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Translation	errors	 limit	 the	accuracy	of	 information	 transmission	 from	DNA	 to	proteins.	
Selective	pressures	shape	the	way	cells	produce	their	proteins:	the	translation	machinery	
and	 the	mRNA	sequences	 it	 decodes	 co-evolved	 to	 ensure	 that	 translation	proceeds	 fast	
and	 accurately	 in	 a	 wide	 range	 of	 environmental	 conditions.	 Our	 understanding	 of	 the	
causes	 of	 amino	 acid	 misincorporations	 and	 of	 their	 effect	 on	 the	 evolution	 of	 protein	
sequences	is	largely	hindered	by	the	lack	of	experimental	methods	to	observe	errors	at	the	
full	proteome	level.	Here,	we	systematically	detect	and	quantify	errors	in	entire	proteomes	
from	mass	spectrometry	data.	Following	HPLC	MS-MS	data	acquisition,	we	identify	E.	coli	
and	S.	cerevisiae	peptides	whose	mass	and	fragment	ion	spectrum	are	consistent	with	that	
of	a	peptide	bearing	a	single	amino	acid	substitution,	and	verify	that	such	spectrum	cannot	
result	from	a	post-translational	modification.	Our	analyses	confirm	that	most	substitutions	
occur	due	to	codon-to-anticodon	mispairing	within	the	ribosome.	Patterns	of	errors	due	to	
mispairing	 were	 similar	 in	 bacteria	 and	 yeast,	 suggesting	 that	 the	 error	 spectrum	 is	
chemically	 constrained.	 Treating	 E.	 coli	 cells	 with	 a	 drug	 known	 to	 affect	 ribosomal	
proofreading	 increased	 the	 error	 rates	 due	 to	mispairing	 at	 the	wobble	 codon	 position.	
Starving	 bacteria	 for	 serine	 resulted	 in	 specific	 patterns	 of	 substitutions	 reflecting	 the	
amino	acid	deficiency.	Overall,	 translation	errors	 tend	 to	occur	at	positions	 that	are	 less	
evolutionarily	 conserved,	and	 that	minimally	affect	protein	energetic	 stability,	 indicating	
that	 they	 are	 selected	 against.	 Genome	wide	 ribosome	 density	 data	 suggest	 that	 errors	
occur	at	sites	where	ribosome	velocity	is	relatively	high,	supporting	the	notion	of	a	trade-
off	 between	 speed	 and	 accuracy	 as	 predicted	 by	 proofreading	 theories.	 Together	 our	
results	reveal	a	mechanistic	basis	for	ribosome	errors	in	translation. 	
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Introduction	
Genetic	 information	 propagation	 along	 the	 central	 dogma	 is	 subject	 to	 errors	 in	

DNA	 replication,	 RNA	 transcription	 and	 protein	 translation.	 DNA	 replication	 typically	
manifests	 the	highest	 fidelity	among	 these	processes,	 featuring	genetic	mutation	 rate	on	
the	order	of	10-9	-	10-10	per	nucleotide	per	genome	doubling1,2.	“Phenotypic	mutations”,	i.e.	
errors	in	RNA	transcription	and	protein	translation,	in	which	the	wrong	RNA	nucleotide	or	
amino	acid	are	respectively	incorporated,	occur	at	considerably	higher	rate.	Bacterial	RNA	
polymerases	 misincorporate	 nucleotides	 every	 104	 to	 105	 positions	 in	 vivo3.	 In	 E.	 coli,	
amino	acid	substitutions	rates	were	precisely	measured	at	defined	sites	using	a	luciferase	
reporter	construct4,	to	typically	reside	within	the	10-4	–	10-3	per	position	range.	

Since	the	translation	machinery	relies	on	tRNAs	to	match	amino	acids	with	codons,	
errors	 can	 result	 either	 from	 the	 charging	 of	 a	 tRNA	 with	 a	 non	 cognate	 amino	 acid	
(synthetase	error,	or	“mischarging”),	or	from	the	ribosome	failing	to	discriminate	against	
imperfect	codon-anticodon	complexes	in	its	A-site	(ribosome	error,	or	“mispairing”).	The	
accuracy	 of	 both	 processes	 is	 amplified	 by	 kinetic	 proofreading5,6,	 a	 general	mechanism	
during	which	the	addition	of	an	irreversible,	energy	consuming	step	to	a	reaction	permits	
the	 system	 to	 reach	 discrimination	 levels	 that	 are	 inaccessible	 at	 thermodynamic	
equilibrium.	 Theoretical	 models	 demonstrated	 that	 processes	 relying	 on	 kinetic	
proofreading	 to	 increase	 their	 accuracy	were	 necessarily	 subject	 to	 a	 trade-off	 between	
incorporation	speed,	accuracy	and	energetic	cost7–9.		

The	amount	of	resources	that	cells	invest	to	ensure	that	proteins	function	properly	
indicates	that	errors	during	protein	synthesis	can	strongly	affect	fitness.	Indeed,	proteins	
that	 contain	 amino	 acid	 substitutions	 tend	 to	 misfold	 and	 aggregate,	 promote	 spurious	
protein-protein	interactions,	and	saturate	the	protein	quality	control	machinery,	resulting	
in	proteotoxic	stress10,	and	potentially	 in	diseases11.	Conversely,	some	errors	might	even	
prove	 to	 be	 advantageous:	moderate	 levels	 of	methionine	misacylation	 on	 various	 non-
methionine-tRNAs	 were	 shown	 to	 provide	 a	 fitness	 advantage	 in	 response	 to	 oxidative	
stress	from	bacteria	to	humans12–14.	As	example,	high	error	levels	across	instances	of	rare	
codon	allow	a	parasitic	yeast	to	increase	its	adherence	and	its	ability	to	evade	the	immune	
response15.	It	this	case,	mistranslation	is	beneficial	in	response	to	environmental	stresses	
as	it	can	help	sustain	and	disseminate	cellular	phenotypic	viability,	e.g.	as	it	may	enhance	
pathogens	survival	by	creating	antigenic	diversity	in	surface	proteins15	On	an	evolutionary	
time	scales	too,	phenotypic	errors	might	open	evolutionary	paths	otherwise	precluded	by	
epistatic	 interactions16,	 and	 facilitate	 the	 purging	 of	 deleterious	 mutations17.	 A	
computational	 analysis	 of	 codon	 usage	 patterns	 across	 genomes	 revealed	 that	 natural	
selection	 constrains	 the	 identity	 of	 codons	 at	 evolutionarily	 conserved	 positions,	
suggesting	that	evolution	favors	more	accurate	codons	at	these	sites18.		
	

Whereas	 the	 rates	 of	 DNA	 mutation	 and	 RNA	 polymerase	 errors	 are	 now	
quantifiable	 across	 the	 genome	 and	 the	 transcriptome	 thanks	 to	 next-generation	
sequencing,	 errors	 in	 protein	 translation	 have	 remained	 elusive.	 An	 early	 effort	 by	
Edelmann	and	Gallant19,	who	quantitatively	tracked	the	insertion	of	radioactively	labeled	
cysteine	 in	 E.	 coli’s	 flagellin,	 a	 cysteine	 free	 protein,	 revealed	 a	 first	 global	 estimate	 of	
mistranslation,	with	misincorporations	happening	on	average	every	10,000	amino	acids.	
Since	then,	the	use	of	luminescent	reporter	constructs	allowed	the	quantitative	tracking	of	
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specific	 types	 of	 mistranslation,	 at	 defined	 positions	 within	 these	 probes4,20.	 These	
methods	 have	 highlighted	 the	 importance	 of	 codon-anticodon	 recognition	 and	 tRNA	
competition	as	determinants	of	these	error	rates,	and	were	used	to	characterize	the	effects	
of	aminoglycoside	antibiotics	and	ribosome	ambiguity	mutations	(ram)4,20.	

However,	major	questions	still	remain	open.	While	error	rates	could	be	quantified	
at	 specific	 sites,	 the	 overall	 error	 spectrum	 across	 the	 proteome	 has	 not	 yet	 been	
characterized.	 Such	 measurements	 would	 shed	 light	 on	 the	 relative	 contribution	 of	
aminoacyl	 tRNA	 Synthetase	 (aaRS)	 and	 ribosomes	 to	 translation	 errors.	 Furthermore,	
detecting	 and	 quantifying	 amino	 acid	 substitutions	 across	 the	 proteome	 may	 reveal	
evolutionary	 constraints	 imposed	 by	 translation	 infidelity	 and	 allow	 us	 to	 ask	 how	
organisms	 locally	modulate	their	error	 levels,	and	the	strategies	they	employ	to	mitigate	
their	deleterious	effects.	
	

Mass	 Spectrometry	 (MS)-based	 proteomics,	 enables	 routine,	 high	 throughput	
characterization	 of	 canonical	 proteomes	 and	 common	 post	 translational	 modifications	
(PTMs),	and	was	described	as	an	upcoming	tool	for	the	study	of	protein	mistranslation	for	
almost	 a	 decade10.	 Recently,	 proteomics	 was	 harnessed	 to	 detect	 various	 substitutions	
from	several	purified	recombinant	proteins	21	and	to	track	the	incorporation	of	norvaline	
at	 leucine	 positions	 across	 the	 proteome	 of	 E.	 coli	 mutants22.	 Yet,	 MS	 has	 yet	 to	 be	
harnessed	for	the	systematic	study	of	amino	acid	substitutions	on	a	proteome	wide	scale.	
Such	 study	 was	 hitherto	 hindered	 by	 the	 low	 abundance	 of	 substitutions	 compared	 to	
other	 natural	 and	 post-translational	 protein	 modifications,	 and	 a	 much	 larger	 search	
space.		

To	identify	these	rare	translation	errors,	we	performed	a	deep	proteomic	analysis	
of	E.	coli	cells,	and	assessed	the	effects	of	an	aminoglycoside	antibiotic	(paromomycin)	on	
the	bacteria’s	translation	error	rates	and	spectrum.	In	addition,	we	also	tested	the	effect	of	
serine	 starvation	 on	 the	 mistranslation	 rate	 of	 its	 cognate	 codons.	 We	 carried	 out	 our	
analysis	with	MaxQuant23,	 repurposing	 its	dependent	peptide	algorithm	to	 identify	mass	
shifts	 consistent	 with	 amino	 acid	 substitutions,	 and	 stringently	 filtering	 out	 potential	
methodology	artifacts.	We	then	validated	these	identifications	using	a	set	of	independent	
analyses	that	include	a	shift	in	HPLC	retention	time	due	to	change	in	hydrophobicity	of	the	
encoded	 amino	 acid.	 Performing	 these	 experiments	 and	 analyses	 on	 E.	 coli	 in	 several	
growth	conditions	and	analyzing	similar	data	in	S.	cerevisiae24,	we	could	detect	over	3,500	
independent	substitution	events.	

