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2 

Abstract 23 

The transition from childhood to adolescence is marked by distinct changes in behavior, 24 

including how one values waiting for a large reward compared to receiving an immediate, yet 25 

smaller, reward. While previous research has emphasized the relationship between this 26 

preference and age, it is also proposed that this behavior is related to circuitry between valuation 27 

and cognitive control systems. In this study, we examined how age and intrinsic functional 28 

connectivity strength within and between these neural systems relate to changes in discounting 29 

behavior across the transition into adolescence. We used mixed-effects modeling and linear 30 

regression to assess the contributions of age and connectivity strength in predicting discounting 31 

behavior. First, we identified relevant connections in a longitudinal sample of 64 individuals who 32 

completed MRI scans and behavioral assessments 2-3 times across ages 7-15 years (137 scans). 33 

We then repeated the analysis in a separate, cross-sectional, sample of 84 individuals (7-13 34 

years). Both samples showed an age-related increase in preference for waiting for larger rewards. 35 

Connectivity strength within and between valuation and cognitive control systems accounted for 36 

further variance not explained by age. These results suggest that individual differences in 37 

functional neural organization can account for behavioral changes typically associated with age.   38 

 39 

Keywords: delay discounting, fMRI, intrinsic connectivity, longitudinal, resting state 40 

 41 
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Introduction 44 

Temporal discounting (also known as inter-temporal choice or delay discounting) is the process 45 

of assessing the value of waiting for a future reward depending on the magnitude of the reward 46 

and the delayed time. Individuals vary in their temporal discounting behavior, with some having 47 

a stronger preference for taking a smaller immediate reward versus waiting for a larger reward, 48 

and vice versa (Sadaghiani & Kleinschmidt, 2013). Previous experimental studies suggest a 49 

positive relationship between chronological maturation (age) and the tendency to prefer waiting 50 

for the larger reward (de Water, Cillessen, & Scheres, 2014; Steinberg et al., 2009), although 51 

some studies have found evidence for a nonlinear relationship in the transition into adolescence 52 

(Scheres, Tontsch, Thoeny, & Sumiya, 2014). Interestingly, the development of temporal 53 

discounting with age may be a stable marker of liability for disinhibitory psychopathologies such 54 

as ADHD even when psychopathological symptoms change with age (Karalunas et al., 2017). It 55 

has been proposed that brain function and organization can explain individual differences in 56 

temporal discounting behavior (Christakou, Brammer, & Rubia, 2011; Hare, Hakimi, & Rangel, 57 

2014; Li et al., 2013; Scheres, de Water, & Mies, 2013; van den Bos, Rodriguez, Schweitzer, & 58 

McClure, 2014). Therefore, in this study, we analyzed how chronological maturation interacts 59 

with functional brain organization to predict temporal discounting.  60 

 61 

Temporal discounting as a measure of decision-making preference 62 

Tasks assessing temporal discounting behavior can be used to measure an individual’s preference 63 

for a smaller-sooner reward (SSR) in comparison to a larger-later reward (LLR) (Green, 64 

Myerson, & Mcfadden, 1997). These tasks typically require individuals to choose between two 65 

rewards that vary in both the reward size and the delay time required until the amount is acquired 66 
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(Myerson & Green, 1995). For example, participants typically respond to several questions in the 67 

following format: “At the moment, what would you prefer?” Below the question two options are 68 

presented (e.g. “$7.00 now”, “$10 in 30 days”). The SSR and LLR vary in both delay interval 69 

and reward size over successive trials; this way, the subjective value of temporal reward can be 70 

measured. Individuals preferring the SSR are characterized to have steeper temporal discounting; 71 

conversely, individuals preferring the LLR are characterized to have less temporal discounting. 72 

One way to measure this subjective value of temporal reward is through the use of indifference 73 

points (the delay duration at which the magnitude of SSR equals the magnitude of LLR) 74 

(Richards, Zhang, Mitchell, & de Wit, 1999). The indifference points are useful in calculating a 75 

single index of discounting rate, and in determining the value of the delayed reward (Yi, Pitcock, 76 

Landes, & Bickel, 2010). Specifically, plotting the indifference points in a series yields a 77 

discount curve, which describes the rate at which the value of reward decreases as time is 78 

increased. 79 

 80 

Neural networks involved in temporal discounting 81 

Previous studies have shown that cortico-striatal circuitry is greatly involved in decision-making 82 

processes (Haber & Knutson, 2009), including temporal discounting (Peters & Büchel, 2011). In 83 

the present study, we focus on two cortico-striatal systems (defined a priori) that have been 84 

consistently correlated with different outcomes of an individual’s preference and value (Peters & 85 

Büchel, 2011; van den Bos et al., 2014): a valuation system (amygdala, medial orbitofrontal 86 

cortex, posterior cingulate cortex, ventromedial prefrontal cortex, and ventral striatum) and a 87 

cognitive control system (ventral lateral prefrontal cortex, dorsal anterior cingulate cortex, 88 

dorsolateral prefrontal cortex, dorsal striatum, and inferior frontal cortex) (See Figure 1a). We 89 
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also assessed connectivity between these networks and the supplementary motor area and 90 

hippocampus, given their involvement in intertemporal choice behavior (Peters & Büchel, 2010; 91 

Scheres et al., 2013; van den Bos et al., 2014). Overall, it has been theorized that adults with high 92 

temporal discounting preference are more likely to show greater recruitment of the control 93 

network and less recruitment of the valuation network when choosing a LLR over a SSR (van 94 

den Bos & McClure, 2013; Volkow & Baler, 2015).  95 

 96 

Neural networks involved in temporal discounting can be interrogated with MRI in multiple 97 

ways, including task-based fMRI studies in which participants are asked to make temporal 98 

discounting decisions, and as well as in studies that compare anatomical or functional 99 

connectivity to temporal discounting preferences measured outside of the scanner. Previous 100 

studies have examined structural connectivity (white matter fiber integrity) and its relation to 101 

temporal discounting through Diffusion Tensor Imaging (DTI). Increased structural connectivity 102 

between the striatum and cortical control regions have been found to be related to decreased 103 

temporal discounting, whereas increased structural connectivity between the striatum and 104 

subcortical valuation regions were related to increased temporal discounting in adults (van den 105 

Bos et al., 2014). 106 

 107 

While task-evoked brain activity can inform us on the functionality of cortical networks during 108 

specific contexts, intrinsic brain activity at rest can be used to measure an individual’s functional 109 

brain organization. The intrinsic activity of the brain reflects, in part, past activities, and these 110 

fluctuations impact future behavior (Sadaghiani & Kleinschmidt, 2013). Brain functionality and 111 

fluctuations are believed to determine and shape connectivity patterns. Here we study the brain’s 112 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/255679doi: bioRxiv preprint 

https://doi.org/10.1101/255679
http://creativecommons.org/licenses/by-nc/4.0/


6 

intrinsic connectivity using resting-state functional connectivity MRI (rs-fcMRI) (Power, 113 

