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Abstract.— Advances in high-throughput sequencing techniques now allow relatively easy20

and affordable sequencing of large portions of the genome, even for non-model organisms.21

Many phylogenetic studies prefer to reduce costs by focusing their sequencing efforts on a22

selected set of targeted loci, commonly enriched using sequence capture. The advantage of23

this approach is that it recovers a consistent set of loci, each with high sequencing depth,24

which leads to more confidence in the assembly of target sequences. High sequencing depth25

can also be used to identify phylogenetically informative allelic variation within sequenced26

individuals, but allele sequences are infrequently assembled in phylogenetic studies.27

Instead, many scientists perform their phylogenetic analyses using contig sequences which28

result from the de novo assembly of sequencing reads into contigs containing only canonical29

nucleobases, and this may reduce both statistical power and phylogenetic accuracy. Here,30

we develop an easy-to-use pipeline to recover allele sequences from sequence capture data,31

and we use simulated and empirical data to demonstrate the utility of integrating these32

allele sequences to analyses performed under the Multispecies Coalescent (MSC) model.33

Our empirical analyses of Ultraconserved Element (UCE) locus data collected from the34

South American hummingbird genus Topaza demonstrate that phased allele sequences carry35

sufficient phylogenetic information to infer the genetic structure, lineage divergence, and36

biogeographic history of a genus that diversified during the last three million years, support37

the recognition of two species, and suggest a high rate of gene flow across large distances of38

rainforest habitats but rare admixture across the Amazon River. Our simulations show39

that analyzing allele sequences leads to more accurate estimates of tree topology and40

divergence times than the more common approach of using contig sequences. We conclude41

that allele phasing may be the most appropriate processing scheme for phylogenetic42

analyses of UCE data in particular, and sequence capture data, more generally.43

(Keywords: UCE, SNP, heterozygous sites, Multispecies Coalescent, gene tree, species tree,44

Mitochondrial Genome, Trochilidae, Birds, Amazon)45
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Massive Parallel Sequencing (MPS) techniques enable time- and cost-efficient46

generation of DNA sequence data. Instead of using MPS to sequence complete genomes,47

many researchers choose to focus their sequencing efforts on a set of target loci to lower48

costs while achieving higher coverage and more reliable sequencing of these target regions49

(Faircloth et al. 2012, 2013; Mirarab et al. 2014; Smith et al. 2014; Faircloth 2015; Harvey50

et al. 2016; Meiklejohn et al. 2016). These multilocus datasets typically contain hundreds51

or thousands of target loci, and most are generated through enrichment techniques such as52

sequence capture (synonym: target enrichment, Gnirke et al. (2009)). After collecting53

sequence data from these targeted loci, many researchers assemble their high coverage54

sequence reads into “contigs” using de novo genome assembly software, and the “contigs”55

output by these assemblers often ignore the variants at heterozygous positions that are56

expected in diploid organisms. Typically, variable positions are treated as sequencing errors57

and assembly algorithms output the contig containing the more probable (i.e., numerous)58

variant while discarding the alternative (Iqbal et al. 2012). As a result, the contigs that are59

produced contain only canonical nucleobases, losing the information for each alternative60

allele present at each variable position (Fig. 4). Hereafter, we use “contigs” and “contig61

sequences” to refer to the sequences that are output by de novo assemblers.62

One alternative approach to generating contig sequences uses the depth of63

sequencing coverage to programatically identify variable positions within a targeted locus64

(also known as “calling” single nucleotide polymorphism (SNPs)) and subsequently sorting65

(or “phasing”) these SNPs into two allele sequences or “haplotypes” which represent alleles66

on the same chromosome present at that locus. These approaches have been used to67

estimate demographic parameters such as effective population size, rate of migration, and68

the amount of gene flow between and within populations. However, it is rarely69

acknowledged (c.f. Lischer et al. 2014; Potts et al. 2014; Schrempf et al. 2016; Eriksson70

et al. 2017) that allelic sequences are useful for phylogenetic studies to improve the71
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estimation of gene trees, species trees, and divergence times (Garrick et al. 2010; Potts72

et al. 2014; Lischer et al. 2014). The common practice of neglecting allelic information in73

phylogenetic studies possibly results from historical inertia and a lack of computational74

pipelines to prepare allele sequences for phylogenetic analysis using MPS data.75

In addition to the problems of determining allelic sequences, the proper analysis of76

allelic information in phylogenetic studies remains a challenging and intensively discussed77

topic (Garrick et al. 2010; Lischer et al. 2014; Potts et al. 2014; Schrempf et al. 2016;78

Leaché and Oaks 2017). Various approaches have been proposed to include this information79

into phylogenetic methods (Lischer et al. 2014; Potts et al. 2014; Schrempf et al. 2016).80

One is to code heterozygous sites using IUPAC ambiguity codes and to include these as81

additional characters in existing substitution models for gene tree and species tree inference82

(Potts et al. 2014; Schrempf et al. 2016). While these studies demonstrate that integrating83

additional allelic information in this manner increases accuracy in phylogenetic inference,84

Lischer et al. (2014) found that coding heterozygous sites as IUPAC ambiguity codes in85

phylogenetic models biases the results toward older divergence time estimates. Instead,86

Lischer et al. (2014) introduced a method of repeated random haplotype sampling (RRHS)87

in which allele sequences are repeatedly concatenated across many loci, using a random88

haplotype for any given locus in each replicate. In their approach they then analyzed89

thousands of concatenation replicates separately for phylogenetic tree estimation and90

summarized the results between replicates, thereby integrating the allelic information in91

form of uncertainty intervals. However there are two important shortcomings of this92

approach: 1. concatenating unlinked loci (and in particular allele sequences from unlinked93

loci) in a random manner is known to produce incorrect topologies (Degnan and Rosenberg94

2009) often with false confidence (Edwards et al. 2007; Kolaczkowski and Thornton 2004;95

Kubatko and Degnan 2007; Mossel and Vigoda 2005), which is not accounted for when96

doing so repeatedly and summarizing the resulting trees, and 2. running thousands of tree97
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estimation replicates based on extensive amounts of sequence data results in unfeasibly long98

computation times, particularly for Markov-Chain Monte Carlo (MCMC) based softwares99

such as MrBayes or BEAST. Hence there is need to find proper solutions to include100

heterozygous information in phylogenetic analyses, as concluded by Lischer et al. (2014).101

Here, we introduce the bioinformatic assembly of allele sequences from UCE data102

and demonstrate a full integration of allele sequences to species tree estimation under the103

multispecies coalescent (MSC) model using empirical and simulated data. In our approach,104

we treat each allelic sequence of an individual at a given locus as an independent sample105

from the population, and we analyze these sequences using the species tree and106

delimitation software STACEY (Jones et al. 2014; Jones 2017), which does not require a107

priori clade- or species-assignments. We first demonstrate the empirical utility of our108

approach by resolving the shallow genetic structure (<1 Ma) within two recognized109

morphospecies of the South American hummingbird genus Topaza by analyzing a set of110

2,386 ultraconserved elements (UCEs, see Faircloth et al. (2012)) collected using sequence111

capture of the 2.5k tetrapod baitset (see http://ultraconserved.org). We then validate112

this approach, using simulations, and show that allele sequences yield more accurate results113

in terms of species tree estimation and species delimitation than the contig sequence114

approach that ignores heterozygous information. Our simulation results further115

demonstrate that proper phasing of allele sequences outperforms alternative approaches of116

coding heterozygous information, such as analyzing sequences containing IUPAC ambiguity117

codes or SNPs. We conclude by demonstrating that phasing sequence capture data can be118

critical for correct species delimitation and phylogeny estimation, particularly in recently119

diverged groups, and that analyses using phased alleles should be considered as one “best120

practice” for analyzing sequence capture datasets in a phylogenetic context.121

Materials and Methods122
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Study System123