This	dataset,	unprecedented	in	its	type	and	extent,	allowed	us	to	begin	to	unravel	
the	 mechanistic	 basis	 of	 translation	 errors.	 We	 found	 that	 most	 errors	 result	 from	
mispairing	 between	 codons	 and	 near-cognate	 tRNAs,	 mostly	 within	 the	 A	 site	 of	 the	
ribosome.	We	 could	 derive	 the	 amino	 acid	 error	 spectrum	 of	 each	 codon	 in	 the	 genetic	
code,	 and	 deduce	 patterns	 of	mispairing	 between	 codons	 and	 anticodons	 at	 each	 of	 the	
three	codon	positions.	We	could	also	measure	the	effect	of	the	aminoglycoside	on	the	error	
pattern	 and	 revealed	 that	 it	 mainly	 causes	 errors	 due	 to	mispairing	 at	 the	 third	 codon	
position.	We	found	that	error	spectra	in	yeast	and	bacteria	are	similar,	probably	reflecting	
shared	chemical	constraints.	We	found	that	errors	are	allowed	to	occur	more	frequently	at	
evolutionarily	 rapidly	 evolving	 sites,	 at	 protein	 structure	 sites	 in	 which	 mutations	 are	
more	 tolerated	 energetically,	 and	 in	 positions	 in	 which	 the	 ribosome	 progresses	 more	
rapidly.	 	Our	results	demonstrate	that	natural	selection	has	tuned	translation	error	rates	
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at	specific	protein	positions,	acting	upon	the	nucleotide	sequence	of	proteins	to	reduce	the	
cost	burden	of	translation	errors	when	most	detrimental.	

Results	

A	pipeline	 to	confidently	 identify	amino	acid	 substitutions	 in	a	
proteome	

Mass	 spectrometry	 enables	 the	 fast,	 large-scale	 identification	 of	 peptides	 within	
complex	 samples.	 From	 a	 computational	 point	 of	 view,	 amino	 acid	 substitutions	 can	 be	
regarded	 as	 a	particular	 case	of	 post-translational	modifications	 (PTMs),	many	of	which	
are	now	routinely	studied	at	 the	proteome	level.	However,	 the	standard	database	search	
algorithm	is	not	adapted	to	the	large	scale	detection	of	substitutions:	assuming	peptides	of	
average	length	of	10	amino	acids,	there	would	be	on	the	order	of	200	times	more	singly-
modified	than	canonical	peptides	to	search	for,	 leading	to	impractical	search	times	and	a	
considerable	loss	of	statistical	power.	

Blind	modification	searches25–27	offer	a	way	to	identify	modified	peptides	without	
requiring	the	user	to	input	a	list	of	predefined	modifications.	They	rely	on	the	observation	
that	modified	peptides	are	usually	less	abundant	than	their	unmodified	counterparts,	and	
are	therefore	only	likely	to	be	present	in	the	sample	if	the	unmodified	peptide	has	already	
been	 detected.	 We	 thus	 adapted	 MaxQuant23,	 developed	 previously	 for	 the	 analysis	 of	
post-translational	 modifications	 in	 order	 to	 identify	 mistranslated	 peptides	 using	 its	
“dependent	 peptide	 search”	 algorithm;	 see	 outline	 of	 our	 pipeline	 in	 Figure	 1A.	
“Dependent	Peptides”	are	defined	as	peptides	that	show	mass	shifts	in	comparison	to	the	
unmodified,	genome-encoded	“Base	Peptides”	(Fig.	1B).	We	then	applied	a	series	of	filters	
to	the	list	of	dependent	peptides,	in	order	to	stringently	remove	known	PTMs	and	known	
artifacts	 and	 conservatively	 retain	 only	 amino	 acid	 substitutions.	 For	 a	 detailed	
description	of	the	pipeline,	see	Methods.		

The	 detection	 of	 translation	 errors,	 rare	 events	 by	 definition,	 required	 specific	
experimental	settings.	Mass	spectrometers	sample	in	priority	the	most	abundant	peptides	
for	MS2	 fragmentation.	 Since	we	 expect	 translation	 errors	 to	 be	 present	 at	much	 lower	
level	than	error-free	peptides,	we	fractionated	our	samples	to	reduce	their	complexity	and	
increase	 the	chances	of	 sampling	 low	abundance	peptides.	We	separated	proteins	 into	a	
high	solubility	and	a	low	solubility	fraction28,	which	we	further	fractionated	using	strong	
cation	exchange	(SCX)	chromatography.	

We	generated	two	deep-coverage,	high-resolution	maps	of	the	E.	coli	proteome.	In	
our	first	dataset,	we	measured	the	effects	of	paromomycin	at	sub-lethal	concentration	on	
the	ribosome's	accuracy,	 in	 rich	conditions	 (LB,	37°C),	and	compared	 it	 to	a	non-treated	
sample.	In	the	second	dataset,	we	starved	a	serine	auxotroph	for	serine	(MOPS,	37°C)	and	
compared	 its	 substitution	 pattern	 to	 the	 parental	 unstarved	 wild	 type.	 In	 total	 we	
generated	 error	maps	of	 nine	 samples,	 each	 in	 two	 replicates	 (see	Methods).	Altogether	
we	detected	3,596	 independent	amino	acid	substitutions	(each	defined	here	by	a	unique	
position	within	a	specific	protein	and	a	unique	amino	acid	substitution	destination))	in	the	
E.	coli	proteome.	In	addition	to	the	sixteen	samples	from	the	bacterium	we	also	analyzed	
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an	 existing	 proteome	dataset24	 from	 the	 yeast	S.	 cerevisiae	at	 a	 single	 type,	 non-treated,	
condition	that	yielded	225	independent	substitutions.	

	

 
Figure 1: a computational pipeline to confidently identify amino acid substitutions from Mass 
Spectrometry data. A: Overview of the pipeline. For a detailed description of the different 
steps, see Material & Methods. B: MaxQuant Dependent Peptide search performs exhaustive 
pairing of unidentified spectra to a spectral library derived from the identified spectra. For each 
pair of (identified, unidentified) spectra of the same charge z, and found in the same fraction, 
the algorithm first computes the mass difference Δm = munidentified - midentified. It simulates in silico, 
and sequentially, the addition of a single moiety of mass Δm at any position in the identified 
peptide, and generates the corresponding theoretical spectrum for the modified peptide. These 
spectra are then compared to the experimental spectrum using MaxQuant Andromeda’s score 
formula. The pair with the highest score is retained, and the significance of the match is 
assessed using a target-decoy FDR procedure. C: The observed retention time shift induced 
by our set of substitutions is accurately predicted by a simple sequence-based retention time 
model. 

 

Most	 of	 the	 high	 quality	 hits	 are	 bona	 fide	 amino	 acid	
substitutions.	

First,	 we	 grew	 wild	 type	 E.	 coli	 cells	 (MG1655)	 in	 defined	 medium	 (MOPS	
complete,	 37°C)	 in	 biological	 duplicates,	 harvested	 cells	 at	 three	 time	 points,	 roughly	
corresponding	 to	 early	 exponential	 phase,	 late	 exponential	 phase,	 and	 stationary	 phase,	
and	used	our	pipeline	to	detect	amino	acid	substitutions.	Given	mass	differences	detected	
between	base	and	dependent	peptides	we	must	 first	 establish	 that	 they	 represent	bona-
fide	amino	acid	substitutions,	and	not	methodological	artifacts.	We	took	advantage	of	the	
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fact	that	many	amino	acid	substitutions	result	in	a	change	of	peptide	hydrophobicity	and	
they	 should	 hence	 result	 in	 retention	 time	 shifts	 during	 liquid	 chromatography.	 The	
retention	time	of	a	peptide	can	be	predicted	with	high	accuracy	(R2	>	0.9)	as	the	sum	of	the	
hydrophobicity	coefficients	of	 its	amino	acids29.	Therefore,	 the	predicted	HPLC	retention	
time	 of	 the	 substituted	 amino	 acid	 can	 be	 computed	 and	 compared	 to	 the	 observed	
retention	 time	 recorded	 for	 the	 substituted	 peptide.	 We	 trained	 a	 retention	 time	
prediction	 tool30	 on	 a	 list	 of	 confidently	 identified	 unmodified	 peptides,	 and	 used	 it	 to	
generate	 an	 expectation	 of	 the	 retention	 time	 shift	 induced	 by	 the	 substitutions.	 We	
compared	 this	 expectation	 to	 the	 observed	 retention	 time	 shift	 for	 each	 of	 the	 detected	
substitutions	 (Fig.	 1C).	We	 observed	 a	 good	 agreement	 between	 the	 observed	 retention	
time	shifts	and	our	model,	 supporting	 the	notion	 that	most	of	 the	substitutions	detected	
are	genuine	amino	acid	replacements.		

Note	 that,	 since	 MS2	 spectra	 are	 systematically	 recorded	 for	 highly	 abundant	
parent	 ions,	 our	 sampling	 strategy	 is	 biased	 towards	 the	 detection	 of	 substitutions	
originating	from	highly	expressed	proteins.		