Schlaggar, & Petersen, 2014). rs-fcMRI measures the functional relationship between regions 114 

while the participant is not performing a specific task by measuring slow, spontaneous 115 

fluctuation of the blood oxygen level dependent (BOLD) signal. Intrinsic activity measures 116 

reveal the cohesive connections and interactions present in neuronal networks (Boly et al., 2008). 117 

Previous studies in adults have found that intrinsic brain connectivity within cortico-striatal 118 

networks were related to an individual’s temporal discounting preference (Calluso, Tosoni, 119 

Pezzulo, Spadone, & Committeri, 2015; Li et al., 2013).  120 

 121 

Development of neural networks underlying temporal discounting 122 

It is hypothesized that differential rates of maturation across cortico-striatal systems, and the 123 

protracted development of the interconnections between them, are related to changes in behavior 124 

across development (Casey, 2015; Costa Dias et al., 2012, 2015; van den Bos, Rodriguez, 125 

Schweitzer, & McClure, 2015). In adults, it has been theorized that greater recruitment of control 126 

networks (and less recruitment of the valuation networks) are indicative of choosing the LLR, 127 

however, it is currently unclear if this brain-behavior relationship is present throughout 128 

development. One of the first task-based fMRI studies of temporal discounting examined the 129 

impact of age-related (ages 12-32 years; males) changes in brain activation when deciding 130 

between a SSR and a LLR (Christakou et al., 2011). This study demonstrated that when choosing 131 

an immediate reward, increased recruitment of the vmPFC and decreased recruitment of the 132 

ventral striatum, insula, anterior cingulate, occipital, and parietal cortices was related to 133 

increasing age and preference for LLR. Further, greater coupling between the ventral striatum 134 

and vmPFC was also related to increasing age and preference for LLR, suggesting that increased 135 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/255679doi: bioRxiv preprint 

https://doi.org/10.1101/255679
http://creativecommons.org/licenses/by-nc/4.0/


7 

functional connectivity between the vmPFC and ventral striatum (regions of the valuation 136 

network) might be one neural mechanism underlying developmental changes in the preference 137 

for delayed rewards.  138 

   139 

Another theory is that neural systems involved in three cognitive processes: valuation (i.e., the 140 

value placed on a certain stimuli or outcome), cognitive control (i.e., engaging in goal-directed 141 

cognitive processes), and prospection (i.e., thinking about the future), are involved in the process 142 

of temporal discounting (Peters & Büchel, 2011). Using this framework, Banich et al. (2013) 143 

compared the behavioral and neural correlates of temporal discounting in younger (14-15 years) 144 

and older (17-19 years) adolescents, and how these measures related to an individual’s self-145 

reported tendency to think beyond the present. Behaviorally, older adolescents were more likely 146 

to choose a delayed reward over an immediate reward, and were slower than younger 147 

adolescents to choose the immediate reward (Banich et al., 2013). The pattern of brain activity 148 

related to intertemporal decision making was more distinct when choosing between immediate 149 

versus delayed rewards in the older adolescents compared to the younger adolescents (Banich et 150 

al., 2013). Across groups, individuals who reported a greater tendency to think beyond the 151 

present showed decreased recruitment of cognitive control regions during the temporal 152 

discounting task. These results suggest that both age and individual differences are related to the 153 

neural processing of temporal discounting.  154 

 155 

Another study found that greater white matter integrity in pathways connecting the frontal and 156 

temporal cortices with other areas of the brain were positively correlated with the preference for 157 

delayed rewards across ages 9-23 years (Olson et al., 2009). Some of these correlations were 158 
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developmentally related, whereas some of the effects appeared to be age-independent. For 159 

example, the relationship between greater white matter integrity in right frontal and left temporal 160 

regions and increased preference for delayed reward was not attributable to age. However, the 161 

relationship between integrity of white matter in left frontal, right temporal, right parietal (as 162 

well as some subcortical-cortical circuits) and the preference for delayed reward was age-related, 163 

as these white matter tracts also increased in integrity across the age range studied. These results 164 

show that both age and individual differences in neural circuitry are related to an individual’s 165 

preference for immediate versus delayed rewards. Another study examined the relationship 166 

between temporal discounting and fronto-striatal circuitry in a longitudinal study of individuals 167 

between the ages of 8-26 (Achterberg, Peper, van Duijvenvoorde, Mandl, & Crone, 2016). This 168 

study found that preference for LLR increased non-linearly between childhood and early 169 

adulthood, and that greater fronto-striatal white matter integrity was related to the preference for 170 

LLR (Achterberg et al., 2016). 171 

 172 

Taken together, these studies demonstrate that people, on average, show increasing preference to 173 

wait for larger rewards rather than take immediate (smaller) rewards as they get older, but the 174 

increase may be nonlinear. Individual differences across development in temporal discounting 175 

preference are related to differences in functional neural organization. How one comes to choose 176 

a smaller immediate reward over a larger distant reward could be related to how that individual 177 

values the proposed reward, or it could be related to how well that individual can inhibit 178 

reflexive urges or the ability to think about the future. The development of brain systems 179 

involved in evaluating rewards, cognitive control, and thinking about the future all appear to 180 
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contribute to the developmental changes in how we process situations that involve us making a 181 

choice between an immediate outcome and a distant outcome. 182 

 183 

Current study  184 

This current project examines how developmental changes in functional connectivity between 185 

and within the cognitive control network, valuation network, hippocampus and SMA relate to 186 

temporal discounting preferences during the transition into adolescence. Specifically, we tested 187 

to see if changes in functional connectivity strength could explain additional variance in 188 

temporal discounting preferences above chronological age. Previous studies have reported no 189 

significant difference in discounting behavior between boys and girls (Cross, Copping, & 190 

Campbell, 2011; Lee et al., 2013), suggesting any sex effects are likely to be small. Therefore, to 191 

conserve statistical power, the relationship between sex and temporal discounting behavior was 192 

not examined.  193 

 194 

Methods 195 

Participants  196 

Our two neurotypical samples were drawn from an ongoing longitudinal project examining brain 197 

development in children, recruited from the community, with and without attention- 198 

deficit/hyperactivity disorder (ADHD). Our first sample consisted of 64 individuals with 2 or 3 199 

longitudinal scans each (n=137 scans) and our second cross-sectional sample consisted of 84 200 

individuals. Details for both samples are included in Table 1. All participants were typically-201 

developing children without psychiatric diagnoses and exhibited typical neurological patterns of 202 

thoughts and behavior throughout the study. Psychiatric status was evaluated  based on 203 
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evaluations with the Kiddie Schedule for Affective Disorders and Schizophrenia (KSADS; Puig-204 