The genus Topaza and its sister genus Florisuga form the Topazes group, which124

together with the Hermits represent the most ancient branch within the hummingbird125

family (Trochilidae) (McGuire et al. 2014). Topazes are estimated to have diverged as a126

separate lineage from all other hummingbirds around 21.5 Ma, whereas the most recent127

common ancestor (MRCA) of Topaza and Florisuga lived approximately 19 Ma (McGuire128

et al. 2014). At present, there are two morphospecies recognized within Topaza, namely the129

Fiery Topaz, T. pyra (Gould, 1846), and the Crimson Topaz, T. pella (Linnaeus, 1758).130

However, the species status of T. pyra has been challenged by some authors (Schuchmann131

1999; Ornés-Schmitz and Schuchmann 2011), who consider this genus to be monotypic.132

Topaz hummingbirds are endemic to the Amazonian rainforest and are some of the most133

spectacular and largest hummingbirds worldwide, measuring up to 23 cm (adult males,134

including tail feathers) and weighing up to 12 g (Schuchmann et al. 2016; del Hoyo et al.135

2016a). These birds are usually found in the forest canopy along forest edges and clearings,136

and are often seen close to river banks (Ornés-Schmitz and Schuchmann 2011). There is137

morphological evidence for several subspecies within both currently recognized Topaza138

species (Peters 1945; Schuchmann 1999; Hu et al. 2000; Ornés-Schmitz and Schuchmann139

2011) that we investigate using genetic data.140

Sequence Data Generation141

We extracted DNA from the muscle tissue of 10 vouchered hummingbirds (9142

Topaza, one Florisuga, see Table 1) using the Qiagen DNeasy Blood and Tissue Kit143

according to the manufacturer’s instructions (Qiagen GmbH, Hilden, Germany). These144

samples cover most of the genus’ total geographic range (Fig. 1) and all morphologically145

recognized intraspecific taxa (Schuchmann et al. 2016; del Hoyo et al. 2016a). All samples146
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Table 1: Specimens sequenced. Subspecies identifications based on morphological char-
acters. Abbreviation for sample providers: INPA = Instituto Nacional de Pesquisas da
Amazônia, MPEG = Museum Paraense Emı́lio Goeldi, USNM = NMNH, Smithsonian In-
stitution, Washington DC, USA.

ID Taxon Subspecies Voucher number Latitude Longitude

1 Topaza pyra amaruni INPA A1106 -0.044167 -66.94944
2 T. pyra pyra MPEG 62475 -1.559444 -65.88006
3 T. pyra pyra MPEG 62474 -4.083889 -60.66050
4 T. pyra pyra MPEG 52721 -7.350000 -73.66667
5 T. pella NA USNM 586322 7.220000 -60.29000
6 T. pella pella INPA A3319 -1.927900 -59.41600
7 T. pella smaragdula MPEG 61688 -1.950000 -51.60000
8 T. pella microrhyncha MPEG 65603 -5.352417 -57.47500
9 T. pella NA INPA A6233 -9.028550 -64.24231
10 Florisuga fusca NA MPEG 70697 -15.15972 -39.04500

were sonicated with a Covaris S220 to a fragment length of 800 bp. Paired-end,147

size-selected (range 600-800bp) DNA libraries were prepared for sequencing on the Illumina148

MiSeq platform, using the magnetic-bead based NEXTflexTM Rapid DNA-Seq Kit (Bioo149

Scientific Corporation, Austin, TX, USA), following the user’s manual (v14.02).150

We used the “Tetrapods-UCE-2.5Kv1” bait set (uce-2.5k-probes.fasta),151

consisting of 2,560 baits (each 120 bp), targeting 2,386 UCEs, as described by Faircloth152

et al. (2012). The bait sequences were downloaded from http://ultraconserved.org and153

synthesized by MYcroarray (Biodiscovery LLC, Ann Arbor, MI, USA). Sequence154

enrichment was performed using a MYbaits kit according to the enclosed user manual155

(v1.3.8). The enriched libraries were then sequenced using 250 bp, paired-end sequencing156

on an Illumina MiSeq machine (Illumina Inc., San Diego, CA, USA). Library preparation,157

sequence enrichment and sequencing were performed by Sahlgrenska Genomics Core158

Facility in Gothenburg, Sweden.159

Mitochondrial Genome160
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Figure 1: Sample locations of Topaza specimens (numbered symbols) in northern South
America. Numbers represent sample IDs (Table 1). The colored polygons show the dis-
tribution range of the two morphospecies (T. pyra = green, T. pella = red) as estimated
by BirdLife International (http://www.birdlife.org). Transparent symbols (triangles and
circles) represent Topaza sightings, which were downloaded from the eBird database (Sulli-
van et al. 2009). The major river systems in the Amazon drainage basin are marked in blue
(not in proportion). Topaza illustrations were provided by del Hoyo et al. (2016b).

To infer a dated mitochondrial phylogeny for the genus Topaza to compare with the161

nuclear phylogeny, we used off-target mitochondrial reads to assemble the complete162

mitochondrial genome for all samples. We found that as many as 4.5% of all sequence163

reads were of mitochondrial origin, even though no baits targeting mitochondrial loci were164

used during sequence capture. An alignment of the assembled mitochondrial genomes for165

all samples was analyzed in BEAST (Drummond et al. 2012). Dating priors included166

clock-rate priors for three mitochondrial genes, estimated for honeycreepers by Lerner et al.167

(2011) and node-age priors within the genus Topaza that were estimated by McGuire et al.168
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Figure 2: Depiction of the workflow developed here. Colored boxes represent different types
of multiple sequence alignments (MSAs) used for phylogenetic inference in this study. In
addition to the standard UCE workflow of generating contig MSAs (Faircloth et al. 2012;
Smith et al. 2014; Faircloth 2015), we extended the bioinformatic processing in order to
generate UCE allele MSAs, and to extract SNPs from these allele MSAs. We added these
new functions to the PHYLUCE pipeline (Faircloth 2015). Additional data processing steps
were executed in this study in order to test different codings of heterozygous positions.

(2014). A detailed description of the assembly and analysis of the mitochondrial genome169

data can be found in online Appendix 1 (Supplemental Material available on Dryad).170

UCE Data Processing171

For this study we generated five different types of datasets, which we analyzed under the172

MSC. These five datasets represent different coding schemes for heterozygous information173

and are listed and described in the following sections.174
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1. UCE contig alignments.— Because contig sequences are commonly used in phylogenetic175

analyses of MPS datasets (e.g. Faircloth et al. (2012); Smith et al. (2014); Faircloth176

(2015)), we generated multiple sequence alignments (MSAs) of contigs for all UCE loci in177

order to test the accuracy of the phylogenetic estimation of this approach.178

To create MSAs from UCE contig data, we followed the suggested workflow from179

the PHYLUCE documentation180

(http://phyluce.readthedocs.io/en/latest/tutorial-one.html). We applied the181

PHYLUCE default settings unless otherwise stated. First we quality-filtered and cleaned182

raw Illumina reads of adapter contamination with Trimmomatic (Bolger et al. 2014), which183

is implemented in the PHYLUCE function illumiprocessor. The reads were then184

assembled into contigs using the software ABYSS (Simpson et al. 2009) as implemented in185

the PHYLUCE pipeline. In order to identify contigs representing UCE loci, all assembled186

contigs were mapped against the UCE reference sequences from the bait sequence file187