	
We	define	a	substitution	as	a	combination	of	a	position	 in	a	protein,	characterized	by	an	
“origin”	 amino	 acid	 (and	 its	 associated	 codon),	 and	 a	 “destination”	 amino	 acid.	We	 then	
divide	 all	 substitutions	 in	 two	 sets:	 a	 substitution	 is	 classified	 as	 a	 Near	 Cognate	 Error	
(NeCE)	if	the	error-bearing	codon	of	the	origin	amino	acid	matches	two	out	of	three	bases	
of	 one	of	 the	 codons	of	 the	destination	 amino	 acid,	 and	 as	Non	Cognate	Error	 (NoCE)	 if	
more	mismatches	would	be	required.	For	example,	a	substitution	from	Serine	encoded	by	
AGC	into	an	Asparagine	is	considered	NeCE	since	of	the	codons	encoding	this	amino	acid	
destination	 AAC,	 represents	 a	 single	 mismatch	 (at	 the	 2nd	 position);	 in	 contrast	
substitution	of	a	Cysteine	encoded	by	a	UGU	into	an	Alanine	must	be	a	NoCE	since	none	of	
the	Alanine	 codons	 (GCN)	matches	with	 a	 single	mismatch.	 The	 structure	 of	 the	 genetic	
code	 dictates	 that	 only	 a	 minority	 of	 the	 substitutions	 would	 be	 classified	 as	 NeCE.	 In	
particular,	of	all	detectable	codon	to	amino	acid	substitution	types	30%	are	expected	to	be	
of	 the	 NeCE	 type.	 In	 stark	 contrast,	 88%	 of	 the	 unique	 substitutions	 detected	 by	 our	
method	 with	 the	 full	 E.	 coli	 dataset	 are	 classified	 as	 NeCE.	 Thus,	 the	 great	 majority	 of	
observed	substitutions	in	our	data	can	be	rationalized	by	a	similarity	between	the	origin’s	
codon	and	a	codon	of	the	destination	amino	acid.	Such	enrichment	for	NeCE	serves	as	an	
indication	that	we	inspect	genuine	amino	acid	substitutions.	
	 The	ribosome	uses	small	differences	in	free	energy	between	correct	and	incorrect	
codon-anticodon	 matches	 to	 select	 tRNAs,	 and	 was	 shown	 to	 generate	 NeCE	 at	 much	
higher	rates	 than	NoCE4.	During	 loading	of	an	amino	acid	by	an	aaRS,	an	error	can	stem	
from	the	choice	of	an	incorrect	tRNA	or	the	loading	of	an	incorrect	amino	acid.	Since	the	
majority	 of	 synthetases	 assess	 the	 identity	 of	 the	 tRNA	 by	 probing	 the	 bases	 of	 the	
anticodon,	this	first	mechanism	of	error	is	also	likely	to	generate	mostly	NeCE.	However,	if	
the	 error	 results	 from	 the	 loading	 of	 the	wrong	 amino	 acid,	 there	 should	 be	 a	 priori	 no	
preference	 for	 NeCE	 over	 NoCE.	We	 will	 consider	 NoCE	 as	 more	 likely	 to	 stem	 from	 a	
synthetase	 error,	 and	 examine	 the	 notion	 that	 the	 majority	 of	 NeCE	 indeed	 represent	
mRNA-tRNA	mispairing	events.	
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Overview	of	E.	coli’s	amino	acid	substitution	landscape	
We	generated	64*20	 codon	 to	 amino	acid	matrices	 that	depict	 the	prevalence	of	

each	type	of	amino	acid	error	in	a	dataset.	Note	that	these	matrices	do	not	represent	real	
relative	 probabilities	 of	 errors	 as	 they	 are	 affected	 by	 biases	 such	 as	 codon	 usage.	 The	
numbers	 of	 unique	 peptides	 supporting	 any	 codon	 to	 amino	 acid	 substitution	 type	 is	
presented	in	Fig.	2A;	the	intensity	of	the	shade	is	proportional	to	the	logarithm	(base	2)	of	
the	number	of	unique	genome	positions	in	which	a	given	substitution	type	was	observed.	
Because	 leucine	 and	 isoleucine	 are	 isomers	 and	 thus	 share	 the	 exact	 same	 mass,	 our	
method	is	not	able	to	distinguish	the	two	amino	acids	as	destinations	of	a	substitution,	and	
we	 treat	 them	 as	 a	 single	 destination	 amino	 acid.	 Furthermore,	 substitution	 types	 that	
transform	a	codon	into	its	cognate	amino	acid,	involve	a	stop	codon,	or	substitutions	that	
cannot	 be	 detected	 using	 our	 method	 because	 they	 represent	 a	 mass	 shift	 that	
corresponds	precisely	 to	 the	mass	 shift	 and	specificity	of	 at	 least	one	known	PTM,	were	
grayed	out,	and	discarded	from	subsequent	analyses	(see	Methods).		
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Figure 2: overview of the substitution profile of E. coli in MOPS complete medium. A: Matrix of 
identified substitutions. Each entry in the matrix represents the number of independent 
substitutions detected for the corresponding (original codon, destination amino acid) pair, in 
the MOPS-complete dataset. The logarithmic color bar highlights the dynamic range of 
detection. Grey squares indicate substitutions from a codon to its cognate amino acid, 
substitutions from stop codons, and substitutions undetectable via our method because they 
are indistinguishable from one of the PTMs or artifacts in the unimod.org database. 
Substitutions to Leu and Ile are a priori undistinguishable, and thus grouped together. B: Left 
panel: For each of the top 10 most frequently detected substitution types, we fetched the 
quantification profile of the dependent peptide and the base peptide. Each dot represents the 
ratio of intensities IDP/IBP for each of the samples, when both peaks have been detected and 
quantified. The black line indicates the medians of the distributions. Right panel: we inferred 
the most likely mismatch for each of the substitution types, using a procedure described in the 
Material and Methods. This allows us to guess that the V -> I/L substitutions are likely 
substitutions from Val to Ile, enabled by a G:U mismatch at the 1st position. 

	
	

The	matrix	 is	highly	structured,	and	some	substitutions	appear	 to	be	much	more	
prevalent	than	others.	 In	particular,	we	observe	that	the	codon	used	to	encode	an	amino	
acid	position	determines	the	most	likely	errors	patterns	at	the	corresponding	site.	This	is	
nicely	illustrated	with	substitutions	from	Gly	to	Asp	and	Glu.	When	Gly	is	encoded	by	the	
GGC	 codon,	 the	 frequent	 substitution	 destination	 is	 the	 near-cognate	 Asp	 (that	 can	 be	
encoded	by	 the	 near	 cognate	 codon	GAC),	while	 encoding	Gly	with	GGA	often	 results	 in	
substitution	of	Gly	by	Glu	(presumably	due	to	its	near	cognate	codon	GAA).	Similar	cases	

G U 1

G U 2

G U 1

G U 1

G U 2

U G 2

U G 2

U G 2

U G 2

G U 1

most likely mismatch : mRNA bas
e

tRNA bas
e

pos
itio

n

0 240637A B
number of independent 
substitutions detected

F
L

S

Y

C

W

L

P

H
Q

R

I

M

T

N
K
S
R

V

A

D
E

G

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 29, 2018. ; https://doi.org/10.1101/255943doi: bioRxiv preprint 

https://doi.org/10.1101/255943
http://creativecommons.org/licenses/by-nc/4.0/


 9 

in	 which	 different	 codons	 for	 the	 same	 amino	 acid	 tend	 to	 show	 different	 amino	 acid	
substitution	patterns	can	be	found	in	the	matrix		(Fig.	2A).	

We	 calculated	 the	 observed	 error	 rate	 (i.e.	 the	 ratio	 of	 intensity	 between	 the	
dependent	 and	 base	 peptide)	 for	 abundantly	 detected	 substitutions.	 As	 an	 example,	 the	
SerAGCàAsn	substitution	was	detected	among	a	total	of	81	different	peptides	across	the	E.	
coli	 proteome	 of	 the	 non-treated	 samples.	 Figure	 2B	 summarizes	 the	 error	 rate	
estimations	 in	 each	 of	 these	 substitutions	 –	 each	 dots	 in	 the	 plot	 corresponds	 to	 one	
specific	SerAGCàAsn		substitution	on	a	particular	genomic	position,	and	the	error	rate	is	
on	 the	 y-axis.	 Likewise	 the	 10	 most	 frequent	 substitutions	 types	 in	 the	 proteome	 are	
shown.	The	majority	of	the	substitutions	that	are	observable	in	our	dataset	span	the	error	
rate	range	around	10-3,	with	the	most	highly	abundant	substitutions	types	showing	slightly	
higher	error	rates.	Due	 to	 the	MS	acquisition	strategy,	positions	 that	 feature	a	 low	error	
rate	 are	 less	 likely	 to	 be	 detected,	which	 could	 lead	 to	 an	 over-estimation	 of	 the	 actual	
error	 rates.	 We	 note	 that	 for	 most	 substitution	 types,	 error	 rates	 seem	 to	 consistently	
decline	 as	 cells	 progress	 from	 exponential	 to	 stationary	 phase	 –	 out	 of	 the	 10	 most	
prevalent	 substitution	 types,	 only	 two	 follow	 the	 opposite	 trend,	 and	 both	 involve	 the	
common	glycine	GGC	codon,	perhaps	reflecting	an	intracellular	shortage	of	glycine	

A	global	nucleotide	mispairing	pattern	for	translation	errors	
We	further	classified	NeCE	based	on	the	type	of	codon-anticodon	mismatch	within	

the	 codon	 and	 the	nucleotide	 types	 they	 involved,	 characterized	by	 a	 position	 along	 the	
codon,	a	codon	nucleotide	and	an	anticodon	nucleotide.	We	define	the	count	density	for	a	
given	mismatch	type	as	the	number	of	independent	substitutions	that	can	be	explained	by	
that	 type	 of	 mismatch,	 divided	 by	 the	 number	 of	 classes	 of	 substitutions	 that	 can	 be	
explained	by	the	same	mismatch.	These	count	densities	are	presented	under	the	 form	of	
three	 4*4	 “nucleotide	 mismatch	 matrices”	 (fig	 3A),	 which	 reflect,	 for	 each	 of	 the	 three	
codon	positions,	the	relative	prevalence	of	the	various	mismatch	types.	Substitutions	that	
could	not	be	unambiguously	 traced	back	to	a	single	mismatch	type	were	assigned	to	 the	
most	 likely	 mismatch	 using	 a	 greedy	 algorithm	 (see	 Material	 and	 Methods).	 The	 most	
frequently	observed	substitution	types	involve	mismatches	between	uracil	and	guanine	in	
the	first	or	the	second	position	of	the	codon.	 Interestingly,	 this	rule	holds	mainly	for	G:U	
mismatches,	 where	 the	 codon	 base	 is	 G	 and	 the	 anticodon	 base	 in	 U;	 the	
overrepresentation	of	this	mismatch	type	compared	to	the	symmetrical	U:G	type	could	not	
be	 explained	 by	 the	 numerous	 modifications	 affecting	 the	 anticodon	 of	 tRNAs,	 as	 they	
seldom	affect	the	anticodons’	2nd	and	3rd	base	(involved	in	the	1st	and	2nd	codon	position	
mismatches)31		
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Figure 3: Comparing the error profiles for E. coli and S. cerevisiae reveals a shared signature of 
errors. A: the substitutions identifications matrices of S. cerevisiae (green channel, left) and E. 
coli (red channel, right) are compared and overlaid (middle). The intensity of the color is 
proportional to the logarithm of the number of independent identification, with one pseudo-
count. Values are normalized by the highest entry in the matrix for each of the two organisms. 
The blue box highlights the recently described property of eukaryotic AlaRS to mischarge 
tRNA.  B: NeCE are classified by the mismatch most likely to generate them. The shade 
intensity reflects the ratio of independent substitution to number of substitution types 
associated with the corresponding mismatch. Grey boxes are either correct base-pairings, or 
mismatches to which no substitutions could be unambiguously mapped. Upper panel indicates 
results obtained from E. coli, lower panel was generated based on S. cerevisiae data. 