Antich & Ryan, 1986) administered to a parent; parent and teacher Conners’ Rating Scale-3rd 205 

Edition (Conners, 2003); and a chart review a child psychiatrist and neuropsychologist that 206 

required agreement. Any participant who was identified as having a current psychiatric, 207 

neurological, or neurodevelomental disorder was excluded from the present study. IQ was 208 

estimated with a three-subtest short form (block design, vocabulary, and information) of the 209 

Wechsler Intelligence Scale for Children, 4th Edition (Wechsler, 2003). 210 

 211 

Table 1. Participant demographic characteristics for each sample.  212 

 Longitudinal Sample 
Characteristics  

Cross-sectional Sample 
Characteristics 

 All Female Male  All Female Male 
N 64 23 41  84 42 42 
Age mean 
(SD) 

10.8 
(1.83) 

10.6 
(1.95) 

10.9 
(1.77)  

10.3 
(1.39) 

10.3 
(1.34) 

10.3 
(1.44) 

Age range 7.3-15.7 7.3-15.7 7.5-14.5  7.3-13.3 8-13.3 7.2-13.2 
AUC mean 
(SD) 

0.51 
(0.273) 

0.51 
(0.261) 

0.51 
(0.281)  

0.45 
(0.288) 

0.44 
(0.306) 

0.47 
(0.273) 

AUC range 0.04 - 1 0.07 - 0.99 0.04 - 1  0.02 - 0.98 0.03 - 0.98 0.02 - 0.98 
IQ mean 
(SD) 

115.3 
(13.95) 

116.6 
(9.58) 

114.6 
(15.88)  

116.5 
(13.82) 

114.5 
(14.86) 

118.4 
(12.59) 

IQ range 72 - 144 98 - 132 72 - 144  78 - 148 78 - 144 96 - 148 
N visits 137 49 88  84 42 42 
2 visits 55 20 35  - - - 
3 visits 9 3 6  - - - 
 213 

Temporal Discounting task 214 

The temporal discounting task evaluates personal preference for a hypothetical delayed or 215 

immediate reward. Participants were presented a computerized task with a series of questions, 216 

and were read the following instruction before proceeding to the task: 217 
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For the next task, you can choose between two options by clicking on it using the               218 

computer mouse. You can change your selection as often as you would like. Once you 219 

have decided which option you prefer, you can go on to the next question by clicking on 220 

the ‘next question’ box. One option will always be some amount of money available now. 221 

The other option will always be some amount of money later. The waiting period will 222 

vary between now and 180 days. Imagine that the choices you make are real– that if you 223 

choose ‘money now’ you would receive that amount of money at the end of the task and 224 

that if you choose ‘money later’ that you would actually have to wait before receiving the 225 

money. So, what are you going to do? 226 

 227 

The computer-based task consisted of 92 questions with an option to get a reward immediately or 228 

get a larger amount of money ($10.00) at a later time period. Most of the participants were 229 

presented delays in intervals of 7, 30, 90, 180 days; a small percent of the participant were 230 

presented with different delay intervals of 1, 7, 30, 90 days.  231 

 232 

Our temporal discounting task was analyzed by multivariate mathematical equations to measure 233 

an individual’s decision-making preference. Reward in relation to the time span is usually used 234 

to measure the preference of an individual or a collective population generalized by age.  235 

There are many mathematical ways to analyze temporal discounting task, however, for this 236 

experiment we choose Area Under Curve (AUC). AUC (see Box 1) best represents the 237 

preference of the participants as it takes into consideration the indifference point and the 238 

corresponding delay time (Myerson, Green, & Warusawitharana, 2001). AUC is equated to best 239 

represent the variables present in this experiment; it takes into account the sum of indifference 240 
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and delay points acquired through temporal discounting, and outputs one value making it easier 241 

for analysis (Myerson et al., 2001). 242 

 243 

Box 1. AUC Equation  244 

 245 

 246 

The	"# and "$ are the delayed points, and %# and %$ represent the indifference points that 247 

correspond to the delays (Hamilton et al., 2015; Odum, 2011). The AUC outputs a signal value 248 

between 0 and 1; the lower the number represents the greater possibility to disregard the value of 249 

the reward, and have less tolerance for the delay time (Myerson et al., 2001; Odum, 2011). The 250 

AUC values and temporal discounting are inversely proportional, the closer the AUC value is to 251 

zero the more temporal discounting is present, therefore the participant is least likely to wait for 252 

a bigger reward. Likewise, the farther away the AUC value is to zero the most likely the 253 

participant is going to wait for the larger reward to be received at a later time. 254 

 255 

Three validity criteria were applied to the quantification of AUC. The first criterion was to make 256 

sure that an indifference point for a specific delay was not greater than the preceding delay 257 

indifference point by more than 20% or $2 (Johnson & Bickel, 2008). The next criterion was the 258 

requirement for the final indifference point, at 180 days, to be less than the first indifference 259 

point, at 0 days, to indicate variation in subjective value of rewards across (Johnson & Bickel, 260 

2008). The final criterion was to require the first, at 0 day, indifference point to be at least 9.25. 261 

This last criterion was enforced because a lower value indicates that the participant chose 262 
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multiple time to receive the smaller “now” over the larger “now”, suggesting poor task 263 

engagement of misunderstanding of the task (Mitchell, Wilson, & Karalunas, 2015).  264 

 265 

MRI acquisition 266 

MRI was acquired using a 3.0 Tesla Siemens Magnetom Tim Trio scanner with a twelve-channel 267 

head-coil at the Oregon Health & Science University Advanced Imaging Research Center. One 268 

high-resolution T1-weighted MPRAGE (TR=2300ms, TE=4ms, FOV=240x256mm, 1mm 269 

isotropic, sagittal acquisition) and multiple T2-weighted echo planar imaging (TR=2500ms, 270 

TE=30ms, FOV = 240x240mm, 3.8mm isotropic, either 82 or 120 volumes, axial acquisition, 271 

90° flip angle) series were acquired during each scan visit. Functional data were collected at rest, 272 

in an oblique plane (parallel to anterior commissure-posterior commissure plane), and steady 273 

state magnetization was assumed after five frames (�10s). Participants were instructed to stay 274 

still and fixate their gaze on a standard fixation-cross in the center of the display during the 275 

acquisition of resting state scans. 276 

 277 

Image processing 278 

The data were processed following the minimum processing steps outlined by the Human 279 

Connectome Project (Glasser et al., 2013), which included the use of FSL (Jenkinson, 280 

Beckmann, Behrens, Woolrich, & Smith, 2012; Smith et al., 2004; Woolrich et al., 2009) and 281 

FreeSurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/) (Dale, Fischl, & Sereno, 282 

1999; Fischl, Sereno, & Dale, 1999). With this method, gradient distortion corrected T1w and 283 

T2w volumes are first aligned to MNI’s AC-PC axis and then nonlinearly normalized to the MNI 284 

atlas. Next, the T1w and T2w volumes are re-registered using boundary based registration 285 
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(Greve & Fischl, 2009) to improve alignment. The brain of each individual is then segmented 286 

using the ‘recon-all’ FreeSurfer functions, which are further improved by utilizing the enhanced 287 

white matter-pial surface contrast of the T2w sequence. The initial pial surface is calculated by 288 

finding voxels that are beyond ± 4 standard deviations from the grey matter mean. The resulting 289 

parameter is then used to make sure no lightly myelinated grey matter is excluded. The estimated 290 

segmentation is refined further by eroding it with the T2w volume. Of the 221 total scan visits 291 

included in this study, 51 (23%) were processed without a T2w volume, either because this 292 

sequence was not acquired or was judged as being of low quality. These 51 were processed using 293 

FreeSurfer’s regular T1 segmentation algorithm (Fischl et al., 2002). Next, the preliminary pial 294 

surface and white matter surface are used to define an initial cortical ribbon. The original T1w 295 

volume is smoothed with the ribbon using a Gaussian filter with a sigma of 5mm. Then, the 296 

original T1w image is divided by the smoothed volume to account for low frequency spatial 297 

noise. This filtered volume is used to recalculate the pial surface, but now using 2 (instead of 4) 298 

standard deviations as threshold to define the pial surface. These segmentations are then used to 299 

generate an individualized 3D surface rendering of each individual, which is finally registered to 300 

the Conte 69 surface atlas as defined by the Human Connectome Project. This registration 301 

process allows all data types (cortical thickness, grey matter myelin content, sulcal depth, 302 

function activity, functional and structural, connectivity, etc.) to be aligned directly within and 303 

between individuals. All T1w and T2w MRI scans were quality controlled for any noticeable 304 

movement through visual inspection of raw and reconstructed images. The images were assessed 305 

in a pass or fail manner; scans that failed were excluded from the samples included in the present 306 

study. 307 

 308 
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Functional EPI data are registered to the first volume using a 6-degrees of freedom linear 309 

registration and correcting for field distortions (using FSL’s TOPUP), except for two scans (of 310 

221) where no field map had been acquired. Next the EPI volumes are averaged, with each 311 

volume of the original time series re-registered to the average EPI volume using a 6-degrees of 312 

freedom linear registration. This last step avoids biases due to a single frame being used, which 313 

may be confounded by variability of movement across a given run. The average EPI volume is 314 

then registered to the T1w volume. The matrices from each registration step are then combined, 315 

such that each frame can be registered to the atlas all in a single transform (i.e. only one 316 

interpolation). 317 

 318 

The resulting time-courses are then constrained by the grey matter segmentations and mapped 319 

into a standard space of 91,282 surface anchor points (greyordinates). This process accounts for 320 

potential partial voluming by limiting the influence of voxels that “straddle” grey and non-grey 321 

matter voxels (pial surface, white matter, ventricles, vessels, etc). Two thirds of the greyordinates 322 

are vertices (located in the cortical ribbon) while the remaining greyordinates are voxels within 323 

subcortical structures. Thus, the BOLD time courses in greyordinate space are the weighted 324 

average of the volume’s time courses in grey matter, where the weights are determined by the 325 

average number of voxels wholly or partially within the grey matter ribbon. Voxels with a high 326 

coefficient of variation are excluded. Next, the surface time courses are downsampled to the 327 

greyordinate space after smoothing them with a 2mm full-width-half-max Gaussian filter. 328 

 329 

The additional preprocessing steps necessary for resting-state functional connectivity analyses 330 

consist of regressing out the whole brain (in this case the average signal across all greyordinates 331 
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(e.g., see Burgess et al., 2016), ventricle and white matter average signal, and displacement on 332 

the 6 motion parameters, their derivatives and their squares (Power, Mitra, et al., 2014). All 333 

regressors are individualized and specific to the participant, based on their own segmentations. 334 

The regression’s coefficients (beta weights) are calculated solely on the frames where the frame 335 

displacement is below 0.3mm to reduce the influence of movement “outliers” on the output data, 336 

but all the time courses are regressed to preserve temporal order for temporal filtering. Finally, 337 

time courses are filtered using a first order Butterworth band pass filter with cutting frequencies 338 

of 9 millihertz and 80 millihertz. 339 

 340 

We applied a strict motion censoring procedure to the resting-state images (Fair, Nigg, et al., 341 

2012; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) which takes the absolute value of the 342 

backward-difference for all rotation and translation measures in millimeters, assuming a brain 343 

radius of 50mm, and summates those absolute backward-differences for a measure of overall 344 

framewise displacement (FD). Volumes with a displacement exceeding 0.2mm were excluded, 345 

and we also removed frames with less than five contiguous frames of low motion data between 346 

instances of high motion (FD > 0.2mm) data to confidently account for motion effects on 347 

adjacent volumes (Power, Mitra, et al., 2014). Only participants with greater than 5 minutes of 348 

high quality data were included in the present analysis. The mean framewise displacement of 349 

participants in the first sample was 0.08 ± 0.02mm; range 0.05 - 0.13mm. The mean framewise 350 

displacement of participants in the second sample was 0.09 ± 0.02mm; range 0.04 - 0.13mm. 351 

More information on the motion characteristics on the full sample (i.e. including those excluded) 352 

can be viewed in Dosenbach et al., (2017). 353 

 354 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/255679doi: bioRxiv preprint 

https://doi.org/10.1101/255679
http://creativecommons.org/licenses/by-nc/4.0/


17 

Regions of interest 355 

Our regions of interest (ROIs) included regions within valuation and cognitive control systems, 356 

as well as hippocampus and supplementary motor area (SMA). For our cortical ROIs, we 357 

selected regions within each of these networks from the Deskan-Killiany atlas provided by 358 

FreeSurfer (Desikan et al., 2006). While other parcellations can be considered, we chose this 359 

parcellation in order to examine anatomically-defined cortical regions that have been identified 360 

in previous work. Cortical reconstruction and volumetric segmentation was performed with the 361 

FreeSurfer image analysis suite, which is documented and freely available for download online 362 

(http://surfer.nmr.mgh.harvard.edu/). The technical details of these procedures are described in 363 

prior publications (Dale et al., 1999; Fischl et al., 2002; Fischl & Dale, 2000). FreeSurfer uses 364 

individual cortical folding patterns to match cortical geometry across subjects (Fischl et al., 365 