(uce-2.5k-probes.fasta), using the PHYLUCE function match_contigs_to_probes.py.188

We extracted only those sequences that matched UCE loci and that were present in all189

samples (n=820). These UCE sequences were then aligned for each locus (Fig. 2) using190

MAFFT (Katoh et al. 2009).191

2. UCE allele alignments.— We altered the typical UCE workflow in order to retrieve the192

allelic information that is lost when collapsing multiple reads into a single contig sequence193

(Fig. 2). To create this new workflow, we extracted all UCE contigs for each sample194

separately and treated each resulting contig set as a sample-specific reference library for195

read mapping. We then mapped the cleaned reads against each reference library on a per196

sample basis, using CLC-mapper from the CLC Workbench software. The mapped reads197

were sorted and then phased with SAMtools v0.1.19 (Li et al. 2009), using the commands198

samtools sort and samtools phase, respectively. This phasing function is based on a199
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dynamic programming algorithm that uses read connectivity across multiple variable sites200

to determine the two phases of any given diploid locus (He et al. 2010). Further, this201

algorithm uses paired-end read information to reach connectivity over longer distances and202

it minimizes the problem of accidentally phasing a sequencing error, by applying the203

minimum error correction function (He et al. 2010).204

UCE data provide an excellent dataset for allele phasing based on read connectivity,205

because the read coverage across any given UCE locus typically is highest in the center and206

decreases toward the ends. This makes it possible to phase throughout the complete locus207

without any breaks in the sequence. Even in cases where the only variable sites are found208

on opposite ends of the locus, the insert size we targeted in this study (800 bp), in209

combination with paired-end sequencing, enabled the phasing process to bridge the210

complete locus. The two phased output files (BAM format) were inspected for proper211

variant separation for all loci using Tablet (Milne et al. 2013). We then collapsed each212

BAM file into a single sequence and exported the two resulting allele sequences for each213

sample in FASTA format. In the next, step we aligned the allele sequences between all214

samples, separately for each UCE locus, using MAFFT (Fig. 2). We integrated this215

complete workflow into the UCE processing software PHYLUCE (Faircloth 2015) with216

slight alterations, one of which is the use of the open-source mapping program bwa (Li and217

Durbin 2010) in place of CLC-mapper.218

3. UCE IUPAC consensus sequence alignments.— We generated an additional set of219

alignments by merging the two allele sequences for each individual into one consensus220

sequence with heterozygous sites coded as IUPAC ambiguity codes221

(merge_allele_sequences_ambiguity_codes.py, available from:222

github.com/tobiashofmann88/UCE-data-management/). We used this dataset to test223

whether our allele phasing approach improved phylogenetic inference when compared to224
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the IUPAC consensus approach applied in other studies (where heterozygous positions are225

simply coded as IUPAC ambiguity codes in a consensus sequence for each locus and226

individual (Potts et al. 2014; Schrempf et al. 2016)).227

4. UCE chimeric allele alignments.— To investigate whether correct phasing of228

heterozygous sites is essential or if similar results are achieved by randomly placing229

variants in either allele sequence, we generated a dataset with chimeric allele sequence230

alignments. We created these alignments by applying a custom python script231

(shuffle_snps_in_allele_alignments.py, available from:232

github.com/tobiashofmann88/UCE-data-management/) to the phased allele sequence233

alignments and randomly shuffling the two variants at each polymorphic position between234

the two allele sequences for each individual. This process leads, in many cases, to an235

incorrect combination of variants on each allele sequence, thereby creating chimeric allele236

sequences. The resulting alignments contain the same number of sequences as the phased237

allele alignments (two sequences per individual), whereas the contig alignments and the238

IUPAC consensus alignments contain only half as many sequences (one sequence per239

individual).240

5. UCE SNP alignment.— A common approach to analyze heterozygous information is to241

reduce the sequence information to only a single variant SNP per locus. This242

data-reduction approach is often chosen because multilocus datasets of the size generated243

in this study can be incompatible with Bayesian MSC methods applied to the full sequence244

data, due to extremely long computational times. Instead, alignments of unlinked SNPs245

can be used to infer species trees and species demographics under the MSC model with the246

BEAST2 package SNAPP (Bryant et al. 2012), a program specifically designed for such247

data. However, extracting and filtering SNPs from BAM files with existing software (such248

as the Genome Analysis Toolkit (GATK), McKenna et al. (2010)) and converting these249
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into a SNAPP compatible format can be cumbersome, because SNAPP requires positions250

with exactly two different states, coded in the following manner: individual homozygous for251

the original state = “0”, heterozygous = “1”, and homozygous for the derived state = “2”.252

To alleviate this problem, we developed a python function that extracts biallelic253

SNPs directly from allele sequence MSAs (snps_from_uce_alignments.py, available from:254

github.com/tobiashofmann88/UCE-data-management/). Extracting SNPs from MSAs in255

this manner is a straightforward and simple way to generate a SNP dataset compatible256

with SNAPP, and does not require re-visiting the BAM files. Although a similar program257

already exists, which is implemented in the R-package phrynomics (Leaché et al. 2015), we258

integrated the SNP extraction from allele sequence MSAs into the PHYLUCE pipeline,259

and used this approach to extract one position per alignment (to ensure unlinked SNPs)260

that had exactly two different states among all Topaza samples, not allowing for positions261

with missing data or ambiguities. This produced a SNP dataset of 598 unlinked SNPs.262

Generation of Simulated UCE Data263

To assess the accuracy of the phylogenetic inferences resulting from different data264

processing approaches, we simulated UCE data similar to those discussed in the five265

processing schemes we applied to the empirical Topaza data. However, because this266

approach required us to simulate allele alignments before generating contig alignments,267

steps one and two, below, are reversed from their order, above. For each of the five268

processing schemes, we generated and analyzed ten independent simulation replicates.269

1. Simulated allele alignments.— From the empirical UCE allele alignments, we estimated270

species divergence times and population sizes under the MSC model (Rannala and Yang271

2003) using the Bayesian MCMC program BPP v3.1 (Yang 2015). To do this, we used the272

A00 model with the species tree topology from the analysis of the allele sequence data in273
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STACEY, assigning the Topaza samples to five separate taxa (corresponding to colored274

clades in Fig. 6b). An initial BPP analysis did not converge in reasonable computational275

time, a problem that has previously been reported for UCE datasets containing several276

hundred loci (Giarla and Esselstyn 2015). To avoid this issue, we split the 820 UCE277

alignments randomly into 10 subsets of equal size (n=82) and analyzed these separately278

with identical settings in BPP. The MCMC was set for 150,000 generations (burn-in279

50,000), sampling every 10 generations. We summarized the estimates for population sizes280

and divergence times across all 10 individual runs. We then applied the mean values of281

these estimates to the species tree topology, by using the estimated divergence times as282

branch lengths and estimated population sizes as node values, resulting in the species tree283

in Fig. 6g. This tree was used to simulate sequence alignments with the MCcoal simulator,284

which is integrated into BPP. Equivalent to the empirical data, we simulated sequence data285

for five taxa (D, E, X, Y, and Z) and one outgroup taxon (F, not shown in Fig. 6g). In the286

simulations, these taxa were simulated as true species under the MSC model. In order to287

mimic the empirical allele data, we simulated four individuals for species ‘D’ (equivalent to288

two allele sequences for 2 samples), four for species ‘E’, four for species ‘X’, two for species289