	

E.	coli	and	S.	cerevisiae	share	similar	error	profiles	
While	both	characterized	by	a	mostly	planktonic	lifestyle	and	high	growth	rates,	E.	coli	and	
S.	cerevisiae	have	been	diverging	from	one	another	for	at	least	2.7	billion	years.	Comparing	
the	 error	 profiles	 of	 these	 two	organisms,	 thus,	 allows	us	 to	 look	 at	 how	 strongly	 these	
errors	 are	 constrained,	 both	 by	 chemical	 and	 evolutionary	 necessities.	We	 reanalyzed	 a	
previously	published	mass	spectrometry	dataset	of	strong	anion	exchange	(SAX)	and	SCX	
fractionated	proteome	of	S.	 cerevisiae	 grown	 in	 a	 single	 condition,	 a	 rich	medium	 (30°C,	
YPD)24	using	our	pipeline.		

We	detected	 a	 total	 of	 225	unique	 substitutions	 in	 the	 yeast	proteome,	 from	 the	
two	samples	analyzed.	Similarly	to	the	E.	coli	dataset,	the	majority	of	the	errors,	143,	were	
classified	as	NeCE	(63%).	Comparing	the	error	spectrum	between	the	eukaryote	and	the	
prokaryote	we	observed	a	high	overlap	between	the	set	of	substitution	types	seen	in	the	
two	organisms.	For	example,	the	most	highly	frequent	substitution	types	(e.g.	MetAUG→Thr,	
SerAGC→Asn,	ValGUU→Ile)	are	shared	between	 the	 two	species.	Among	 the	34	substitution	
types	 observed	 more	 than	 once	 in	 the	 yeast	 dataset,	 25	 had	 been	 seen	 in	 the	 E.	 coli	
samples.	Since	only	25.6%	of	substitution	types	were	observed	at	least	once	in	the	E.	coli	
dataset,	we	expected	only	9	of	these	34	substitution	types	to	be	detected	in	the	E.	coli	data.	
Among	the	25	substitution	types	also	detected	in	E.	coli,	16	were	NeCE.	Conversely	among	
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the	remaining	9	substitution	types	that	were	not	seen	in	the	bacterial	samples,	only	4	were	
NeCE.	 This	 observation	 reveals	 a	 universal	 error	 pattern	 for	mistakes	 that	 are	 likely	 to	
occur	within	the	ribosome,	while	most	NoCE	likely	originate	from	separate	factors	unique	
to	each	of	the	species.	The	most	notable	difference	between	the	two	species	is	in	the	most	
frequently	observed	substitution	of	Ala	to	Cys	in	yeast,	which	is	not	seen	in	the	bacterium.	
A	recent	report32	revealed	the	basis	for	this	observation	-	eukaryotic,	but	not	prokaryotic	
Alanyl-tRNA	synthetase	(AlaRS)	tend	to	mischarge	tRNACys	with	Alanine.	

	For	the	yeast	data	too	we	computed	nucleotide	mismatch	matrices	and	observed	
that	in	similarity	to	the	E.	coli	matrices	they	also	predominantly	feature	G:U	mismatches	at	
the	 first	or	 second	positions	 (Fig.	4B).	Observing	 such	 levels	of	 error	 similarity	between	
such	loosely	related	organisms,	exhibiting	distinct	codon	usage	biases,	and	relying	on	very	
different	 translation	 machineries,	 suggests	 that	 these	 errors	 depend	 on	 universal	
constraints.	Whether	 these	 constraints	 are	 of	 a	 purely	 chemical	 nature,	 or	 the	 observed	
substitutions	happen	to	be	more	tolerable	by	these	organisms	remains	to	be	determined.		

Aminoglycoside	 treatment	 and	 amino	 acid	 starvation	 perturb	
the	error	spectrum	

We	 characterized	 the	 response	of	 error	patterns	 to	 external	 perturbations.	 First,	
we	grew	E.	coli	cells	in	LB	supplemented	with	sub-lethal	concentrations	of	paromomycin,	
an	 aminoglycoside	 antibiotic	 known	 to	 interfere	 with	 the	 ribosome’s	 proofreading	
activity4,33,	and	recorded	its	effect	on	the	proteome,	in	comparison	to	that	of	an	untreated	
control.	 For	 both	 conditions,	we	 again	 inspected	 the	 codon	 to	 amino	 acid	matrices	 (Fig.	
4A),	 the	 error	 rate	 profiles	 (Fig.	 4B)	 and	 the	 nucleotide	 mispairing	 matrices	 (Fig.	 4C).	
Comparing	 the	 codon	 to	 amino	 acid	 substitution	 matrices	 between	 the	 paromomycin	
treated	 and	 untreated	 samples	 reveals	 a	 clear	 pattern	 –	 the	 drug	 increased	 error	 rates,	
especially	 at	 3rd	 codon	 wobble	 positions	 (Fig.	 4C;	 greyed	 examples	 in	 4B),	 while	 other	
mismatch	 positions	 remained	 relatively	 unaffected.	 	 The	 increased	 error	 rate	 at	 the	 3rd	
position	can	be	quantified	using	MS1	information,	as	reported	in	Fig.	4B.	
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Figure 4: the error spectrum is affected by external perturbation. A: the substitutions 
identifications matrices of E. coli in LB (green channel, left), or LB supplemented with 
paromomycin (red channel, right), are compared and overlaid (middle). The intensity of the 
color is proportional to the logarithm of the number of independent identification, with one 
pseudo-count. Values are normalized by the highest entry in the matrix for each of the two 
organisms. The blue boxes highlight errors involving 3rd position mismatches. B: Quantification 
of the top 10 most frequent substitutions in the paromomycin dataset. Errors involving 3rd 
position mismatches are shaded in light blue.  C: NeCE are classified using the same 
procedure as in Fig. 2B, for the LB samples, with or without paromomycin. D: Effect of serine 
starvation on errors at serine codons, for the three most frequently detected substitutions 
affecting serine codons. 

	
	
	

	 Next,	 we	 examined	 the	 impact	 of	 amino	 acid	 starvation	 on	 the	 cell’s	 error	
spectrum.	 We	 starved	 a	 serine	 auxotroph	 for	 serine,	 and	 measured	 its	 proteome.	 We	
predicted	 that,	 upon	 starvation	 to	 serine,	 we	 would	 observe	 elevated	 level	 of	 errors	
leading	 from	 serine	 to	 other	 amino	 acids.	 Indeed,	 the	 rate	 of	 SerAGCàAsn	 markedly	
increased	upon	starvation,	and	intensified	as	the	cells	approached	stationary	phase,	when	
the	effects	of	starvation	are	supposed	to	be	the	strongest.	This	result	 indicates	to	a	clear	
mechanism	that	accounts	for	mistakes	in	translation	in	which	a	shortage	of	an	amino	acid	
determines	its	probability	to	be	replaced	by	others.	While	a	model34	predicts	that	the	UCN	
serine	 codons	 should	 be	 affected	 more	 strongly	 by	 starvation	 than	 the	 AGC	 and	 AGU	
codons,	our	method	was	mostly	able	to	fetch	substitutions	stemming	from	the	two	latter	
codons.	 This	 observation	 does	 not	 necessarily	 contradict	 the	 theory,	 since	 the	 AGC	 and	
AGU	errors	are	also	those	most	seen	in	the	MOPS	complete	medium,	and	it	is	possible	that	
the	UCX	codons	do	suffer	more	from	starvation,	but	remain	at	low	levels	in	absolute	terms.	
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In	addition,	we	observed	that	all	samples	in	the	serine	starvation	experiment	presented	a	
strong	 signal	 for	ThreonineàSerine	 substitutions,	which	did	not	 seem	 to	be	 affected	by	
the	 nature	 of	 the	 threonine	 codon.	 Replacing	 threonine	 for	 serine	 in	 an	 environment	
where	 serine	 is	 scarce	 seems	 particularly	maladaptive.	 However,	 Ling	&	 Söll35	 reported	
that	E.	coli’s	ThrRS	tended	to	misincorporate	serine	for	threonine	during	oxidative	stress.	
Since	the	starvation	experiment	was	performed	on	a	serine	auxotroph,	,	we	cannot	exclude	
that	the	modification	of	the	bacteria’s	metabolism	induced	oxidative	stress	and	therefore	
TàS	substitutions.	
	

