods: a trigram representa- 83

tion, BLAST, and HMMER. 84

We used the popular trigram representation of sequences in bioinformatics to understand the 85

gain of accuracy, if any, using word embedding over simple trigram based representation. In this 86

case, we created an 8,000 size vector for each sequence where the indices had counts for each 87

occurrence of a trigram in that sequence. In this representation, the order of the trigrams are not 88

preserved. Since the vector is sparse, we used truncated Singular Value Decomposition (SVD) to 89

acquire the most importance features, and reduce the size of the vector. We tried with sizes of 90

100 and 200, and used the one that led to better classification performance. We then used these 91

vectors with a support vector machine, logistic regression, decision Tree, and random forest, to 92

classify between bacteriocins and non-bacteriocins. 93
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MKLIGPTFTNTSTLSNSV

AAA VVWVVYVVVAAR AAN IGP KLI LIG LSN MKL
0 0 0 0 0 01 1 1 1 1............ ............ ............ ............ ............ ............

Creating a size 8000 vector 
for each 3-gram count in a 
protein sequence (not all 3-grams
present in the example sequence is 
shown)

Creating a size 200 vector by 
Truncated Singular Value 
Decomposition (truncated SVD)

size: 8000

size: 200

Figure 4: We represented each protein sequence with the overlapping trigram counts present in that sequence.
This leads to a size 8,000 sparse vector. The vector was reduced to a vector of size 200 using Singular Value
Decomposition. We used the size 200 vector as the baseline representation.

We also compared the performance of our method with BLAST, the method of choice for 94

sequence similarity search. We use BLAST to see if machine learning, alignment free methods, 95

do indeed improve performance over alignment based methods to identify potential bacteriocins. 96

We used a 35% sequence identity score as a threshold to assign a bacteriocin label to a protein 97

sequence. 98

We also compared our performance with another popular alignment based method, HM- 99

MER [21], which constructs profile hidden Markov models or pHMMs from multiple sequence 100

alignments. In turn, the pHMMs serve as an acurate tool for sequence searching. Here we used 101

bacteriocin pHMMs which we constructed using BOA [8]. BOA uses the BAGEL [5] dataset, 102

and its homologs (BLAST e-value < 10−5) against the GenBank [22] bacterial database to build 103

bacteriocin-specific pHMMs. We used the hmmsearch functionality provided by HMMER, and use 104

the pHMMs from BOA to measure performance against our test set in terms of precision, recall, 105

and F1 score. 106

Building the training dataset 107

We used 346 sequences of length ≥ 30aa from the BAGEL database as our positive bacteriocin 108

training samples. For the negative training set, we used sequences from the Uniprot-Swissprot [23] 109

database. We took all the bacterial protein sequences from this database and used CD-HIT [24] 110
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with a 50% identity threshold to reduce redundancy. Then, for the primary negative training 111

set, we took 346 sequences that had the keywords ‘not anti-microbial’, ‘not antibiotic’, ‘not in 112

plasmid’, and that had the same length distribution as our positive bacteriocin sequences. We 113

also generated two additional negative datasets following the same steps as above, with no overlap 114

in the sequences between the three sets. Because identical length sequences were already exhausted 115

by the first negative set, the length distribution of the second and third negative sets are somewhat 116

different than the positive bacteriocin set. Figure 5 shows the length distribution of the positive, 117

and all three negative datasets. 118
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Figure 5: Sequence length distributions for the positive bacteriocin set, primary negative set, 2nd, and 3rd
negative sets respectively. See text for details.

Identifying genomic regions for novel putative bacteriocins 119

To search for genomic regions with a higher probability of containing novel bacteriocins, we took 120

advantage of the biological knowledge of context genes which assist in the transport, modification, 121

and regulation of bacteriocins. Many bacteriocins have some or all of four types of context genes 122

in proximity [25, 26], (Figure 6). Having an experimentally verified set of fifty-four context genes 123

from [8], we collected the annotation keywords for these context genes from the Refseq database, 124

and BLASTed the BAGEL bacteriocins against the non-redundant protein database. We removed 125

the top hits from the result which are essentially the bacteriocins themselves. We then took all 126

the genes with similar keywords to our experimentally verified context gene set surrounding these 127

bacteriocins within a region of ±25kb. After running CD-HIT [27] to remove redundancy, we had 128

1,240 new putative context genes. 129
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Figure 6: Bacteriocins with context genes. After[25].