‘Y’ (two allele sequences for one sample), four for species ‘Z’, and two for the outgroup290

species ‘F’. In this manner we simulated 820 UCE allele MSAs of 848 bp length (a value291

equal to the average alignment length of the empirical allele alignments).292

2. Simulated contig alignments.— To simulate UCE contig MSAs similar to those used in293

previous studies (Faircloth et al. 2012; McCormack et al. 2012; Smith et al. 2014; Faircloth294

2015) and output by assemblers like Velvet or Trinity which pick only one of the two295

variants at a heterozygous site, we merged the sequences within each coalescent species in296

pairs of two (equivalent to pairs of allele sequences). Each pair of allele sequences was297

joined into one contig sequence by randomly picking one of the two variants at each298
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heterozygous site across all loci. As in the empirical contig assembly approach, our299

simulation approach may generate chimeric contig sequences.300

3. Simulated IUPAC consensus alignments.— Next, we generated IUPAC consensus MSAs301

in the same manner as we generated the simulated contig MSAs in the previous step, with302

the exception that all heterozygous sites were coded with IUPAC ambiguity codes instead303

of randomly picking one of the two variants.304

4. Simulated chimeric allele alignments.— We generated chimeric allele sequence MSAs305

from the simulated allele MSAs by randomly shuffling the heterozygous sites between each306

pair of sequences using the same pairs as in the previous two steps.307

5. Simulated SNP alignment.— Finally, we extracted two different SNP datasets from the308

simulated phased allele MSAs. The first SNP dataset (SNPs complete) was extracted in309

the same manner as described for the empirical data (one SNP per locus for all loci) which310

resulted in a total alignment length of 820 SNPs for the simulated data. We extracted an311

additional SNP dataset (SNPs reduced) from only the subset of the 150 simulated allele312

alignments that were used for the sequence-based MSC analyses (see next section below).313

The resulting dataset of 150 SNPs was used to compare the phylogenetic inference based314

on SNP data versus that based on full sequence data, if the same number of loci is being315

analyzed. This enabled us to evaluate the direct effect of reducing the full sequence316

information in the MSAs to one single SNP for each of the selected 150 loci.317

MSC Analyses of Empirical and Simulated UCE Data318

Sequence-based tree estimation.— To jointly infer gene trees and species trees, we analyzed319

each of the generated sets of MSAs (processing schemes 1-4 for empirical and simulated)320

under the MSC model, using the DISSECT method (Jones et al. 2014) implemented in321
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STACEY (Jones 2017), which is available as a BEAST2 (Bouckaert et al. 2014) package.322

STACEY allows *BEAST analyses without prior taxonomic assignments, searching the tree323

space while simultaneously collapsing very shallow clades in the species tree (controlled by324

the parameter collapseHeight). This collapsing avoids a common violation of the MSC325

model that occurs when samples belonging to the same coalescent species are assigned to326

separate taxa in *BEAST. This feature makes STACEY suitable for analyzing allele327

sequences, because they do not have to be constrained to belong to the same taxon and can328

be treated as independent samples from a population. STACEY runs with the usual329

*BEAST operators, but integrates out the population size parameter and has new MCMC330

proposal distributions to more efficiently sample the species tree, which decreases the time331

until convergence. In order to reach even faster convergence, we reduced the number of loci332

for this analysis by selecting the 150 allele MSAs with the most parsimony informative333

sites. This selection was made for both the empirical and the simulated allele MSAs. The334

same 150 loci were selected for all other processing schemes.335

Prior to analysis, we estimated the most appropriate substitution model for each of336

the 150 loci with jModeltest (Supplementary Table S1 available on Dryad) using BIC. We337

used BEAUTI v2.4.4 to create an input file for STACEY in which we unlinked substitution338

models, clock models and gene trees for all loci. We did not apply any taxon assignments,339

thereby treating every sequence as a separate taxon. We chose a strict clock for all loci and340

fixed the average clock rate for one random locus to 1.0, while estimating all other clock341

rates in relation to this locus. To ensure that all resulting species trees were scaled to an342

average clock rate of 1.0, we rescaled every species tree from the posterior distribution343

using the average clock rate of the respective MCMC step. We applied the344

STACEY-specific BirthDeathCollapse model as a species tree prior, choosing a value of345

1e-5 for the collapseHeight parameter. Other settings were: bdcGrowthRate = log normal346

(M=4.6, S=1.5); collapseWeight = beta (alpha=2, beta=2); popPriorScale = log normal347
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(M=-7, S=2); relativeDeathRate = beta (alpha=1.0, beta=1.0). For the IUPAC consensus348

data, we enabled the processing of ambiguous sites by adding useAmbiguities="true" to349

the gene tree likelihood priors for all loci in the STACEY XML file. All analyses were run350

for 1,000,000,000 MCMC generations or until convergence (ESS values >200), logging351

every 20,000 generations. Convergence was assessed using Tracer v1.6 (Rambaut et al.352

2013). We then summarized the posterior tree distribution into one maximum clade353

credibility tree with TreeAnnotator v2.4.4, discarding the first 10% of trees as burn-in.354

For the simulated data, we analyzed the posterior species tree distributions of each355

analysis with the program SpeciesDelimitationAnalyser (part of the STACEY356

distribution). This program produces a similarity matrix that contains the posterior357

probabilities of belonging to the same cluster for each pair of sequences. This analysis was358

run with a collapseHeight value of 1e-5 (identical to the collapseHeight used in the359

STACEY analysis), while discarding the first 10% of trees as burn-in.360

SNP-based tree estimation.— To estimate the species tree phylogeny from the extracted361

SNP data, we analyzed the empirical and simulated SNP data in SNAPP. We did not362

apply prior clade assignments to the samples in the SNP alignment (each sample was363

assigned as its own taxon), we set coalescent rate and mutation rates to be estimated based364

on the input data, and we chose a Yule species tree model with default settings (λ =365

0.00765). We ran the analysis for 10,000,000 generations, sampling trees and other366

parameters from the posterior every 1,000 generations. Unlike STACEY, SNAPP assumes367

correct assignments of all sequences to coalescent species. Using the simulated SNP data,368

we therefore tested how our approach of assigning every individual as its own coalescent369

species affects the resulting phylogenetic inference. We did so by running a separate370

analysis for both simulated SNP datasets (complete and reduced) with correct species371

assignments (assignments as in Fig. 6g).372

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/255752doi: bioRxiv preprint 

https://doi.org/10.1101/255752
http://creativecommons.org/licenses/by-nd/4.0/


Results373

Mitochondrial Tree (BEAST)374

The BEAST analysis of complete mitochondrial genomes (see online Appendix 1) produced375

a fully resolved topology (Fig. 3). All nodes were supported by 100% Bayesian posterior376

probability (PP). We inferred the divergence between the two lineages T. pyra and T. pella377

at 2.36 Ma, with 95% of the highest posterior density (HPD) ranging between 1.96 and378

2.78 Ma. The tree also shows a separation of two distinct lineages within T. pyra at 0.68379

Ma (95% HPD: 0.54 - 0.84 Ma), dividing the samples of this morphospecies into a northern380

and a southern clade, separated by the Amazon River (Fig. 1). A similar, yet slightly more381

recent split can be seen within T. pella. We inferred the age of this split to 0.39 Ma (95%382

HPD: 0.30 - 0.48 Ma), revealing the same pattern of one northern and one southern clade383

with the exception of sample 7; this sample from the southern bank of the Amazon River384

delta is placed together with the samples derived from localities north of the Amazon385