Misincorporations	occur	at	error-tolerant	and	rapidly	translated	
positions	

Drummond	&	Wilke18	 	posited	 that	cells,	 in	order	 to	avoid	 the	 fitness	 loss	due	 to	
protein	misfolding	and	aggregation,	manage	 their	errors	by	selecting	error-proof	codons	
at	 positions	 where	 inserting	 the	 correct	 amino	 acid	 is	 critical	 to	 a	 protein’s	 folding	 or	
function.	They	were	able	 to	 support	 that	 theory	using	computational	means,	but	as	 they	
were	lacking	data	on	actual	errors	in	proteome	they	had	to	rely	on	proxies.	In	particular,	
they	used	evolutionary	conservation	as	a	proxy	for	sensitivity	to	phenotypic	errors.	They	
derived	 the	 identity	 of	 error	 prone	 and	 error	 proof	 codons	 from	 conservation	 data.	
Correspondingly,	fast	evolving	positions	within	protein	are	predicted	to	be	less	critical	for	
protein	 folding	and	function,	and	should	therefore	tolerate	amino	acid	substitutions.	Yet,	
the	lack	of	a	systematic	set	of	translation	error	events	within	a	proteome	precluded	so	far	
examination	 of	 the	 notion	 that	 they	 occur	 in	 rapidly	 evolving	 sites,	 or	 in	 positions	 that	
minimally	 affect	 protein	 structure	 and	 function.	 A	 theoretical	 argument,	 kinetic	
proofreading5,6,	predicts	that	ribosomes	would	be	more	likely	to	misincorporate	an	amino	
acid	 at	 sites	 where	 they	 translate	 rapidly36.	 This	 trade-off	 between	 speed	 and	 accuracy	
was	demonstrated	by	mutants	that	featured	modified	translation	speed37,	and	by	in-vitro	
using	 conditions	 that	 affect	 ribosome	 velocity38.	 Even	 though	 indirect	 evidence	 suggests	
that,	 in	 yeast,	 downstream	 mRNA	 structures	 are	 used	 to	 modulate	 the	 speed	 of	 the	
ribosome	 when	 it	 decodes	 evolutionarily	 conserved	 sites39,	 this	 theory	 has	 not	 been	
experimentally	tested.	We	therefore	derived	the	relative	speed	of	ribosomes	at	error	sites	
via	ribosome	profiling40,	and	looked	for	direct	evidence	of	this	trade-off.		
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Figure 5: general properties of substitutions. A. The sampling strategy: In order to test if the set 
of detected substitutions differs from expectations in any way, we first need to account for the 
fact that many local properties of proteins are affected by the protein’s expression level, and 
so is our ability to detect substitutions from that protein. First, the local property of interest 
(‘score’) is recorded at all the positions bearing a substitution. The average score for that set of 
positions is plotted as a red dashed line. To compare this average to an appropriate control, 
we devised three strategies to eliminate the potential contributions of protein level, amino acid 
identity and codon identity on the score. In each of these strategies, we draw 1000 sets of 
positions, and plot the average score of each of these sets as a blue dot. In the first strategy, 
for every bona fide distribution, we draw the score from any position within the same protein. 
In the second strategy, we draw the score from any position within the same protein that 
shares the same amino acid as the one bearing the bona fide substitution. In the third control, 
the codon for the sampled position also needs to be the same as the substituted codon. B. 
Amino acid conservation: We derived amino acid conservation scores for E. coli proteins, using 
the COGs database to fetch 50 homologs, MUSCLE to align them, and rate4site to estimate 
the evolutionary rate at each site. The resulting scores are standardized per proteins, and a 
high score indicates low conservation. The empirical p-values are computed by dividing the 
number of blue dots above the red line, divided by 1000. n indicates the number of positions 
considered in this analysis. C. Ribosome density: Ribosome profiling data were processed (see 
methods) to estimate the ribosome density at positions along the E. coli transcriptome. Since a 
ribosome would have to rely on local cues to modulate its speed, we do not expect misloading 
errors to be influenced by the ribosome density. Therefore, this analysis was restricted to 
NeCE. D. Effect of substitutions on protein stability: for proteins whose 3D structure is known, 
we evaluated the effect of NeCE on protein stability using FoldX. In control 1, we test if the 
observed substitutions are on average less destabilizing than those stemming from other 
single-nt mismatches between the codon and the anticodon, at the same position. In control 2 
and 3, we test if the observed substitution type observed was less destabilizing on average at 
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the observed position than at other positions sharing the same AA, or the same codon. 

	
	

We	 computed	 normalized	 conservation	 scores	 for	 each	 position	 in	 the	 E.	 coli	
proteome	(see	Material	and	Methods),	such	that	a	high	score	indicates	that	an	amino	acid	
position	is	poorly	conserved	compared	to	other	positions	in	the	same	protein.	In	order	to	
account	for	the	fact	that	some	amino	acids	tend	to	be	more	conserved	than	other,	and	that	
some	codons	are	over-represented	at	conserved	positions,	we	devised	three	strategies	to	
generate	adequate	negative	 controls	 (Fig.	5A).	 In	 the	 first	 control,	 that	 is	 least	 stringent,	
for	 each	 observed	 substitution,	 we	 sampled	 a	 normalized	 conservation	 score	 from	 any	
position	in	the	same	protein.	In	the	second	control	strategy,	the	random	re-sampling	was	
carried	not	only	within	the	same	protein,	but	also	with	the	additional	constraint	that	the	
amino	acid	type	in	the	randomly	sampled	position	has	to	match	the	same	amino	acid	type	
observed	at	the	position	at	which	the	substitution	occurred.	Finally,	in	the	most	stringent	
of	these	negative	controls,	we	performed	a	random	re-sampling	within	the	same	protein,	
at	 sites	 sharing	 the	 same	codon	as	 the	observed	positions.	We	generated	1,000	 such	 re-
samplings	 in	each	of	 the	three	types	of	negative	controls,	and	compared	the	mean	of	 the	
observed	 distribution	 of	 scores	 at	 the	 observed	 substitution	 positions	 to	 those	 of	 the	
random	control	distributions	to	obtain	empirical	p-values.		The	mean	rate	of	evolution	at	
substitution	sites	is	similar	to	that	of	random	sets	of	positions	generated	though	the	first	
model,	but	significantly	higher	than	that	of	the	random	sets	generated	with	the	other	two	
(Fig.	 5B).	 Consistent	 with	 a	 previous	 prediction18,	 controlling	 for	 the	 codon	 identity	
reduced	 the	 magnitude	 of	 the	 difference	 between	 the	 real	 error	 sites	 and	 randomly	
selected	sites	(Fig.	5B,	“same	codon”	vs	“same	AA”),	supporting	the	notion	that	evolution	
allows	 or	 precludes	 error-prone	 codons	 from	 sites	 that	 are	 correspondingly	 tolerant	 or	
intolerant	 to	 errors.	 However,	 codon	 identity	 did	 not	 fully	 account	 for	 the	 poor	
conservation	 at	 substituted	 sites,	 suggesting	 that	 other	 factors	 allow	 cells	 to	 locally	
modulate	their	error	levels.	

	
Similarly,	 we	 examined	 the	 related	 possibility	 that	 observed	 amino	 acids	

substitutions	in	the	E.	coli	proteome	tend	to	minimally	affect	the	energetic	folding	stability	
of	protein	in	which	they	occur.	To	this	end,	we	computationally	predicted	the	effect	of	each	
of	 the	 observed	 substitutions	 on	 its	 protein’s	 folding	 stability	 (ΔΔG).	We	 compared	 the	
distribution	of	ΔΔG	to	mock	distributions	obtained	via	three	control	strategies,	described	
in	Fig.	5D.	The	first	of	these	strategies	(identity	control)	allows	us	to	test	 if	 the	observed	
NeCE	are	less	destabilizing,	on	average,	than	other	substitution	types	would	be	at	the	same	
positions.	 As	 before,	 we	 generate	 1000	 random	 sets	 of	 ΔΔG	 values,	 such	 that	 for	 each	
observed	substitution	we	randomly	sample	a	destination	amino	acid	accessible	via	a	single	
mutation	 from	 the	 error	 bearing	 codon,	 and	 compute	 the	 difference	 in	 free	 energy	
resulting	 from	a	 substitution	 towards	 that	amino	acid.	The	mean	ΔΔG	of	 the	 set	of	bona	
fide	 substitutions,	 1.454	 kcal/mol,	 was	 lower	 than	 that	 of	 each	 of	 the	 1000	 mock	 sets	
sampled	 under	 the	 identity	 control,	 suggesting	 that	 error	 rates	 are	 tuned	 so	 that	
substitutions	preferentially	replace	the	original	amino	acid	with	one	that	would	minimally	
affect	 protein	 folding	 at	 the	 same	 site.	 Our	 control	 strategy	 accounts	 for	 the	 fact	 that	
substitution	types	classified	as	NeCE	tend	to	swap	chemically	similar	amino	acids	due	to	
the	organization	of	the	genetic	code.		
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Next,	 we	 tested	 if	 the	 observed	 errors	 were	 preferentially	 mapped	 to	 protein	
positions	were	they	minimally	destabilized	folding.	We	generated	1000	sets	such	that	for	
each	 observed	 NeCE,	 we	 estimated	 the	 ΔΔG	 that	 would	 have	 resulted	 from	 that	 same	
substitution	occurring	at	a	randomly	chosen	position	of	 the	same	protein,	sharing	either	
the	 same	 amino	 acid	 (“amino	 acid	 control”)	 or	 the	 same	 codon	 (“codon	 control”).	 The	
mean	ΔΔG	 of	 our	 set	 of	 observed	 substitutions	was	 lower	 than	 that	 of	 98%	 of	 the	 sets	
generated	 with	 the	 amino	 acid	 control,	 and	 97%	 of	 those	 generated	 with	 the	 codon	
control,	 suggesting	 that	 substitutions	 preferentially	 occur	 at	 protein	 sites	 where	 they	
would	not	 disturb	 folding.	We	 cannot	 presently	 exclude	 the	 alternative	 explanation	 that	
some	 substitutions	 destabilize	 protein	 structure,	 promote	 degradation,	 and	 are	 thus	
precluded	from	being	sampled	in	our	method.	
	

The	 classical	 model	 of	 kinetic	 proofreading	 suggests	 that	 the	 ribosome	 must	
balance	between	speed	and	accuracy	during	the	aa-tRNA	selection	step	by	the	ribosome,	
and	 that	 it	 is	more	 likely	 to	misincorporate	amino	acids	when	decoding	at	 a	high	 rate36.	
This	 trade-off	 was	 experimentally	 observed	 in	 vitro:	 ribosomes	 tested	 in	 increasing	
magnesium	concentrations	 translate	 their	 templates	 faster,	 but	 less	 accurately41.	 In	 vivo,	
hyper	and	hypo-accurate	ribosomal	mutants	translate	respectively	slower	and	faster	than	
the	wild	 type	 ribosome37.	 Yang	 et	 al.	 proposed	 that	 yeast	 cells	 take	 advantage	 of	mRNA	
structures	 downstream	 of	 the	 ribosome	 to	 tip	 this	 trade-off	 towards	 faster	 or	 more	
accurate	 decoding39.	 The	 speed	 at	 which	 ribosomes	 translate	 mRNAs	 can	 be	 estimated	
from	 ribosome	 footprints	 density42,	 which	 allowed	 us	 to	 test	 if	 substitutions	 arise	
preferentially	at	quickly	translated	positions.		