1999), and maps this parcellation of the cerebral cortex into units with respect to gyral and sulcal 366 

structure (Desikan et al., 2006; Fischl et al., 2004). Our striatal and subcortical ROIs were 367 

defined based on FreeSurfer’s anatomical segmentation procedure. For the purposes of this study 368 

we examined the nucleus accumbens (NAcc), pallidum, amygdala, medial orbitofrontal cortex 369 

(mOFC), and posterior cingulate cortex (PCC) as part of the valuation network, and the caudate, 370 

putamen, anterior cingulate cortex (ACC), dorsal anterior cingulate cortex (dACC), dorsolateral 371 

prefrontal cortex (dlPFC), inferior frontal gyrus (IFG), and ventrolateral prefrontal cortex 372 

(vlPFC) of the cognitive control network (Figure 1; SI Table 1). 373 

 374 
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 375 

Figure 1: Brain systems of interest and regions of interest. [A] Brain networks (including two other 376 

regions out of the networks) included in this study. The regions in red represent the cognitive control 377 

network. The regions in blue represent the valuation network. The regions in green and purple represent 378 

the supplementary motor area and the hippocampus, respectively. [B] Each brain region included in this 379 

study. 380 

 381 

Statistical analysis 382 

In this study, we first tested to see whether chronological age could be used to predict temporal 383 

discounting preference as measured by AUC. We then tested to see if the strength of connectivity 384 

between each of our ROIs was able to explain variance in temporal discounting AUC values 385 
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above chronological age. All analyses were conducted in R version >3.3.3 (https://www.r-386 

project.org/). The script we used to conduct these analyses is freely available online to facilitate 387 

reproducibility and replication efforts (https://github.com/katemills/temporal_discounting). 388 

 389 

Sample 1 390 

For our first, longitudinal, sample we tested each of these questions using mixed-effects models 391 

with the nlme package implemented through R. Mixed effects modeling accounts for the non-392 

independence of the data collected from the same individual over time, and allows for unequal 393 

spacing between data collection points. This statistical analysis contains both the average slope 394 

and intercepts of the parameter (fixed effects), and varying intercept for each individual that is a 395 

random deviation of the fixed effect (random effect). We tested the following three polynomial 396 

models to predict AUC from chronological age:  397 

Linear age model: % = '( + '$(") 398 

Quadratic age model: % = '( +	'$(") + '#("#)	 399 

Cubic age model: % = '( +	'$(") + '#("#) + ',(",) 400 

Where % is the AUC value, and '( represents the intercept; " represents the participant’s age; 401 

and '$, '#	./0	', represent regression coefficients. We centered age for all analyses (10.70 402 

years). The three age models were compared and tested against a null model that only included 403 

the random intercept for each individual. The best fitting model was determined by Akaike 404 

Information Criterion (AIC) and likelihood ratio (LR) statistics using the heuristic of parsimony. 405 

The model with the lowest AIC value that was significantly different (p<.05), as determined 406 

from LR tests, from less complex models was chosen. 407 

 408 
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To identify the connections that could predict an individual’s AUC score above chronological 409 

age, we used LR statistics to compare models including a connection of interest (COI) 410 

correlation coefficient as an interaction and/or main effect added to the age only model. These 411 

brain connectivity models were then compared against each other as well as the best fitting age 412 

model. The model with the lowest AIC value that was significantly different (p<.01) from less 413 

complex models was selected as the best fitting model. To account for the possibility that brain 414 

connectivity alone could account for more variance in AUC values than the age-only model or 415 

the multivariate models, we also tested to see if a model including the COI correlation 416 

coefficient, but not age, was the best fitting model. We identified connectivity-only models if 417 

they had lower AIC than the age only models, and were also both significantly different and had 418 

lower AIC than the other more complex models. 419 

 420 

Sample 2 421 

We examined the same questions in the second sample to test the replicability of the results 422 

obtained from the first sample. Similar to our first sample, we first examined the relationship 423 

between AUC and chronological age, specifically by comparing linear to nonlinear models 424 

(quadratic & cubic). Since these data were cross-sectional, we used regular linear regression to 425 

fit these models and compared models through F tests (p<.05). Age was centered for all analyses 426 

(10.23 years). Once the best age model was determined, we tested if adding COI correlation 427 

coefficients to the model would improve the model fit through F tests (p<.05). We only 428 

examined the COIs that were determined to explain additional variance in AUC above age in the 429 

first sample. 430 

 431 
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Results 432 

AUC increases from late childhood into early adolescence 433 

Model comparisons between the null, linear age, quadratic age, and cubic age models are 434 

presented in Table 2. Of the three age models tested, the quadratic model best represented the 435 

relationship between age and AUC in this longitudinal sample (LR quadratic model vs. null: 436 

13.2, p < .002). The results of this model suggest that, on average, each yearly increase in age 437 

across this sample was associated with an increase of 0.04 AUC, with a negative rate of change 438 

(-0.01) (Table 3; Figure 2). These results should be interpreted from the predicted intercept at 439 

age 10.70 years (0.55). The graph illustrates a group-level increase in AUC until age ~11 years, 440 

but relative stability in AUC between ages 11-14 years.  441 

 442 

 443 

Figure 2: Best fitting age models for AUC. The green line represents the predicted model fit for AUC 444 

for sample 1 (longitudinal sample) and the blue line represents the predicted model fit for AUC for 445 
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sample 2 (cross-sectional sample). Shading represents the 95% confidence intervals. Raw data are plotted 446 

in the background, with each individual measurement representing a circle, and lines connecting data 447 

collected from the same individual across time. 448 

 449 

In our second, cross-sectional, sample, we found evidence for a linear relationship between age 450 

and AUC (Figure 2; blue). The linear model for this sample suggests that, on average, each 451 

yearly increase in age across this sample was associated with an increase of 0.05 AUC (Table 3; 452 

Figure 2). These results should be interpreted from the predicted intercept at age 10.23 years 453 

(0.45). Overall, the graph shows a similar increase in AUC across the age period studied as is 454 

visible in the longitudinal sample. 455 

 456 

Table 2. Comparison of polynomial age models for the longitudinal sample. 457 

Longitudinal sample 

 
Mode

l df AIC BIC logLik Test L.Ratio p-value 
Null Model 1 3 25.0 33.7 -9.5       
Linear Age 2 4 18.8 30.4 -5.4 1 vs 2 8.2 0.0042 
Quadratic Age 3 5 15.8 30.4 -2.9 2 vs 3 5.0 0.0257 
Cubic Age 4 6 15.4 32.9 -1.7 3 vs 4 2.4 0.1226 

 458 
Table 3. Fixed effects for best fitting (quadratic) age model predicting AUC for the longitudinal 459 
sample. 460 

Longitudinal Sample 
 Value Std. Error DF t-value p-value 
Intercept 0.55 0.03 71 17.0 <0.0001 
Linear age 0.04 0.01 71 3.2 0.0021 
Quadratic age -0.01 0.01 71 -2.2 0.0291 