(samples 5 and 6). Below, we refer to those individuals sampled north of the Amazon River386

as “northern” and to those sampled south of the Amazon as “southern”.387

UCE Summary Statistics388

Alignment statistics.— We use the term “polymorphic sites” for those positions within a389

MSA alignment of a given locus where we find at least two different states at a particular390

position among the sequences for all samples. This does not require a particular individual391

being heterozygous for the given position, since we do not search for SNPs on a per sample392

basis but rather for SNPs within the genus Topaza (for the following statistics we are393

excluding the outgroup). In this manner, we found that the empirical UCE contig sequence394
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Figure 3: Phylogeny estimated from complete mitochondrial genomes in BEAST. Node
support values represent PP. The blue bars at nodes represent the 95% HPD of divergence
times. Scale axis shows time units in millions of years. The map in the center shows the
potential ranges of the clades that are found in the mitochondrial tree (color-coded). The
ranges are based on the BirdLife distribution ranges (Fig. 1) and have been expanded in
order to accommodate all Topaza occurrence data.

alignments had an average of 2.8 polymorphic sites per locus and an average alignment395

length of 870 bp. In contrast, phasing the empirical UCE data to create allele alignments396

led to 4.5 polymorphic sites per locus and an average alignment length of 848 bp,397

representing a 60% increase in polymorphic sites per locus. This increase of polymorphic398

sites was attributable to the fact that many variants get lost during contig assembly,399
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because ABYSS and other tested contig assemblers, namely Trinity and Velvet, often400

eliminate one of the two variants at heterozygous positions (see below). The reduced401

length of the allele alignments in comparison to the contig alignments was due to402

conservative alignment clipping thresholds implemented in PHYLUCE, which clip403

alignment ends if less than 50% of sequences are present. Because the allele phasing404

algorithm divides the FASTQ reads into two allele bins and because a nucleotide is only405

called if it is supported by at least three high-quality FASTQ reads, we lost some of the406

nucleotide calls at areas of low read coverage (mostly at the ends of a locus) when407

comparing the allele sequences to the contig sequences. More information about the408

distribution of lengths and variable sites within the empirical UCE data can be found in409

the Supplementary Figs. S1 and S2 available on Dryad.410

The simulated contig MSAs had an average of 3.2 polymorphic sites per locus, after411

excluding the outgroup. The simulated allele MSAs, on the other hand, contained an412

average of 5.4 polymorphic sites (69% increase). An overview of parsimony informative413

sites, variable sites and length of each alignment (simulated and empirical data) can be414

found in Supplementary Table S2 available on Dryad.415

ABYSS does not detect heterozygous sites.— ABYSS occasionally produces contig416

sequences containing IUPAC ambiguity codes, which suggests that these sites may417

accurately represent heterozygosity in the read data and that assembly with ABYSS may418

be preferred to using other assembly algorithms because the resulting contigs contain more419

information. To validate this assumption, we checked one randomly selected sample420

(sample 5, T. pella) to see if degenerate sites in the contig sequences produced by ABYSS421

were heterozygous in the phased allele sequences. The results are striking, because there422

are zero heterozygous sites within the allele sequences for sample 5 that were correctly423

coded as IUPAC ambiguity codes in the ABYSS contigs (e.g. Fig 4a). Moreover, our424
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phasing approach revealed 343 heterozygous UCE loci with a total of 728 SNPs in sample 5425

while contig sequences from the ABYSS de novo assembly only contained IUPAC426

ambiguity codes (degenerate bases) at 26 UCE loci. For all other loci, ABYSS output427

homozygous contig sequences, indicated by the fact that all are free of ambiguity codes.428

Within the 26 loci containing IUPAC ambiguity codes, ABYSS introduced 473 degenerate429

bases, most of which constitute blocks of N’s. Effectively, all of these ambiguous positions430

are in places of extremely low FASTQ read coverage (<2 reads per haplotype), with the431

exception of six positions that are covered by greater than two reads per haplotype.432

However, even those six positions do not represent true heterozygous sites within sample 5,433

which becomes apparent when comparing aligned FASTQ reads at those loci with the434

phased allele sequences with the contig sequences produced by ABYSS (e.g. Fig. 4b).435

MSC Results of Empirical UCE Data436

The MSC species tree results for all tested processing schemes of the empirical UCE data437

(contig sequences, allele sequences, IUPAC consensus sequences, chimeric allele sequences438

and SNPs) converge on similar topologies for relationships among T. pella, yet the439

relationships inferred among T. pyra are less clear (Fig. 5 and Supplementary Fig. S3440

available on Dryad). All analyses strongly support the monophyly of both T. pyra and T.441

pella with 100% PP. In all MSC analyses, we also see strongly supported genetic structure442

within T. pella (≥ 97% PP), separating the northern samples (5 and 6) from the southern443

ones (7, 8 and 9). Additionally, within the shallow southern T. pella clade, all datasets,444

with exception of the IUPAC consensus data (Fig. 5c), strongly support a genetic445

distinction (≥ 99% PP) between sample 7 from the Amazon River delta and the other446

southern T. pella samples (8 and 9). The deep split between northern and southern447

samples within T. pyra on the other hand, which we find in the mitochondrial tree (Fig.448

3), is not well-supported by the multilocus MSC analyses. However, the analysis of the449
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ABySS contig

phased allele0
phased allele1

IUPAC consensus

read error SNP 1 SNP 2

UCE 3851

fastq reads

(a) Heterozygous position picked up by allele phasing

ABySS contig

phased allele0
phased allele1

IUPAC consensus

ABYSS-inserted base call

UCE 4284

fastq reads

(b) Erroneous insertion of IUPAC ambiguity by ABYSS

Figure 4: Detection of heterozygous sites in FASTQ reads. The figure shows two UCE
loci for sample 5 (T. pella). Displayed in both cases are the FASTQ reads, the ABYSS
contig sequence, the two phased allele sequences and the correct IUPAC consensus sequence
generated from our phased allele sequences. (a) An example of true heterozygous sites,
which are correctly represented in the phased allele sequences sequences but are not coded
as IUPAC ambiguities in resulting ABYSS contig. Instead ABYSS makes a majority call for
this position, thereby masking the heterozygous site by eliminating one of the two variants.
This is the case for all heterozygous sites that were picked up by the allele sequences in our
data. (b) An example of a UCE locus that contains IUPAC ambiguity codes in the ABYSS
contig sequence. Contrary to expectations, the ambiguity calls at these positions are not
supported by the FASTQ reads and appear to be inserted by ABYSS at random positions.
Our phased allele sequences, on the other hand, represent the FASTQ reads correctly and
do not call this position as heterozygous. We observed this same patters across all 26 loci in
our data with ABYSS-inserted IUPAC ambiguity codes.
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allele dataset returns a phylogenetic signal, possibly tracking a genetic divergence between450

these two clades, but their monophyly is not very strongly supported (Fig. 5b).451

MSC Results of Simulated Data452

Species tree topology.— For the simulated data, we analyzed six different datasets under453

the MSC model: contig sequence MSAs (n=150, STACEY), allele sequence MSAs (n=150,454

STACEY), IUPAC consensus MSAs (n=150, STACEY), chimeric allele MSAs (n=150,455

STACEY), reduced SNP data (n=150, SNAPP), and the complete SNP dataset (n=820,456

SNAPP). All resulting species trees (Figs. 6a to 6f) correctly return the topology of the457

species tree that was used to simulate the data (Fig. 6g). All central nodes in the species458

trees are supported by ≥90% PP in all analyses, with the exception of the species tree459

resulting from the reduced SNP dataset, which shows very weak support for two nodes and460

has a large uncertainty interval around the root-height (Fig. 6e). However, these461

shortcomings disappeared when we added more (unlinked) SNPs to the dataset (Fig. 6f).462