We	estimated	the	A-site	ribosome	density	across	the	proteome	of	MG1655	using	a	
published	dataset	acquired	under	similar	conditions40,	and	standardized	this	density	score	
per	 protein	 to	 control	 for	 intergenic	 differences	 in	 mRNA	 abundance	 and	 translation	
initiation	 levels	 (see	Material	 &	Methods).	We	 compared	 the	mean	 ribosome	 density	 at	
error	sites	to	that	of	sets	of	random	samples	generated	using	the	strategy	described	in	Fig.	
5A.	In	each	of	the	controls,	the	mean	ribosome	density	of	the	bona	fide	substitutions	was	
lower	 than	 that	 of	 most	 of	 the	 random	 control	 samples	 (Fig.	 5C)	 –	 error	 sites	 are	 less	
dense,	 and	 hence	 translated	 faster	 than	 expected	 by	 chance.	 In	 particular,	 the	 mean	
density	 at	 sites	 associated	 with	 a	 substitution	 was	 significantly	 (p	 =	 0.025)	 lower	 than	
expected	under	our	null	model	controlling	for	biases	associated	with	codon	identity.	These	
results	suggest	that	E.	coli	can	locally	tune	its	ribosomes	to	trade	accuracy	for	speed.	
	

Discussion	
Here	we	report	on	a	new	method	to	observe	single	amino	acid	misincorporations,	which	
we	used	to	detect	over	3500	distinct	translation	errors	across	the	proteome	of	E.	coli.	We	
take	advantage	of	the	very	high	accuracy	of	modern	mass	spectrometer	to	generate	high	
confidence	 identifications.	 Orbitrap	 mass	 spectrometers	 can	 be	 tuned	 to	 detect	 mass	
differences	 on	 the	 order	 of	 thousandth	 of	 Daltons,	 during	 both	 the	 MS1	 and	 MS2	
acquisition	 phases.	 This	 accuracy	 in	 turn	 allows	 us	 to	 distinguish	 peptides	 and	 peptide	
fragments	 of	 almost	 identical	masses,	 but	 of	 different	 atomic	 and	 isotopic	 compositions,	
and	thus	greatly	improves	the	performance	of	database	search	algorithms.	Our	method	is	
therefore	 able	 to	 distinguish	 amino	 acid	 substitutions	 from	 PTMs	 of	 similar	 masses.	
Despite	the	false	discover	rate	(FDR)	procedure	applied	at	the	end	our	pipeline,	we	cannot	
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exclude	with	absolute	certainty	that	some	of	the	substitution	types	we	detect	correspond	
in	 fact	 to	 annotated	 PTMs	 that	 cannot	 be	 distinguished	 from	 amino	 acid	 substitutions.	
However,	the	retention	time	shifts	in	HPLC	observed	for	our	set	of	identifications	correlate	
very	well	 the	expected	 retention	 time	shifts	predicted	 from	sequence	 information	alone,	
an	observation	that	could	not	be	explained	by	the	identification	of	spurious	PTMs.	
One	cannot	guarantee	a	priori	that	these	substitutions	stem	from	errors	in	the	translation	
machinery,	because	non-synonymous	errors	at	the	DNA	or	RNA	levels	could	generate	the	
same	 mistakes	 at	 the	 protein	 level.	 However,	 our	 samples	 originate	 from	 clonal	
populations,	which	implies	that	DNA	mutations	are	unlikely	to	reach	a	detectable	level	in	
the	 absence	 of	 strong	 adaptive	 selection,	 and	 would	 be	 very	 rarely	 observed	 to	 occur	
across	multiple	samples.	A	second	possibility	 is	 that	we	are	also	observing	 transcription	
errors.	 Yet,	 since	 we	 analyze	 samples	 in	 which	 the	 number	 of	 cells	 (~109)	 is	 greatly	
superior	 to	 the	 inverse	of	 the	observed	 lower	bound	of	 transcription	error	rates	 (~105),	
and	the	average	number	of	mRNA	per	cell	for	the	genes	we	detect	is	greater	than	one,	the	
relative	abundance	of	errors	 is	expected	 to	correspond	to	 the	 transcription	error	rate	at	
any	 examined	 site,	 and	 should	 not	 fluctuate	 from	 sample	 to	 sample	 thanks	 to	 the	
assumption	of	 ergodicity.	 Since	 this	 estimate	 is	 two	orders	of	magnitude	 lower	 than	 the	
average	 observed	 error	 rates	 quantified	 by	 our	 method,	 substitutions	 likely	 arise	 from	
translation	errors.		
	
Two	distinct	processes	have	been	shown	to	generate	high	 levels	of	errors	 in	 translation:	
aaRS	can	mistakenly	load	an	amino	acid	to	a	non-cognate	tRNA,	and	the	ribosome	can	pair	
a	correctly	charged	aa-tRNA	complex	to	a	non-cognate	codon.	Both	processes	rely	on	small	
energetic	 differences	 between	 correct	 an	 incorrect	 pairings.	 For	 the	 ribosome,	 the	
recognition	 process	 exploits	 the	 difference	 of	 free	 energy	 between	 cognate	 and	 non-
cognate	 codon-anticodon	pairs.	Most	 aaRS	also	probe	 the	nature	of	 the	anticodon	of	 the	
tRNA	before	loading,	and	additionally	rely	on	clues	from	the	tRNA	backbone	to	achieve	a	
high	 specificity43.	The	amino	acid	 recognition	 step	 can	be	 challenging	due	 to	 similarities	
between	amino	acid	types,	and	a	subset	of	these	enzymes	have	to	rely	on	an	editing	step	to	
achieve	higher	specificity.	Differential	binding	of	EF-Tu	to	misacylated	tRNAs	was	shown	
to	discriminate	against	common	aaRS	mistakes44,	and	thus	provides	an	additional	layer	of	
specificity.	We	argue	that	most	of	the	substitutions	detected	in	our	work	stem	from	errors	
in	 the	 ribosome	 i.e.	 wrong	 pairing	 between	 codons	 and	 anticodons.	 Indeed,	 the	
overwhelming	majority	(88%)	of	the	substitutions	could	be	explained	by	a	single	codon-
anticodon	 mismatch,	 a	 fraction	 much	 higher	 than	 expected	 by	 chance	 due	 to	 the	
organization	 of	 the	 genetic	 code	 (30%).	 Additionally,	 we	 treated	 the	 cells	 with	
paromomycin,	 an	 aminoglycoside	 antibiotic	 known	 to	 perturb	 the	 accuracy	 of	 the	
ribosome.	 This	 drug	 increased	 the	 rate	 of	 several	 substitution	 types,	 particular	 those	
involving	 mismatches	 at	 the	 3rd	 codon	 position.	 These	 substitution	 types	 are	 therefore	
dominated	 by	 ribosome	 errors.	 However,	 we	 were	 able	 to	 identify	 several	 instances	
CysàAla	subtitutions	(NoCE)	in	the	S.	cerevisiae	samples,	consistent	with	a	recent	report	
that	 eukaryotic,	 but	 not	 prokaryotic	 AlaRS	 had	 a	 tendency	 to	 mischarge	 non-cognate	
cysteine	tRNAs32.	
Comparing	 the	 error	 spectrum	 of	 the	 E.	 coli	 and	 S.	 cerevisiae	 in	 untreated	 conditions	
revealed	 a	 large	 overlap	 between	 the	 set	 of	 observed	 substitution	 types,	 and	 a	 striking	
prevalence	 of	 Gcodon:Uanticodon	 mismatches	 at	 the	 first	 and	 second	 positions.	 Structural	
analysis	 of	 G:U	 and	 U:G	 mismatches	 within	 the	 ribosome	 revealed	 that	 they	 typically	
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adopted	 a	Watson-Crick	 G:C	 like	 geometry	 rather	 than	 the	 expected	wobble	 one	 due	 to	
spatial	constraints	in	the	decoding	center.	These	errors	are	therefore	believed	to	originate	
from	rare,	transient	geometries	of	nucleobases,	as	proposed46.	These	errors	are	therefore	
believed	 to	originate	 from	 rare,	 transient	 geometries	 of	 nucleobases,	 as	proposed45.	 The	
surprising	observation	that	1st	and	2nd	position	G:U	mismatches	are	typically	much	more	
prevalent	 than	 the	 symmetrical	 U:G	 conformation	 could	 not	 be	 explained	 by	 the	 many	
enzymes	 modifying	 the	 uracil	 on	 the	 anticodons	 of	 tRNAs,	 as	 they	 mostly	 assist	 the	
decoding	of	the	third	codon	position.	
	