 461 

Brain connectivity explains variance in AUC not accounted for by age 462 
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In the first sample, we found that AUC was best predicted by models including both age and 463 

connectivity for fifty-eight COIs (SI Table 2). Many of the connections (40%) were between 464 

regions within the cognitive control network, whereas 10% of connections were between regions 465 

within the valuation network. 36% of the connections were between the cognitive control 466 

network regions and the valuation network regions. None of the identified connections included 467 

connections between the control network and the SMA or the hippocampus, however, one 468 

connection between the valuation network and hippocampus and three connections between the 469 

valuation and the SMA were identified as relevant to predicting AUC. All four possible 470 

connections between the SMA and hippocampus were identified as relevant to predicting AUC. 471 

 472 

Of the fifty-eight connections identified in the first sample, only nine were replicated in the 473 

cross-sectional sample (Table 4; Figure 3). Three of the nine connections represented 474 

connections within regions of the cognitive control system (left dlPFC – right dACC; bilateral 475 

dlPFC; bilateral superior frontal cortex); three represented connections within regions of the 476 

valuation system (right pallidum – left PCC; right pallidum – right PCC; right mOFC – left 477 

amygdala); and three represented connections between these two systems (left dlPFC – right 478 

PCC; left superior frontal cortex – right PCC; left mOFC – right vlPFC). Model statistics for 479 

these nine models are detailed for both the longitudinal sample and cross-sectional sample in 480 

Table 4. 481 

 482 

The majority of the identified connections showed similar effects across samples. The three 483 

connections within the cognitive control system impacted the prediction of AUC similarly in 484 

both samples: individuals with greater connectivity strength between these cognitive control 485 
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regions were predicted to have a preference for LLR (higher AUC) across the age ranges studied. 486 

The beta values for the main effect of connectivity were similar across the samples as well, with 487 

connectivity beta estimates ranging from 0.26 – 0.37 for the longitudinal sample, and 0.30 – 0.42 488 

for the cross-sectional sample. 489 

 490 

The three connections within the valuation system also impacted the prediction of AUC similarly 491 

in both samples: individuals with greater connectivity strength between these valuation regions 492 

were predicted to have a preference for the SSR (lower AUC) across the age ranges studied. The 493 

beta values for the main effect of connectivity were similar across the samples as well, with 494 

connectivity beta estimates ranging from -0.38 – -0.23 for the longitudinal sample, and -0.58 – -495 

0.27 for the cross-sectional sample. The impact of connectivity between the right pallidum and 496 

PCC on predicting AUC with age was virtually identical for both cortical hemispheres. 497 

 498 

Individuals with greater connectivity strength between the left mOFC and right vlPFC were 499 

predicted to have a preference for LLR (higher AUC) across the age ranges studied, similar to 500 

patterns found for connections between the cognitive control regions. Connectivity between 501 

these two regions was a better predictor of AUC than age alone in the cross-sectional sample. 502 

Within the longitudinal sample, connectivity strength between the right PCC and the left dlPFC 503 

or left superior frontal cortex interacted with the quadratic age term to predict AUC, with 504 

stronger connectivity strength predicting a preference for LLR (higher AUC) only at the tail ends 505 

of the age range. Within the cross-sectional sample, participants greater connectivity strength 506 

between the right PCC and left dlPFC were predicted to have a preference for LLR (higher 507 

AUC). Connectivity between the right PCC and left superior frontal cortex was a better predictor 508 
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of AUC than age alone in the cross-sectional sample, with individual with greater connectivity 509 

strength between these regions having a preference for LLR (higher AUC). 510 
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Table 4. Best fitting model characteristics for the nine connections of interest that replicated across the both samples.  

 

 

  
Longitudinal sample 

Connection Networks 
Best Fit 
Model LR test 

AIC 
diff. 

Intercept 
(SE) 

Linear age 
Estimate 
(SE) 

Quadratic age 
Estimate (SE) 

Connectivity 
Estimate 
(SE) 

Quadratic age 
x Connectivity 
(SE) 

Left dlPFC – 
Right dACC 

Control – 
Control main effect 

X2(1) = 7.13, 
p = 0.0076 5.13 0.59 (0.03) 0.05 (0.01) -0.01 (0.01) 0.26 (0.1) - 

Left dlPFC – 
Right dlPFC 

Control – 
Control main effect 

X2(1) = 8.68, 
p = 0.0032 6.68 0.4 (0.06) 0.05 (0.01) -0.01 (0.01) 0.36 (0.12) - 

Left Superior 
Frontal Cortex – 
Right Superior 
Frontal Cortex 

Control – 
Control main effect 

X2(1) = 8.95, 
p = 0.0028 6.95 0.36 (0.07) 0.05 (0.01) -0.01 (0.01) 0.37 (0.12) - 

Right Pallidum – 
Right PCC 

Valuation – 
Valuation main effect 

X2(1) = 8.27, 
p = 0.004 6.27 0.56 (0.03) 0.05 (0.01) -0.01 (0.01) -0.34 (0.11) - 

Right Pallidum – 
Left PCC 

Valuation –
Valuation main effect 

X2(1) = 8.74, 
p = 0.0031 6.74 0.54 (0.03) 0.05 (0.01) -0.01 (0.01) -0.38 (0.12) - 

Right mOFC – 
Left Amygdala 

Valuation – 
Valuation 

quadratic 
interaction 

X2(2) = 9.97, 
p = 0.0069 5.97 0.59 (0.04) 0.04 (0.01) -0.02 (0.01) -0.23 (0.15) 0.09 (0.03) 

Left dlPFC – 
Right PCC 

Control – 
Valuation 

quadratic 
interaction 

X2(2) = 11.44, 
p = 0.0033 7.44 0.54 (0.03) 0.06 (0.01) -0.01 (0.01) -0.08 (0.11) 0.1 (0.03) 

Left Superior 
Frontal Cortex – 
Right PCC 

Control – 
Valuation 

quadratic 
interaction 

X2(2) = 9.9, 
p = 0.0071 5.9 0.55 (0.03) 0.06 (0.01) -0.01 (0.01) -0.2 (0.12) 0.1 (0.03) 

Left mOFC – 
Right vlPFC 

Valuation – 
Control main effect 

X2(1) = 7.13, 
p = 0.0076 5.13 0.51 (0.04) 0.04 (0.01) -0.01 (0.01) 0.27 (0.1) - 
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Cross-sectional sample 

Connection Networks Best Fit 
Model 

F test adj R Sq Intercept (SE) Linear age 
(SE) 

Connectivity 
(SE) 