The full SNP dataset (n=820) produced the correct species tree topology with high node463

support consistently throughout ten independently simulated datasets (Supplementary Fig.464

S4 available on Dryad). The SNAPP species tree topology appeared to be unaffected by465

the chosen clade assignment model; while we allowed every sequence to be its own taxon in466

Figs. 6e and 6f, we also applied the correct species assignment (Fig. 6g) in two additional467

analyses (reduced and complete SNP data) that returned the same tree topology468

(Supplementary Figs. S5 and S6 available on Dryad).469

Species delimitation.— Although the inferred species tree topology was consistent among470

all four sequence-based MSC analyses (Figs. 6a to 6d), the inferred node heights varied471

considerably between the species trees resulting from the different data processing schemes.472

For the contig sequence data (Fig. 6a) and the chimeric allele data (Fig. 6d), the node473
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(a) Contig sequence alignments (n=150) (b) Phased allele alignments (n=150)

(c) IUPAC consensus alignments (n=150) (d) SNPs (n=598)

Figure 5: MSC species trees for the empirical Topaza data, based on four different data types
used in this study: contig sequence MSAs, phased allele sequence MSAs, IUPAC consensus
sequence MSAs and SNP data. (a) STACEY species tree from UCE contig alignments
(n=150), (b) STACEY species tree from UCE allele alignments (n=150), (c) STACEY species
tree from UCE IUPAC consensus alignments (n=150) and (d) SNAPP species tree from SNP
data (1 SNP per locus if present, n=598). Shown are the maximum clade credibility tree
(node values = PP, error-bars = 95% HPD of divergence times) and a plot of the complete
posterior species tree distribution (excluding burn-in).
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heights within the five simulated species (D,E,X,Y,Z) were too high, which led to an474

overestimation of the number of coalescent species in the dataset (see similarity matrices).475

Conversely, the phased allele data (Fig. 6b) and the IUPAC consensus data (Fig. 6c)476

correctly delimited the five coalescent species from the simulation input tree (Fig. 6g). The477

STACEY results showed the same pattern in all ten simulation replicates (Supplementary478

Fig. S7 available on Dryad).479

Accuracy of divergence time estimation.— For all four sequence-based analyses (Figs. 6a480

to 6d) the average substitution rate across all loci was set to ‘1’. Under these settings, we481

expected the absolute values of the sequence-based analyses to return the node height482

values of the simulation input tree, which used substitution rates scaled in the same483

manner. The phased allele MSAs produced the most accurate estimation of divergence484

times out of all tested datasets (see proximity of estimates to simulation input value,485

represented by green line in Fig. 7). This was the case for all nodes in the species tree,486

namely (D,E), (Y,Z), (X,(Y,Z)), and ((D,E)(X,(Y,Z))). The divergence time estimates487

resulting from the phased allele data accurately recovered the true values and did not show488

any bias throughout ten simulation replicates (Supplementary Fig. S8 available on Dryad).489

This contrasts with the contig MSAs and the chimeric allele MSAs that consistently490

overestimated the height of all nodes and the IUPAC consensus MSAs which consistently491

underestimated the height of all nodes (Fig. 7, Supplementary Fig. S8).492

Additional Analyses493

We ran additional analyses of the contig and the phased allele MSAs for both the empirical494

and simulated data using a summary coalescent approach as implemented in MP-EST (Yu495

et al. 2007), which can be found in online Appendix 2 and Supplementary Figs. S9 to S11496

(available on Dryad).497
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(a) Contig sequence alignments (n=150) (b) Phased allele alignments (n=150)

(c) IUPAC consensus alignments (n=150) (d) Chimeric allele alignments (n=150)
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Figure 6: MSC species tree results for different data processing schemes of simulated data.
(a) to (d) show the STACEY results of the four different types of MSAs analyzed in this study
(see sub-figure captions). Displayed in these panels are the maximum clade credibility trees
and the similarity matrices depicting the posterior probability of two samples belonging
to the same clade, as calculated with SpeciesDelimitationAnalyser. Dark panels depict a
high pairwise similarity, whereas light panels depict low similarity scores (see legend). (e)
and (f) show the maximum clade credibility trees resulting from SNAPP for our two SNP
datasets, (reduced and complete). (g) shows the species tree under which the sequence data
were simulated in this study. Node support values in PP, blue bars representing 95% HPD
confidence intervals.
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Figure 7: Posterior distributions of divergence times estimated with STACEY. Each sub-
figure shows several density plots of node-height estimates for a different node in the STACEY
species tree (see sub-figure titles). The four density plots in each sub-figure are approximated
from all node height values in the posterior sample (excl. 10% burnin), as estimated by
STACEY for the four different data processing schemes tested in this study: contig sequences
(yellow), phased allele sequences (red), IUPAC consensus sequences (blue) and chimeric allele
sequences (pink). The dotted lines show the means of these posterior distributions. The solid
green line shows the true node height value, which is the node height for the respective clade
in the input species tree, under which the sequence alignments were simulated.
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Discussion498

Allele Phasing is the Preferred Data Processing Scheme499

We tested whether phylogenetic inference improves by phasing sequence capture data into500

allele sequences, in comparison to the standard workflow of analyzing contig sequences501

(Faircloth et al. 2012; McCormack et al. 2012; Smith et al. 2014; Faircloth 2015). The502

answer is yes. We find that phased allele data outperform contig sequences in terms of503

species delimitation (Fig. 6) and the estimation of divergence times (Fig. 7). Contig504

sequence MSAs lead to a consistent overestimation of divergence times (Fig. 7), which in505

turn lead to an overestimation of the number of coalescent species in our simulated data506

(Fig. 6a). These results support earlier work by Lischer et al. (2014), who concluded that507

consensus sequences introduce a bias towards older node heights.508

Besides the qualitative advantages of using phased allele sequences for phylogenetic509

analyses, there are further theoretical arguments for compiling and analyzing allele510

sequence MSAs from sequence capture datasets. First, allele sequences represent the511

smallest evolutionary unit on which selection and other evolutionary processes act.512

Therefore, the coalescent models that underly our phylogenetic methods, including the513

MSC model Degnan and Rosenberg (2009), have been developed for allele sequences.514

Contig sequences, on the other hand, represent an artificial and possibly chimeric sequence515

construct that arises from merging all read variation at a given locus into a single sequence.516

This process masks information by eliminating one of the two variants at a heterozygous517

site (Fig. 4). This shortcoming of the most common assemblers (e.g. ABYSS, Trinity and518

Velvet) is due to the fact that they were designed to assemble haploid sequences and are519

not optimized for heterozygous sequences or genomes (Bodily et al. 2015). Second, not520

only are allele sequences the more appropriate data type, but phasing sequence capture521
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data also leads to a doubling of the effective sample size, since two sequences are compiled522

for a diploid individual, in contrast to the single sequence per individual that is recovered523

when taking the contig approach. Our results demonstrate how these sequences can be524

treated as independent samples from a population by using the assignment-free525

BirthDeathCollapse model as implemented in STACEY. Because STACEY requires no a526

priori assignment of sequences to taxon, this avoids a violation of the MSC that would527

occur when analyzing allele sequences as separate taxa in *BEAST, because *BEAST528

assumes each taxon constitutes a separate coalescent species. Third, sequence capture529

datasets such as UCEs are optimal for allele phasing because they contain high read530

coverage collected across short genomic intervals that are optimal for read-connectivity531

based phasing. The workflow developed in this study is now fully integrated into the532