The	E.	 coli	 MOPS	 complete	 data	 allowed	 us	 to	 quantify	 a	 large	 number	 of	 substitutions	
occurring	during	fast	growth.	The	mean	error	rate	detected	was	on	the	order	of	10-3,	in	the	
higher	end	of	the	range	of	previously	reported	estimates.	Several	reasons	can	be	invoked	
to	 explain	 this	 observation.	 First,	 MS	 detectability	 is	 intimately	 linked	 to	 MS1	 intensity	
levels:	 since	 the	mass	 spectrometer	 systematically	 samples	 the	most	 intense	peptides	 in	
each	scan,	we	are	bound	to	preferentially	detect	and	quantify	substitutions	associated	to	
high	 error	 rates.	 Similarly,	 a	 peptide’s	 MS1	 intensity	 depends	 on	 its	 abundance	 in	 the	
sample	and	on	 its	 ability	 to	 ionize	well.	The	abundance	of	 the	 correct	peptide	 is	usually	
much	higher	than	that	of	the	error-bearing	one,	which	means	that	it	will	be	sampled	more	
often.	The	quantification	depends	on	the	sampling	of	the	lower	abundance,	error-bearing	
peptide.	Substitutions	that	increase	the	peptide’s	ionization	efficiency	are	therefore	bound	
to	 increase	 its	detectability,	and	will	 result	 in	an	 inflated	error	rate.	While	 it	 is	generally	
accepted	 that	 ionization	efficiency	depends	on	a	peptide’s	 sequence	 in	a	very	non-linear	
fashion,	 we	 trained	 a	 linear	 regressor	 to	 evaluate	 the	 mean	 effects	 of	 amino	 acid	
composition	 on	 ionization	 efficiency.	Our	model	 gave	 satisfactory	 results	 (see	 appendix:	
Ionization	Efficiency	prediction),	and	suggests	that	substitutions	should	rarely	result	in	a	
dramatic	 change	 in	 ionization	efficiency.	 It	 remains	difficult	 to	assess	 to	what	extent	 the	
variance	 of	 the	 error	 rate	 distribution	 for	 each	 substitution	 type	 reflects	 biological	
variability	or	technical	biases.	
	Comparing	 the	 median	 error	 rates	 of	 several	 substitutions	 across	 the	 different	
physiological	 states	 during	 bacterial	 growth	 revealed	 that	 they	 react	 dynamically	 to	 the	
changing	 environment:	 substitutions	 rate	 from	 valine	 codons	 tended	 to	 decrease	 with	
time,	 while	 glycine	 codons	 became	more	 error-prone	 in	 later	 stages.	 The	 extent	 of	 this	
change	might	be	underestimated	due	 to	 the	 fact	 that	we	 are	not	 specifically	quantifying	
the	 error	 rate	 of	 newly	 synthesized	 protein,	 but	 rather	 quantifying	 the	 errors	 in	 batch,	
integrating	at	any	given	time	point	on	proteins	that	were	synthesized	till	 that	time	point	
that	were	not	degraded	already.	Starving	the	cells	for	serine	revealed	a	striking	increase	in	
the	error	rate	of	two	substitutions	involving	serine	codons,	SerAGCàAsn	and	SerAGUàAsn.	
The	median	error	 rate	 for	 these	codons	rose	 to	almost	10-2	 in	 the	stationary	phase	 time	
point,	with	some	sites	reaching	an	error	rate	approaching	10-1.	Other	serine	codons	were	
also	 affected,	 but	 the	 scarcity	 of	 sampling	 for	 these	 rarer	 errors	 precluded	 a	 reliable	
quantification	 of	 the	 process.	 Theory	 predicts	 that	 the	 4-box	 codons	 of	 serine	 (UCN)	
should	 suffer	 more	 from	 serine	 depletion	 than	 the	 2-box	 codons	 (AGY)	 because	 of	 a	
differential	 charging	of	 the	 tRNA	 isoacceptors34.	Our	 failure	 to	detect	 a	 large	quantity	of	
errors	at	TCN	sites	might	be	partially	explained	by	the	preferential	usage	of	AGY	codons	in	
genes	over-expressed	during	serine	starvation34.	
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Translation	 errors	 have	 been	 hypothesized	 to	 affect	 protein	 evolution,	 and	 to	 drive	 the	
long	known	anti-correlation	between	gene	expression	and	evolutionary	rate	at	the	protein	
level18.	 According	 to	 this	 theory,	 the	 selective	 pressure	 to	 prevent	 translation	 errors	
constrains	 the	 synonymous	 encoding	 of	 amino	 acids	 critical	 to	 protein	 folding,	 and	
organisms	 must	 select	 preferred,	 error-proof	 codons	 at	 positions	 where	 errors	 would	
disturb	protein	stability.	These	sensitive	sites	are	characterized	by	a	higher	evolutionary	
conservation,	and	a	slow	rate	of	evolution.	Our	set	of	substitutions	enabled	us	to	directly	
test	 if	 errors	 are	 preferentially	 observed	 at	 fast	 evolving	 sites.	 Our	 analysis	 carefully	
controlled	 for	 the	 effects	 of	 protein	 expression	 level	 on	 the	 detectability	 of	 translation	
errors,	the	codon	usage	of	proteins,	and	their	evolutionary	conservation.	It	confirmed	that	
indeed,	substitutions	occur	on	average	at	 less	conserved	sites,	but	also	that	the	choice	of	
codons	 could	 not	 entirely	 explain	 this	 effect,	 suggesting	 that	 other	 factors	 might	 affect	
translation	 accuracy	 in	 cis.	 Similarly,	 simulating	 the	 effects	 of	 the	 set	 of	 observed	
substitutions	on	protein	stability	revealed	that	they	tended	to	be	localized	at	sites	where	
they	minimally	affected	protein	 folding.	Observed	NeCE	were	also	 less	destabilizing	than	
randomly	 sampled	 NeCE	 at	 the	 corresponding	 sites,	 suggesting	 that	 the	 spectrum	 of	
ribosome	errors	is	even	more	conservative	than	the	effect	of	naïve	single	substitutions	at	
the	DNA	level.	Together,	these	results	confirm	that	the	cells	encode	their	proteins	and	tune	
their	 translation	machinery	 in	ways	 that	minimize	 the	 deleterious	 effects	 of	 amino	 acid	
misincorporations.		
Since	 codon	 identity	 does	 not	 entirely	 account	 for	 the	 fact	 that	 substitutions	 are	
preferentially	observed	at	sites	where	they	are	tolerated,	we	tested	if	the	ribosome	itself	
might	 modulate	 its	 accuracy	 locally.	 Several	 lines	 of	 evidence	 indicate	 that	 ribosomes	
optimize	both	speed	and	accuracy,	and	must	therefore	perform	a	trade-off	between	these	
two	constraints.	In	particular,	decreasing	the	ribosome’s	GTP	hydrolysis	rate	should	result	
in	 an	 lower	 processing	 speed,	 but	 a	 better	 discrimination	 between	 cognate	 and	 non-
cognate	 aa-tRNAs.36	We	 hypothesized	 that	 the	 ribosome	might	 rely	 on	 external	 clues	 to	
locally	 slow-down	 in	 order	 to	 increase	 its	 accuracy	 at	 critical	 sites.	 Our	 analysis	 of	 a	
published	 ribosome	 profiling	 dataset	 indeed	 revealed	 a	 subtle	 but	 significant	 shift	 in	
ribosome	density:	 the	 sites	 at	which	we	observed	 substitutions	were	 characterized	by	a	
lower	ribosome	density,	i.e.	a	higher	speed.	
Our	 method	 provides	 a	 way	 to	 scan	 the	 proteome	 of	 organisms	 in	 various	 growth	
conditions,	and	can	be	used	to	unveil	new	types	of	adaptive	translation46.	In	multicellular	
organisms,	one	could	extend	this	analysis	 to	different	 tissues,	and	diseases	associated	 to	
proteostasis	defects,	such	as	Alzheimer’s47.	Indeed,	the	recent	report	that	translation	error	
rates	 are	 inversely	 correlated	 to	 the	maximum	 lifespan	 of	 rodent	 species	 indicates	 that	
maintaining	high	 translation	accuracy	 is	critical	during	aging.	 In	model	organisms,	 it	can	
be	 coupled	 with	 genetic	 manipulations	 to	 probe	 how	 the	 different	 components	 of	 the	
proteostasis	 network	 contribute	 to	maintain	 accurate	 translation,	 and	 how	 errors	 affect	
the	 physiology	 and	 fate	 of	 proteins.	 This,	 in	 turn,	 will	 provide	 a	 new	way	 to	 study	 the	
interplay	between	translation	error	rates	and	protein	evolution.		
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Material and Methods 
Strains and growth conditions  
To	generate	the	E.	coli	drugs	dataset,	MG1655	cells	were	plated	on	LB	agar	and	incubated	
at	30°C	overnight.	6	colonies	of	MG1655	were	picked	and	grown	until	stationary	phase	in	
3	ml	LB,	30°C.	All	8	cell	cultures	were	diluted	1/100	and	grown	aerobically	in	100	ml	LB	
supplemented	with	 the	 relevant	 antibiotics	 (see	 table	X)	 in	500	ml	Erlenmeyer	 flasks	 at	
37°C	 until	 they	 reach	 mid-log	 phase	 (OD	 ≃	 0.5).	 For	 the	 serine	 starvation	 dataset,	
BW25113	(WT)	and	JW2880-1	(ΔserA,	obtained	from	the	Keio	deletion	library)	cells	were	
plated	on	LB	agar	and	incubated	at	37°C	overnight.	2	colonies	of	each	strain	were	picked	
and	grown	in	3	ml	of	modified	MOPS	rich	defined	medium	made	according	to	Cluzel	et	al	
recipe	(SI	Appendix)	and	incubated	at	37°C	until	stationary	phase.	BW25113	and	JW2880-
1	 cell	 cultures	were	diluted	1/1000	and	grown	aerobically	 in	220	ml	 of	modified	MOPS	
rich	 defined	 medium	 and	 MOPS	 serine	 starvation	 medium	 accordingly	 in	 500	 ml	
Erlenmeyer	 flasks	 at	 37°C	 (mediums	 were	 made	 according	 to	 Cluzel	 et	 al	 2012	 SI	
Appendix).		

		

Proteome	extraction		
	We	 adapted	 our	 proteome	 extraction	 protocol	 from	 Khan	 et	 al.,	 201128.	 Samples	 were	
each	 split	 into	 two	 50	ml	 falcon	 tubes,	 centrifuged	 at	 4000	 rpm	 for	 5	min,	 and	washed	
twice	 with	 PBS	 (add	 10	 ml	 PBS,	 vortex,	 centrifuge	 for	 5	 min).	 Remaining	 PBS	 was	
vacuumed	and	the	pellets	were	frozen	in	ethanol-dry	ice.	Pellets	were	re-suspended	in	1	
ml	 of	 B-PER	 bacterial	 protein	 extraction	 buffer	 (Thermo	 Fisher	 Scientific),	 pooled	
together,	and	vortexed	vigorously	for	1	min.	The	mixture	was	centrifuged	at	13,000	rpm	
for	 5	 min.	 The	 supernatant	 (high	 solubility	 fraction)	 was	 collected	 and	 frozen	 in	 an	
ethanol-dry	ice	bath.	The	pellet	was	re-suspended	in	2	ml	of	1:10	diluted	B-PER	reagent.	
The	 suspension	 was	 centrifuged	 and	 washed	 one	 more	 time	 with	 1:10	 diluted	 B-	 PER	
reagent.	 The	 pellet	 was	 re-suspended	 in	 1	 ml	 of	 Inclusion	 Body	 Solubilization	 Reagent	
(Thermo	Fisher	Scientific).	The	suspension	was	vortexed	for	1	min,	shaken	for	30	min,	and	
placed	in	a	sonic	bath	for	10	min	at	maximum	intensity.	Cellular	debris	was	removed	from	
the	suspension	by	centrifugation	at	13,000	rpm	for	15	min.	The	supernatant	was	frozen	in	
an	ethanol-dry	ice	bath	(low	solubility	fraction).		
	