Left dlPFC – Right dACC Control – Control main effect F(2,81) = 5.13,  
p = 0.0203 

0.09 0.51 (0.04) 0.05 (0.02) 0.3 (0.13) 

Left dlPFC – Right dlPFC Control – Control main effect F(2,81) = 4.99,  
p = 0.0233 

0.09 0.28 (0.08) 0.05 (0.02) 0.42 (0.18) 

Left Superior Frontal Cortex – 
Right Superior Frontal Cortex 

Control – Control main effect F(2,81) = 4.92,  
p = 0.025 

0.09 0.25 (0.1) 0.05 (0.02) 0.40 (0.18) 

Right Pallidum – Right PCC Valuation – Valuation main effect F(2,81) = 6.21,  
p = 0.007 

0.11 0.46 (0.03) 0.04 (0.02) -0.53 (0.19) 

Right Pallidum – Left PCC Valuation – Valuation main effect F(2,81) = 6.72,  
p = 0.0043 

0.12 0.45 (0.03) 0.05 (0.02) -0.58 (0.2) 

Right mOFC – Left Amygdala Valuation – Valuation main effect F(2,81) = 4.62,  
p = 0.0342 

0.08 0.47 (0.03) 0.05 (0.02) -0.27 (0.12) 

Left dlPFC – Right PCC Control – Valuation main effect F(2,81) = 4.4,  
p = 0.043 

0.08 0.48 (0.03) 0.05 (0.02) 0.28 (0.14) 

Left Superior Frontal Cortex – 
Right PCC 

Control – Valuation coi only F(1,82) = 6.18,  
p = 0.015 

0.06 0.44 (0.03) - 0.37 (0.15) 

Left mOFC – Right vlPFC Valuation – Control coi only F(1,82) = 6.27,  
p = 0.0142 

0.06 0.41 (0.03) - 0.35 (0.14) 
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Discussion 511 

In this study, we investigated whether individual differences in functional brain organization are 512 

associated with temporal discounting preferences in the transition into adolescence. Specifically, 513 

we tested if functional connectivity between regions involved in valuation, cognitive control, 514 

hippocampus and SMA could explain variance in temporal discounting preference (AUC) above 515 

chronological age. To ensure validity of our reported results, we tested these models in two 516 

independent datasets: a longitudinal dataset of children aged 7-15 years and a cross-sectional 517 

dataset of 7-13 year olds. 518 

 519 

In both samples we observed a group-average increase in AUC between late childhood and early 520 

adolescence. We found evidence that the relationship between age and AUC was best 521 

represented by a quadratic trajectory in our longitudinal sample, with AUC increasing between 522 

ages 7-11 years before stabilizing. For the cross-sectional sample, we identified a linear increase 523 

in AUC between ages 7-13 years. While the best fitting model differed between these samples, 524 

the overall pattern observed in both samples reflected a general trend for our participants to 525 

prefer waiting for a later, larger reward (LLR) as they got older.  526 

 527 

This result supports the general finding that temporal discounting preferences shift in the 528 

transition into adolescence (Achterberg et al., 2016; Scheres et al., 2014). Scheres et al., (2014) 529 

demonstrated in a cross-sectional sample encompassing ages 6-19 years that adolescents were 530 

more likely to wait for the LLR in comparison to children and young adults. Achterberg et al., 531 

(2016) similarly found that the ability to delay gratification increased from childhood into 532 

adolescence. It is important to note that, although we found a group-average increase in AUC 533 
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across the transition into adolescence, there was substantial individual variability (see Figure 2). 534 

Further, because our sample age range ends at 15 years we cannot be sure if the preference for 535 

LLR declines between mid-to-late adolescence. 536 

 537 

Individual differences in functional connectivity are related to temporal discounting preference 538 

The current study proposed that individual variability in temporal discounting preference could 539 

be explained by differences in intrinsic functional organization. To test this hypothesis, we 540 

examined if intrinsic functional connectivity between a set of a priori regions of interest and 541 

networks could improve the “age only” models in predicting an individual’s temporal 542 

discounting preference. To mitigate false positives and overfitting, we implemented both a 543 

stringent model selection procedure utilizing AIC as well as Likelihood Ratio tests paired with 544 

replication in an independent sample. We found nine distinct brain connections were able to 545 

explain variance in temporal discounting preference above age alone in both our longitudinal and 546 

cross-sectional samples. These findings suggest that individual differences in functional brain 547 

connectivity can explain a portion of individual variability in temporal discounting preferences 548 

during the transition to adolescence. 549 

 550 

Our results demonstrate that individuals with greater connectivity between cortical regions 551 

within cognitive control systems are more inclined to choose LLR. Specifically, we found that 552 

increased connectivity between the left dlPFC and the right dACC, bilateral dlPFC, and bilateral 553 

superior frontal cortex, relate to a preference for LLR for individuals across the transition into 554 

adolescence (Figure 3a-c). 555 
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 556 

Figure 3a-c: Relationship between cognitive control regions and AUC. The cortical regions involved 557 

in the connectivity between two cognitive control systems are represented by red on the brain. Pink 558 

trajectory represents AUC for an individual with 1 standard deviation higher connectivity than the mean 559 

between the two regions. Purple trajectory represents predicted AUC for participants with the mean 560 

connectivity strength between the two regions. Blue trajectory represents AUC for an individual with 1 561 

standard deviation lower connectivity than the mean between the two regions. Raw data are plotted in the 562 

background, with each individual measurement representing a circle, and lines connecting data collected 563 

from the same individual across time. 564 

 565 

 566 
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 567 

Figure 3d-f: Relationship between valuation regions and AUC.  The regions, between cortical and 568 

subcortical, involved in the connectivity between two valuation systems are represented by blue on the 569 

brain. Pink trajectory represents AUC for an individual with 1 standard deviation higher connectivity than 570 

the mean between the two regions. Purple trajectory represents predicted AUC for participants with the 571 

mean connectivity strength between the two regions. Blue trajectory represents AUC for an individual 572 

with 1 standard deviation lower connectivity than the mean between the two regions. Raw data are plotted 573 

in the background, with each individual measurement representing a circle, and lines connecting data 574 

collected from the same individual across time. 575 

 576 

 577 
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Across samples, we found evidence that greater connectivity between right pallidum and the 578 

bilateral PCC was associated with a preference for SSR across the transition into adolescence. 579 