PHYLUCE pipeline, making allele phasing and SNP extraction for sequence capture data533

easily available to a broad user group. Given these advantages of allele sequences over534

contig sequences and given the easy availability of the processing workflow, we recommend535

that allele phasing be considered as a standard practice for future sequence capture studies.536

Phasing of Heterozygous Sites Matters537

Several studies have accounted for heterozygosity by inserting IUPAC ambiguity codes into538

their sequences at variable positions (Potts et al. 2014; Schrempf et al. 2016), rather than539

phasing SNPs to produce separate allele sequences. Here, we directly compared these two540

approaches, and found that the IUPAC consensus sequences performed equally well to the541

phased allele sequences for estimating the species tree topology (Fig. 6). However, IUPAC542

consensus sequence data led to a consistent underestimation of the divergence times of all543

nodes in the species tree (Fig. 7). Our results contrast with those of (Lischer et al. 2014),544

who reported an overestimation of divergence times for alignments containing IUPAC545

ambiguity codes. The differences between our results may simply be caused by the different546

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2018. ; https://doi.org/10.1101/255752doi: bioRxiv preprint 

https://doi.org/10.1101/255752
http://creativecommons.org/licenses/by-nd/4.0/


tree inference programs that we used. Lischer et al. (2014) applied a Neighbour Joining547

(NJ) tree algorithm as implemented in the software PHYLIP (Felsenstein 2005) that treats548

two sequences containing the same ambiguity codes as identical. In effect, the approach549

used by Lischer et al. (2014) did not truly investigate the effect of IUPAC ambiguity codes550

on phylogenetic estimates but rather the effect of removing heterozygous sites. Our551

approach of analyzing IUPAC consensus sequences under the MSC in STACEY, on the552

other hand, properly integrates these IUPAC ambiguity codes into the calculation of the553

gene tree likelihoods. Thus, we conclude that IUPAC ambiguity codes introduce a bias554

towards younger divergence times, even when properly integrating IUPAC ambiguities into555

the phylogenetic model. The underlying cause of this discrepancy should be further556

investigated in future studies.557

We also tested whether the improved performance of phased allele sequence data558

may merely be an effect of doubling the number of sequences in the MSAs, since we are559

producing two allele sequences for each individual rather than one contig sequence.560

Therefore, we generated a dataset of chimeric allele sequences that contains the same561

number of sequences as the phased allele data, but we randomly shuffled all heterozygous562

positions within an individual between the two allele sequences. As with the contig data,563

the chimeric allele data led to an overestimation of the number of coalescent species (Fig.564

6d) and to a biased estimation towards older divergence times (Fig. 7). The fact that565

contig sequences and chimeric allele sequences produce very similar results in our analyses566

is not surprising, because contigs, themselves, represent chimeric consensus sequences of567

the variation found at a locus within an individual. The similarity of the results between568

contig MSAs and chimeric allele MSAs also shows that the number of sequences being569

analyzed does not affect our topology, species delimitation and divergence time estimates570

(Figs. 6 and 7).571

Based on these findings, we conclude that proper phasing of heterozygous positions572
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is clearly preferable to the alternative of coding heterozygous sites as IUPAC ambiguity573

codes, particularly when the estimation of divergence times is of interest. Further, allele574

sequences are theoretically more appropriate input for coalescent models and should be the575

preferred data type input to these models. The scalability of this approach to larger sample576

sizes and the applicability of our results to studies of older divergences are questions that577

should be investigated in future studies.578

UCEs as source for SNP data579

Due to the size (number of loci) of many sequence capture datasets, it is often unfeasible to580

analyze all MSAs jointly in one MSC analysis (Smith et al. 2014; Manthey et al. 2016)581

because of computational limitations. For all sequence-based MSC analyses in this study,582

we reduced the UCE dataset from 820 loci to 150 loci in order to reach convergence of the583

MCMC within a reasonable time frame (three to four days, single core on a Mac Pro, Late584

2013, 3.5 GHz 6-Core Intel Xeon E5 processor). However, a viable approach to data585

reduction, while keeping the multilocus information of all loci, is to analyze only a single586

polymorphic position per MSA using SNAPP (Bryant et al. 2012). In our study, this587

approach produces the correct species tree topology and also estimated the relative588

node-heights correctly (Fig. 6f). However, SNAPP can only estimate relative and not589

absolute values for divergence times (Bryant et al. 2012), in contrast to the sequence-based590

analyses Figs. 6a to 6d that deliver absolute divergence time estimates.591

Sequence capture datasets such as UCEs provide a suitable data source to extract592

both full sequence alignments and SNP datasets of sufficient size for robust species tree593

estimation. Even though sequence capture data are not commonly thought of as a source594

of SNPs, they can, in many cases, be preferable to other sequencing techniques, such as595

RAD sequencing, for producing SNP data. This is because sequence capture data yields a596

sizable, complete SNP matrix (SNPs recovered for all individuals), due to targeted597
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sequence enrichment. In this study, the complete matrix of unlinked SNPs in the empirical598

data consisted of 598 positions, which were present and sufficiently supported (>three599

high-quality reads per haplotype) in all taxa. Particularly when evolutionary distances600

between individuals are large, RAD sequencing and other restriction-site based sequencing601

techniques are not expected to yield many loci shared by all individuals, whereas UCE602

data are less sensitive to large evolutionary distances (Harvey et al. 2016). In these cases,603

the size of the complete SNP matrix resulting from UCE data can exceed that resulting604

from RAD sequencing. Additionally, UCE data provide hundreds to thousands of full605

sequence MSAs as well as the complete mitochondrial genome as a byproduct of the606

sequence enrichment. The mitochondrial genome provides an excellent marker for607

estimating absolute divergence times (Fig. 3), based on substitution rates of mitochondrial608

markers which are known for birds (Lerner et al. 2011), and thus remains a valuable source609

of phylogenetic information.610

In this study, we present and make available a new SNP calling pipeline for611

sequence capture data. In contrast to other SNP calling software such as GATK (McKenna612

et al. 2010) that uses BAM files, our approach uses full sequence MSAs as input (see Fig.613

2), in order to identify and extract sites in the alignments that show variation between any614

user-defined group of sequences. Although our SNP calling script can be applied to any615

type of sequence alignments (i.e. allele or contig sequence alignments), we recommend616

using SNPs extracted from phased allele alignments for phylogenetic analyses, because they617

represent the true heterozygous information. The user can choose whether or not to allow618

missing data or ambiguities in the extracted positions, whether to extract them in binary619

format (as e.g. required by SNAPP) or as nucleotides, and if only a single SNP per locus620

or all SNPs should be extracted. Thus our SNP calling mechanism is an easy, open-source621

and straightforward tool to derive SNP data from any set of multiple sequence alignments.622
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Phylogenetic relationships in Topaza623

One or two species?.— Our results show a separation of two lineages within the genus624

Topaza that is dated at ca. 2.4 Ma in the mitochondrial tree (Fig. 3). These lineages are625

consistent with the previously described morphospecies T. pyra (Gould, 1846) and T. pella626

(Linnaeus, 1758) that are generally accepted in the ornithological community (Hu et al.627

2000; del Hoyo et al. 2016a). However, the species status of T. pyra has been challenged by628

some authors (Ornés-Schmitz and Schuchmann 2011; Schuchmann 1999). These authors629

concluded that Topaza is a monotypic genus with T. pyra being a subspecies of T. pella,630

which they refer to as T. pella pyra. Their findings are based on the analyses of plumage631

coloration, in which they found an “east-west clinal trend of characters” (Ornés-Schmitz632

and Schuchmann 2011). In contrast, we do not find such an east-west clinal trend in the633

genetic data. Instead, T. pyra is consistently supported as a separate lineage across all634

analyses, lending no support for the conspecificity of these two taxa (Figs. 3 and 5).635