We ran BLAST using all 1294 (54 experimentally verified and 1240 newly found) putative 130

context genes against the whole bacteria RefSeq database [28] and we collected hits with an 131

e-value ≤ 10−6. We separated all the hits by organism, arranged them by co-ordinates, and 132

identified 50kb regions in the whole genome that have contiguous hits. We applied our trained 133

machine learning model to predict putative bacteriocins in these 50kb regions. 134

Datasets 135

We performed 10× cross-validations on the three datasets we built where the datasets consist 136

of positive bacteriocins from BAGEL, and the three negative datasets we built from Uniprot 137

Swissprot database. 138

The cross-validation itself was done 50 times with different random seeds for all cases except 139

for the RNN, BLAST, and HMMER for which it was done 10 times due to computational time 140

demand. For BLAST, a 35% sequence identity score was used as a threshold for calling a re- 141

sult positive. We used the same cross-validation folds for BLAST as other algorithms where we 142

BLASTed the test set against the training set. For HMMER, an e-value of < 10−3 was used as 143

the threshold for deciding if a sequence is bacteriocin. The reported results are the mean of 10× 144

nested cross-validation done 50 times (10 times for RNN, BLAST and HMMER), and the standard 145

error is from those 50 (10 for RNN, BLAST and HMMER) mean values. 146

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 17, 2018. ; https://doi.org/10.1101/255505doi: bioRxiv preprint 

https://doi.org/10.1101/255505
http://creativecommons.org/licenses/by/4.0/


Figure 7: Mean F1 scores of different algorithms with both Word2vec (w2v) and baseline representation. Error
bars are too small to show. W2v + RNN (blue) provides the best F1 score. See Table S1 for values and standard
errors.

Results 147

Table S1 and Figure 7 show a comparison of Word2vec, trigram representation, BLAST and 148

HMMER for the primary bacteriocin dataset in terms of precision, recall, and F1 score. 149

Precision (Pr) Recall (Rc) and F1 are defined as:

Pr =
TP

TP + FP
; Rc =

TP

TP + FN
; F1 = 2× Pr ×Rc

Pr + Rc

Where TP : True Positives, FP : False Positives, FN : False Negatives. 150

Recurrent Neural Network (RNN) with Word2vec representation for protein sequences provides 151

the best recall, and F1 score. HMMER and BLAST have better precision scores which is expected 152

as they only predict true positives by e-value and sequence identity respectively but they have high 153

false negative rate. For trigram representation, support vector machine and logistic Regression 154

perform similarly but with lower precision, recall, and F1 score than Word2vec with RNN. After 155

getting the 10× cross-validation results, we trained the RNN on the whole data with the same 156

hyper-parameters, and this final trained RNN was used to find new bacteriocins in the identified 157

genomic regions. 158
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Figure 8: Mean Precision-Recall curves of one run of 10× cross validation for word2vec with RNN, Support Vector
Machine (SVM), Logistic Regression (Log-reg), Random Forest, and BLAST. Number in legend is area under the
curve. RNN performs better than all the other methods.
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Figure 8 shows the Precision-Recall curves for w2v+RNN, and for SVM, trigram+Logistic 159

regression,trigram+ Random Forest, and BLAST. RNN has the largest area under the curve. 160

BLAST is competitive with the other models except RNN. The curve for HMMER could not be 161

shown as we need a probability value for each prediction which HMMER does not provide. 162

Table and S2 and S3 show the performance differences across the different bacteriocin data 163

sets. he length distribution of the protein sequences in the positive and negative sets are different 164

as mentioned in Methods. Looking at Table S2, The improvement in the w2v+RNN and the 165

trigram based methods is evident, as well as the precison of HMMER. We assume the length 166

disparity between the positive and negative sequences have helped in correctly classifying bacte- 167

riocins. Surprisingly, the precision of BLAST has decreased compared with its precision in the 168

primary bacteriocin dataset. The performance of HMMER has largely remained the same over 169

the different negative sets, its predictions more or less remain the same because of its low false 170

positive rate. Table S3 shows the performance comparison for the third bacteriocin dataset. The 171

length disparity between positive and negative sequences for the third dataset is even greater than 172

the second bacteriocin dataset. SVM, Logistic Regression, Decision Tree, and Random Forest 173

all have improved performance. SVM’s precision is comparable to that of w2v+RNN. RNN still 174

has the best recall and F1 score. In contrast, BLAST’s performance has significantly decreased 175

indicating that somehow the length disparity is causing problems in identifying true bacteriocins. 176

Just like the second bacteriocin dataset, HMMER’s performance remains almost the same with a 177

slight improvement on the precision score. 178

Results on 50kb Chromosomal Stretches 179

We applied our trained w2v+RNN model on the sequences identified from the 50kb regions (see 180