Specifically, a greater connectivity between these valuation regions predicted lower AUC for 580 

individuals across the age ranges studied (Figure 3de). These results align with previous 581 

findings showing individual differences in cortico-striatal circuitry are related to temporal 582 

discounting preferences (van den Bos et al., 2014; 2015). Our results also demonstrate that 583 

increased connectivity between the left amygdala and right mOFC was related to increased 584 

preference for the SSR in the transition to adolescence (Figure 3f). While a main effect was 585 

found for the cross-sectional sample, there was an interaction between connectivity and the 586 

quadratic age term for the longitudinal sample. This presents the possibility that the relationship 587 

between increased connectivity between the left amygdala and right mOFC and temporal 588 

discounting preference is not static across ages 7-15 years.  589 

 590 
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 591 

Figure 3g-i: Relationship between valuation network and cognitive control network and AUC.  The 592 

cortical regions involved in the connectivity between valuation system and cognitive control system are 593 

represented by blue and red, respectively, on the brain. The Pink trajectory represents AUC for an 594 

individual with 1 standard deviation higher connectivity than the mean between the two regions. Purple 595 

trajectory represents predicted AUC for participants with the mean connectivity strength between the two 596 

regions. Blue trajectory represents AUC for an individual with 1 standard deviation lower connectivity 597 

than the mean between the two regions. Raw data are plotted in the background, with each individual 598 

measurement representing a circle, and lines connecting data collected from the same individual across 599 

time. 600 

 601 
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While we found evidence that increased connectivity between the right PCC and the left dlPFC 602 

or left superior frontal cortex was related to greater preference for LLR for individuals across 603 

ages in the cross-sectional sample, the best fitting models in the longitudinal sample suggested a 604 

nonlinear relationship between this strength of these connections and AUC preference across age 605 

(Figure 3gh). We found that greater connectivity between the left mOFC to right vlPFC (the 606 

pars orbitalis region of the inferior frontal gyrus) was related to increased preference for LLR 607 

across the transition into adolescence. This possibly reflects that stronger functional connectivity 608 

at rest between these regions reflects the ability for the vlPFC/IFG to regulate mOFC signaling 609 

(Hare, Camerer, & Rangel, 2009). In both samples, a main effect of greater connectivity between 610 

the dlPFC and several regions predicted higher AUC (increased preference for LLR or less 611 

discounting) for individuals across the transition into adolescence. This result held for 612 

connections between the dlPFC and dACC, bilateral dlPFC, as well as dlPFC and PCC, further 613 

underscoring the role of dlPFC in the development of temporal discounting behavior (Wang et 614 

al., 2017). 615 

 616 

Role of dopaminergic signaling in temporal discounting behavior 617 

All of the identified relevant connections between regions of the valuation network (amygdala, 618 

mOFC, PCC, and pallidum) showed a negative relationship with AUC, with stronger 619 

connectivity predicting a greater preference for SSR across participants. This could be related to 620 

the abundance of dopaminergic signaling in the valuation network. Multiple studies have shown 621 

that areas of the brain with dopaminergic innervation are involved in temporal discounting 622 

preference (Kobayashi & Schultz, 2008; Pine, Shiner, Seymour, & Dolan, 2010). Furthermore, it 623 

has been reported that individuals with increased dopamine release are more inclined to choose 624 
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the SSR (Joutsa et al., 2015). Crossover work in animal models might allow for direct testing of 625 

this hypothesis (Grayson & Fair, 2017; Grayson, Kroenke, Neuringer, & Fair, 2014; Miranda-626 

Dominguez et al., 2014; Stafford et al., 2014). 627 

 628 

One hypothesis is that changes in the cortico-striatal circuitry that occur in the transition into 629 

adolescence are related to hormonal changes that affect the interaction within the networks 630 

(Blakemore, Burnett, & Dahl, 2010; Chambers, Taylor, & Potenza, 2003). Specifically, these 631 

hormonal changes impact and influence motivation towards reward seeking behaviors (Luciana 632 

& Collins, 2012). Pubertal hormones and neurotransmitters, such as sex hormones and 633 

dopamine, affect regions across the brain, but their effects (especially dopamine) on the vmPFC, 634 

NAcc, and caudate might influence the development of cognitive capacities such as abstract 635 

thinking, problem solving, and working memory (Chambers et al., 2003). 636 

 637 

Limitations and Future directions 638 

This study examined temporal discounting preference as it relates to biological measures. 639 

However, social environmental factors can impact an individual’s subjective value of money and 640 

preference for waiting for a LLR. For example, a previous study found that individuals who grew 641 

up in lower socio-economic status environments (SES) preferred SSR, whereas individuals who 642 

grew up in higher SES environments preferred LLR (Griskevicius et al., 2013). In an 643 

experimental manipulation, Kidd, Palmeri, & Aslin (2013) demonstrated that children presented 644 

with a reliable environment demonstrated a significant increase in their delay time compared to 645 

children presented with an unstable environment. It should not be assumed that steeper 646 

discounting is always maladaptive. Very low socio-economic status populations were under-647 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/255679doi: bioRxiv preprint 

https://doi.org/10.1101/255679
http://creativecommons.org/licenses/by-nc/4.0/


36 

represented in the current study. Future investigations should assess how social environmental 648 

factors might impact the relationship between biological measures and temporal discounting 649 

preference.  650 

 651 

Previous studies have shown evidence for heterogeneity in functional connectivity existing 652 

across individuals in typically developing as well as in clinical samples (Costa Dias et al., 2015; 653 

Fair, Bathula, Nikolas, & Nigg, 2012; Gates, Molenaar, Iyer, Nigg, & Fair, 2014). For example, 654 

graph theory and community detection can be used to classify typically developing children into 655 

specific neuropsychological subgroups (Gates et al., 2014), and functional subgroups can be 656 

differentiated based on heterogeneity related to behavioral characteristics including impulsivity 657 

(Costa Dias et al., 2015). This study did not account for these heterogeneity present in the group 658 

and further investigation should be considerate of this phenomenon. Further, the current study 659 

utilized a brain parcellation based on anatomical boundaries (the Desikan-Killiany atlas; Desikan 660 

et al., 2006) in order to test hypotheses generated from previous work. However, establishing the 661 

consistency of these findings with other parcellations (Glasser et al., 2016; Gordon et al., 2016) 662 

will be an important next step (Grayson & Fair, 2017; Hagmann, Grant, & Fair, 2012). 663 

 664 

Conclusion 665 

On average, children start to prefer waiting for later, larger rewards as they transition into 666 

adolescence. However, there is a substantial amount of variability in temporal discounting 667 

preference between individuals across development. This study provides evidence that individual 668 

differences in functional brain connectivity within and between regions in cognitive control and 669 

valuation networks can account for variance in temporal discounting preference above age. 670 
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Specifically, greater connectivity strength between cognitive control regions, as well as between 671 

cognitive control and valuation regions, was related to a preference for waiting for a larger 672 

reward. In contrast, greater connectivity strength between valuation network regions was related 673 

to a preference for taking an immediate, smaller, reward. Future studies should examine the 674 

impact of social environmental factors on the relationship between functional brain connectivity 675 

and temporal discounting behavior across development. 676 
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