	

SCX	fractionation,	HPLC	and	Mass	Spectrometry		
400μg	of	protein	was	taken	for	in-solution	digestion	and	processed	by	Filter	aided	sample	
preparation	(FASP)48	protocol	using	30k	Microcon	 filtration	devices	(Millipore).	Proteins	
were	subjected	to	on-filter	 tryptic	digestion	 for	overnight	at	37°C	and	the	peptides	were	
fractionated	using	strong	cation	exchange	(SCX)	followed	by	desalting	on	C18	StageTips49	
(3M	 EmporeTM,	 St.	 Paul,	 MN,	 USA).	 Peptides	 were	 analyzed	 by	 liquid-chromatography	
using	the	EASY-nLC1000	HPLC	coupled	to	high-resolution	mass	spectrometric	analysis	on	
the	 Q-Exactive	 Plus	 mass	 spectrometer	 (ThermoFisher	 Scientific,	 Waltham,	 MA,	 USA).	
Peptides	were	separated	on	50	cm	EASY-spray	columns	(ThermoFisher	Scientific)	with	a	
140	 min	 gradient	 of	 water	 and	 acetonitrile.	 MS	 acquisition	 was	 performed	 in	 a	 data-
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dependent	 mode	 with	 selection	 of	 the	 top	 10	 peptides	 from	 each	 MS	 spectrum	 for	
fragmentation	and	analysis		
	

Computational	methods		
Raw	files	were	processed	with	MaxQuant	v.	1.5.5.1.	The	 list	of	parameters	 is	available	 in	
the	 supplementary	materials.	High	and	Low	solubility	 fractions	were	aligned	 separately.	
The	 amino	 acid	 substitutions	 identification	 procedure	 relies	 on	 the	 built-in	 dependent	
peptide	algorithm	of	MaxQuant.		

The	Dependent	Peptide	search		
Experimental	 spectra	 are	 first	 searched	 using	 a	 regular	 database	 search	 algorithm,	
without	any	variable	modification,	and	the	significance	of	identifications	is	controlled	to	a	
1%	FDR	via	 a	 target	decoy	procedure.	 Identified	 spectra	 are	 then	 turned	 into	 a	 spectral	
library,	and	a	decoy	spectral	library	is	created	by	reversing	the	sequences	of	the	identified	
spectra.	 For	 each	 possible	 pair	 consisting	 of	 an	 identified	 spectrum	 in	 the	 concatenated	
spectral	 libraries	 and	 an	 unidentified	 experimental	 spectrum	 of	 the	 same	 charge,	 and	
recorded	 in	 the	 same	 raw	 file,	we	 apply	 the	 following	 steps:	 first	we	 compute	 the	mass	
shift	 Δm	by	 subtracting	 the	mass	 of	 the	 identified	 (unmodified)	 spectrum	 to	 that	 of	 the	
unidentified	 (modified)	 spectrum,	 then	we	 simulate	modified	 versions	of	 the	 theoretical	
spectrum	by	adding	in	silico	this	mass	shift	at	every	position	along	the	peptide,	and	finally	
we	evaluate	the	match	between	the	theoretical	spectrum	and	the	experimental	spectrum	
using	a	formula	similar	to	Andromeda's	binomial	score.		
For	each	unidentified	peptide,	the	match	with	the	best	score	is	reported,	the	nature	of	the	
match	(target	or	decoy)	is	recorded,	and	a	target-decoy	procedure50	is	applied	to	keep	the	
FDR	at	1%.	Peptides	 identified	using	this	procedure	are	called	Dependent	Peptides	(DP),	
whereas	their	unmodified	counterparts	are	named	Base	Peptides	(BP).		
Additionally,	 the	 confidence	 of	 the	mass	 shift's	 localization	 is	 estimated	 using	 a	method	
similar	to	MaxQuant/Andromeda's	PTM	Score	strategy,	which	returns	the	probability	that	
the	modification	is	harbored	by	any	of	the	peptide's	amino	acid.		

DP	identifications	filtering		
The	 list	 of	 all	 known	modifications	 was	 downloaded	 from	 www.unimod.org,	 and	 those	
marked	as	AA	substitution,	Isotopic	label	or	Chemical	derivative	were	excluded.	Entries	in	
this	list	are	characterized	by	a	monoisotopic	mass	shift,	and	a	site	specificity	(i.e.	they	can	
only	occur	on	 a	 specific	 amino	 acid	or	 on	peptides'	 and	proteins'	 termini).	We	 removed	
from	our	analysis	 any	DP	 identification	 that	 could	be	explained	by	any	of	 the	 remaining	
modifications,	using	the	following	criteria:	the	recorded	Δm	and	the	known	modification's	
mass	shift	must	not	differ	by	more	than	0.01	Da,	and	the	modification	must	be	harbored	by	
a	 site	 consistent	 with	 the	 uniprot	 entry	 with	 a	 probability	 p	 ≥	 0.05.	 Conversely,	 we	
computed	the	list	of	all	possible	amino	acid	substitutions	and	their	associated	mass	shifts.	
For	every	substitution,	we	only	retained	DP	identifications	such	that	the	observed	Δm	and	
the	AA	substitution's	mass	shift	did	not	differ	by	more	than	0.005	Da,	and	the	mass	shift	
was	localized	on	the	substitution's	original	AA	with	p	≥	0.95.		
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Among	 the	 remaining	 DP	 identifications,	 those	 such	 that	 the	 peptide	 sequence	 after	
substitution	 was	 a	 substring	 of	 the	 proteome	 (allowing	 Ile-Leu	 ambiguities),	 were	 also	
removed,	to	prevent	pairing	of	dependent	peptides	and	base	peptides	between	paralogs.		
Finally,	the	FDR	was	controlled	once	again	at	1%	using	the	same	procedure	as	above.		
	

Error	rate	quantification		
In	order	 to	 assess	 the	 error	 rate	we	quantify	 and	 compare	pairs	 of	 base	 and	dependent	
peptides	 across	 many	 samples.	 For	 each	 independent	 substitution,	 we	 fetched	 the	
quantification	profile	of	the	base	peptide	from	MaxQuant’s	peptides.txt	table,	and	similarly	
fetch	 the	 dependent	 peptide’s	 quantification	 profile	 from	 the	matchedFeatures.txt	 table.	
Whenever	a	peak	has	been	detected	and	quantified	for	both	the	dependent	and	the	base	
peptide,	we	estimate	the	translation	error	rate	as	the	ratio	of	their	MS1	intensities.		
	

Assignment	of	NeCE	to	their	most	likely	nucleotide	mismatch	
First, for each amino acid substitution type, we fetch all the possible nucleotide 
mismatches that could have lead to this substitution (e.g. G:U, 1st position). Then for 
each nucleotide mismatch type, we count all the unique amino acid substitutions that 
could be unambiguously mapped to that type, and divide that number by the number of 
substitutions types that could be unambiguously mapped to that same nucleotide 
mismatch type. We call the resulting quantity the "count density". In subsequent 
iterations of the algorithm, we repeat the previous assignment procedure, but in cases 
where a substitution can be mapped to more than one nucleotide mismatch type, we 
break the tie based on the count density of the corresponding nucleotide mismatch 
types, and repeat until convergence.		
	

Evolutionary	rates	computation		
For	each	of	the	proteins	associated	to	a	substitution	in	the	MOPS	dataset,	we	fetched	a	list	
of	 orthologous	 protein	 sequences	 from	 the	 COG	 database51,	 excluding	 partial	 matches	
(membership	class	=	3).	Proteins	whose	list	of	orthologs	contained	less	than	50	sequences	
were	 excluded	 from	 this	 analysis.	 For	 the	 remaining	 proteins,	we	 randomly	 selected	 50	
sequences	 from	 the	 list,	 and	 created	 evolutionary	 alignments	 using	 MUSCLE52.	 The	
alignments	were	 then	 used	 to	 compute	 normalized	 evolutionary	 rates	 per	 site	with	 the	
rate4site	 program53.	 The	 mean	 evolutionary	 rate	 of	 sites	 associated	 with	 detected	
substitutions	 was	 compared	 to	 that	 of	 a	 1000	 randomly	 sampled	 positions,	 using	 the	
strategy	described	in	Fig.	5A	
	

Effect	of	substitutions	on	protein	stability	
For	each	of	the	proteins	associated	to	a	substitution	in	the	MOPS	dataset,	we	attempted	to	
fetch	the	best	3D	structure	for	its	biological	assembly	in	the	PDB	database	to	estimate	the	
effect	 of	 our	 substitutions	 on	 protein	 stability	 using	 the	 FoldX	 software54.	We	 excluded	
membrane	proteins,	whose	stability	is	poorly	modeled	by	FoldX,	and	excluded	ribosomal	
protein	because	the	ribosome	is	too	big	to	be	modeled	entirely.	We	restricted	our	analysis	
to	WT	proteins	 from	E.	coli,	excluding	structures	determined	 from	orthologs.	Among	the	
remaining	structures,	we	selected	those	with	the	lowest	R-free	score.	
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These	structures	were	first	“repaired”	using	the	repairPDB	command.	We	then	evaluated	
the	effect	of	 a	 set	of	 amino	acid	 substitutions	 comprising	 the	detected	 substitutions	and	
the	 controls	 described	 in	 Fig.	 5D	 on	 protein	 stability	 (ΔΔG),	 using	 the	 PositionScan	
command.	 Finally	 the	 mean(ΔΔG)	 of	 our	 set	 of	 substitutions	 was	 compared	 to	 the	
mean(ΔΔG)	of	1000	randomly	sampled	substitutions,	using	the	strategy	described	in	Fig.	
5D.	

Ribosome	density	computation	
Ribosome	 profiling	 data	 for	 the	 MOPS	 complete	 experiments	 were	 downloaded	 from	
Woolstenhulme	et	al.,	201540	(GSM1572266,	GSM1572267).	Reads	were	aligned	using	the	
3’	mapping	method	described	in	the	corresponding	article,	and	shifted	by	12	nt	to	obtain	
the	density	at	the	A-site.	Read	counts	from	both	replicates	were	summed	to	obtain	more	
robust	estimates,	and	20	codons	were	excluded	from	both	the	3’	and	the	5’	ends	to	avoid	
known	biases.	For	the	remaining	positions,	we	applied	the	transformation	x	:	log2(x	+	1)	to	
stabilize	the	variance,	and	standardized	the	resulting	score	to	obtain	the	normalized	read	
density	(NRD),	so	that	the	mean	of	the	NRD	per	protein	is	0	and	its	standard	deviation	is	1.		
The	mean(NRD)	of	 the	set	of	observed	substitutions	was	 then	compared	 to	 that	of	1000	
randomly	sampled	substitutions,	using	the	strategy	described	in	Fig.	5A.	
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