Methods) to predict putative bacteriocins. The w2v+RNN model predicted 119 putative bacte- 181

riocins with a probability of ≥ 0.99. Figure 9 shows three of our predicted bacteriocins in their 182

genomic neighborhood Lactobacillus. We found several context genes surrounding these predicted 183

bacteriocins, supporting our hypothesis that these bacteriocin predictions are valid. 184
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Figure 9: Context genes found surrounding the predicted bacteriocins within ±25kb range. (a) Lactobacil-
lus acidophilus NCFM (Locus: NC 006814, putative bacteriocin: YP 193019.1, immunity: YP 193020.1, reg-
ulator: YP 193018.1, transporters: YP 193025.1, YP 193026.1) (b) Lactobacillus helveticus R0052 (GenBnk:
NC 018528, putative bacteriocin: YP 006656667.1, immunity: YP 006656674.1, regulator: YP 006656666.1,
YP 006656664.1, YP 006656671.1) (c) Lactobacillus helveticus CNRZ32 (GenBank ID: NC 021744, putative
bacteriocin: YP 008236084.1, regulators: YP 008236086.1, YP 008236087.1, transporters: YP 008236082.1,
YP 008236080.1, YP 008236079.1)

Discussion 185

We developed a machine learning approach for predicting bacteriocins. Our approach does not 186

require sequence similarity searches, and has discovered several putative bacteriocins with a high 187

probability. The Word2vec representation takes advantage of the large volume of unlabeled bac- 188

terial protein sequences available. The Word2vec trigram representation can be used in other 189

machine learning tasks in computational biology to represent protein sequences, for the purpose 190

of discovering functional similarities cannot be discovered from sequence similarity. We used the 191

embedding vectors for each overlapping trigram in a protein sequence, and used them as input in 192

a temporal order for a RNN. Taken together, the embedding vectors with an RNN are used in 193

natural language processing for common tasks such as sentence classification or document classi- 194

fication [29]. We also built three different datasets with three different negative bacteriocin sets. 195

All the methods except RNN struggled to identify true bacteriocins in the primary bacteriocin 196

dataset where the length distribution for positive and negative bacteriocins is exact. This is also 197

the reason we used the primary bacteriocin dataset as the final dataset to train our RNN model 198

before applying it to find novel bacteriocins in Lactobacillus. Compared with the primary bacte- 199

riocin dataset, the other methods except BLAST and HMMER have had improved performance 200

as the differences in length distribution of positive and negative sequences increased in the second 201
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and third bacteriocin dataset. The pHMMs used (taken from the BOA [8] paper) for HMMER in 202

our method were built using many sequences including the BAGEL dataset. Yet tested against 203

the BAGEL sequences, its precision is high but the recall remained low compared with w2v+RNN. 204

Despite the training set being small, with proper regularization our RNN model provides better 205

precision than all the other methods except BLAST and HMMER, and better recall than all other 206

methods. We argue that embedding+RNN can be used to boost the prediction powers of machine 207

learning models in sequence-based classification problems in biology. Our models also provide 208

us with an associated confidence score, which is useful for experimentalists who wish to apply 209

this method towards genome mining. We chose a threshold of 0.99 for RNN to provide the list 210

of putative predictions. Although our training set is balanced in terms of bacteriocins and non- 211

bacteriocins, the number of bacteriocin sequences in the microbial sequence universe is much lower. 212

Finally, we provide six protein sequences that our (with probability of >= 0.99) model predicted 213

to be putative bacteriocins where we could also find putative context genes. We also provide a 214

set of total 119 sequences predicted by w2v+RNN with a probability of greater than 0.99. All of 215

these sequences could not be detected against known bacteriocins when we used BLAST against 216

the NR database with an e-value of 10−3 or less. 217

Historically, the use of bioinformatic prediction methods has favored high precision over high 218

recall, as a large number of false positive findings can be costly for experiments that verify predic- 219

tions. However, there are cases where it may be argued that a high recall method is appropriate. 220

For example, with the need to cast a wider net in identifying potential drug candidates, coupled 221

with the decrease in experimental costs. By employing a high recall method and choosing an ap- 222

propriate accuracy threshold, experimentalists can calibrate the precision / recall tradeoff needed 223

to optimize the functional testing of novel peptides. 224

Protein classification tasks are typically based on some form of sequence similarity as an in- 225

dicator for evolutionary relatedness. However, in many cases non-orthologous replacements oc- 226

cur, where two non-homologous proteins perform the same function. Non-orthologous function 227

replacements have been detected using natural language processing [30], genomic context meth- 228

ods [31, 32, 33], and other combined methods [34]. However, such methods require associated 229
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metadata or contextual genomic information. Here we present a solution to find functionally sim- 230

ilar non-orthologs that does not require gathering these metadata, but does require a dataset of 231

positive and negative examples. We therefore recommend that word embedding be explored for 232

function classification involving dissimilar biological sequences. 233

We used the following software tools in this study: Keras [35], Scikit-learn [36], Gensim [37], 234

Matplotlib [38], Jupyter notebooks [39], Numpy and Scipy [40]. 235
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Data and code for this project are available at: https://github.com/nafizh/Bacteriocin_ 237
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