One aim of this study was to evaluate the genetic structure within these two636

morphospecies, T. pyra and T. pella. The mitochondrial tree shows two divergent clades637

within T. pyra (Fig. 3), but these clades are not strongly supported by the UCE data (Fig.638

5), even though the allele sequence data are picking up a signal that possibly indicates two639

clades are in the process of diversifying (Fig. 5b). For T. pella, on the other hand, we640

consistently find the same clades throughout all multilocus MSC analyses (Fig. 5), leading641

us to distinguish between the following populations that are congruent with previous642

morphological subspecies descriptions:643

Northern T. pella population: T. pella pella.— For the mitochondrial tree and all MSC644

species trees, we find the northern T. pella samples 5 and 6 to be sister taxa with high645

support values (98-100% PP, Figs. 3 and 5). Particularly in the mitochondrial tree (Fig.646

3), these two samples appear as close sister taxa, separated by only very short terminal647
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branches. Their close position in the mitochondrial tree shows that, even though648

geographically far apart, samples 5 and 6 share a relatively recent MRCA in the649

mitochondrial genealogy, indicating some rather recent gene flow. The sampling locality of650

sample 5 is within the range of the subspecies T. pella pella, which extends mainly across651

the Guiana shield (Peters 1945; Schuchmann 1999; Hu et al. 2000; Ornés-Schmitz and652

Schuchmann 2011). Given the sampling location of genetically related sample 6, which also653

has been morphologically identified as T. pella pella (Table 1), we propose that the654

distribution range of T. pella pella extends from the Guiana shield all the way south to the655

northern Amazon River bank (see map in Fig. 3).656

Southern T. pella population: T. pella microrhyncha.— In the same manner as for the657

northern population T. pella pella, we also consistently find the southern T. pella samples658

8 and 9 to be sister taxa (99-100% PP, Figs. 3 and 5). The sampling locations of these two659

samples are included in the distribution range of the previously recognized subspecies T.660

pella microrhyncha, extending from the southern bank of the Amazon River as far South as661

Porto Velho (Brazil) at the Madeira River, close to the border to Bolivia (Peters 1945;662

Schuchmann 1999; Ornés-Schmitz and Schuchmann 2011). This southernmost boundary of663

T. pella microrhyncha is not accepted by Hu et al. (2000), who instead conclude that this664

southernmost population belongs to T. pella pella. In contrast to the findings by Hu et al.,665

our genetic data clearly support the southernmost sample 9 belonging to the same666

population as sample 8, which was morphologically identified as T. pella microrhyncha.667

This leads us to propose that the distribution range of T. pella microrhyncha is in fact as668

shown in Fig. 3, in agreement with the findings by Peters (1945),Schuchmann (1999), and669

Ornés-Schmitz and Schuchmann (2011).670

Estuary region of Amazon River: T. pella smaragdula.— Our results show a mixed signal671

concerning the phylogenetic placement of sample 7, which was collected from the southern672
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estuary region of the Amazon River and morphologically identified as T. pella smaragdula.673

The sampling locality also falls into the range of the subspecies T. pella smaragdula (Peters674

1945; Hu et al. 2000; Ornés-Schmitz and Schuchmann 2011), with a distribution including675

the Amazon River estuary and extending north along the coast to French Guiana. All676

MSC analyses of the UCE sequence and SNP data place sample 7 with high confidence677

(97-100% PP) as sister to the southern clade T. pella microrhyncha (Fig. 5), whereas in678

the mitochondrial phylogeny this sample is placed as sister to T. pella pella in the North.679

The discordance between a gene tree and the species tree in a scenario such as this680

could be the effect of incomplete lineage sorting, which is most likely if the species or clades681

in question have diverged rather recently and if population sizes are large. Given that the682

divergence between T. pella pella and T. pella microrhyncha appears to be considerably683

deep based on the multilocus data (crown height of T. pella) see Fig. 5) and given that684

mitochondria are generally considered to have only 25% of the population size of nuclear685

loci, it is rather unlikely that the position of sample 7 in the mitochondrial tree is the result686

of incomplete lineage sorting in this case. It seems more likely that the separate position of687

sample 7 in the mitochondrial tree is the result of introgression of the mitochondrial688

genome from T. pella pella into the gene pool of T. pella smaragdula. However, a denser689

taxon sampling would be necessary to further evaluate the evolutionary history of this690

particular population. The case of sample 7 highlights that the mitochondrial tree presents691

a single gene tree phylogeny that only shows one of many genealogies and therefore must692

not be equated with a species tree phylogeny. Hence it is important to generate multilocus693

data for an informed inference of the species tree phylogeny.694

Summarizing biogeographic remarks.— The presence of genetically similar individuals695

sampled at great geographic distances (e.g. samples 5 and 6) suggests that Topaza696

hummingbirds maintain high levels of gene flow across vast distances of rainforest habitat.697
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At the same time, we find indicators of phylogenetic structure within species,698

distinguishing samples that are separated by only a small geographic distance (see e.g.699

samples 6 and 8). These samples are however separated by the Amazon River, which has700

been found to constitute a dispersal barrier for various species of birds and many other701

animals (Remsen and Parker 1983; Clair 2003; Hayes and Sewlal 2004; Moore et al. 2008;702

Fernandes et al. 2012; Ribas et al. 2012; Thom and Aleixo 2015). Even though some703

hummingbird species are known to disperse across large distances (Wyman et al. 2004;704

Russell et al. 1994), the Amazon River and its associated habitats (such as seasonally705

flooded forests) may be part of a complex network of factors that inhibit gene flow among706

populations of Topaza hummingbirds.707

Conclusions708

In this study, we demonstrate that properly phasing allele sequences produces the most709

suitable dataset for phylogenetic analyses, particularly when these allele sequences are710

treated as independent sequences under the MSC. Contig sequences, on the other hand,711

which are commonly used for phylogenetic inference, lead to biases in the estimation of712

divergence times and may cause problems for certain types of phylogenetic analyses.713

Additionally, phased allele sequences provide a useful template for the extraction of SNPs,714

and we argue that sequence capture data can provide sizable SNP datasets that can be also715

used for phylogenetic analyses. Our empirical results suggest the separation of two species716

within the genus Topaza, and we further find genetic structure within both of these species,717

justifying the definition of separate subspecies. Based on our empirical and simulated718

results, we conclude that allele phasing should be considered as one “best practice” for719

processing sequence capture data, although the sample-size, time, and analytical720

limitations of this approach have not been well-established.721
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Supplementary Material722

Supplemental Figs. S1-S11, Supplemental Tables S1 and S2, online Appendices 1 and 2723

and all scripts, data and setup-files relevant to analyses and figures in the manuscript are724

available from the Dryad Digital Repository:725

Availability726

We integrated all scripts and documentation necessary for phasing and SNP extraction as727

open-source into the PHYLUCE pipeline728

(http://https://github.com/faircloth-lab/phyluce/blob/working/bin/snps/). All729

data processing and analyses steps executed on the data are stored in bash-scripts on our730

project GitHub page at https://github.com/tobiashofmann88/topaza_uce. We further731

provide a documented workflow of processing the raw reads into UCE contig alignments at732

https://github.com/tobiashofmann88/UCE-data-management/wiki.733
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