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Summary 

Complex physiological functionality is often the outcome of multiple interacting cell-types, yet 

mechanistically how a large number of trait-associated genes yield a single multi-cellular network 

governing the phenotype has not been well defined. Individuals' immune-cellular profiles at homeostasis 

show high heritability and inter-individual variation with functional and clinical implications. We profiled 

immune cellular variation by mass-cytometry in 55 genetically diverse mouse strains. We identify 788 

genes associated with cellular homeostasis, supporting a polygenic model where 52% of genes correspond 

to core homeostatic functions whose genetic variants suffice to predict phenotype. Trait genes form a 

multi-cellular network architecture showing increased functional complexity over evolutionary timescales 

for shared regulation to all cells, specialized cell-specific programs, and between-cell synchronization. 

Contrasting to human studies suggests the regulatory network expands with environmental exposure 

history. Our findings shed light on the origin of immune-cellular variation and regulatory architectures 

that may generalize to other environmentally sensitive systems. 
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Introduction 

Complex physiological functionality is often the outcome of multiple interacting cell-types. Thus, 

understanding of genotype-phenotype relation requires cell-specific resolution of regulatory networks as 

well as an understanding of the interaction between cell-types. QTL studies have yielded large advances 

in mapping the genotype-phenotype connections, with eQTL studies likely being the most common 

means of assembling regulatory networks linked to genotype. However, these studies often rely on whole 

tissue (‘The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans’, 

2015) or sorted cell profiling where the multi-cellularity context is absent (Heng and Painter, 2008; Dimas 

et al., 2009; Link et al., 2018; Schwartzentruber et al., 2018). Most recently, profiling single cell gene 

expression and genotype of multiple cell-types has become a viable option (van der Wijst et al., 2018), 

yet due to prohibitive costs and high level of noise, generating networks and associating their variation to 

genotypic variants remains difficult. Moreover, as mRNA is the studied trait, physiological context 

remains missing. 

Cellular immune profiles are a complex physiological trait reflecting cell-type abundance for each cell in 

tissue and showing a large amount of variation between individuals with important diagnostic value in 

health and disease (Gaudillière et al., 2014; Tsang et al., 2014; Brodin and Davis, 2017), suggesting this 

complex system maintains a "personalized immune homeostasis". Cellular immune profiles are highly 

heritable, which may be due either to genetics, shared environmental influences or a combination of both 

(Lu et al., 2016). Repeated evidences from young mono- and di- zygotic twins studies suggest a high 

level of genetic determinism (Evans, Frazer and Martin, 1999; Hall et al., 2000; Pedersen, 2000).  

From a functional perspective, evidence from basic studies tracking labeled cells have shown that when 

one changes the rate of a cell subsets' proliferation or death, the total number and relative frequencies of 

cells would be altered (Mohri et al., 1998; Asquith et al., 2002; Busch et al., 2015). Extrapolated from 

these experiments, and fitting with mathematical modeling, a cell abundance should be a function of its 

turnover. Namely, a balance of processes involved in the introduction of new cells (e.g. proliferation, or 

influx of migrating cells) and processes involving in cell clearance (e.g. death, differentiation to another 

cell-type, or an outflux of migrating cells). Yet, several large-scale association studies that were 

conducted in humans found only a few genes associated with blood cell subset frequencies and counts 

(Orrù et al., 2013; Roederer et al., 2015; Patin et al., 2018), making it difficult to discern a genetic 

architecture for those associations identified. This may be partially explained by data from mono-zygotic 

twins showing that the effects of the environment predominantly increase with age (Brodin et al., 2015) 

and therefore detection of genetic associations may become more difficult. 
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Particularly of relevance, recently it has been proposed that though all genetic variants play a role in 

complex trait determination, a modest subset of 'core genes' exist which directly affect the trait and are 

related to its biology (Boyle, Li and Pritchard, 2017). This core genes hypothesis has been contested, 

particularly with respect to the size of gene group, which was hypothesized to extend to include all 

genetic variants in the genome (Wray et al., 2018). In case of immune cell abundance, the trait is well 

defined, and the genes associated with its core biology, in theory, should be well defined as well. 

We performed an association study of bone marrow immune cells in Collaborative Cross (CC), a panel of 

highly genetically diverse inbred mouse strains for which a tailored SNP chip is available along side the 

full genome sequence of all founder strains (Consortium, 2004). The CC exhibit large phenotypic 

variation with respect to immune homeostatic composition (Kelada et al., 2012; Graham et al., 2017), 

thereby allowing studies with statistical power, and reproducibility in a setting with minimal and equal 

environmental influences on immune cellular homeostasis. We show that baseline variability in immune 

cell profiles is determined by a large number of genetic variants. We use these variants to infer a multi-

cellular regulatory network whose associated genes form protein-protein interactions within cells as well 

as inter-cellular interactions determining immune cellular homeostasis. We characterize the architecture 

of this mouse-derived network through an evolutionary lens as well as how it is reflected in 

environmentally exposed humans, allowing inference of polygenic network dynamics. 

Results 

Highly variable immune cellular profiles in genetically diverse mice are polygenic complex traits 

We focused on the bone marrow, given it covers major developmental milestones of hematopoiesis. The 

CC mouse panel was designed to achieve individual genetic homozygosity from eight inbred founder 

strains while maintaining heterogeneity between strains (founder strains consisting of five classical inbred 

and three wild-derived, with roughly 75% of variation stemming from the latter). Fitting the need for 

profiling this complex cellular environment at high dimension, we profiled 30 naive CC mouse strains in 

duplicate and 8 founder strains in triplicate (Table S1) using a large panel of 20 CyTOF phenotypic 

markers, reflective of hematopoietic populations (Table S2). We noted that for several strains, some 

markers were unobservable (Table S3). Considering the remaining samples, which had a full set of 

phenotypic markers (15 CC strains and 3 founder strains), we clustered their single cell data using a high-

dimensional clustering algorithm (Figure 1A, Table S4, see Methods) (Bruggner et al., 2014). This 

resulted in immune profiles of CC mice being clustered by replicate strains, followed by a close similarity 

to the whole genome genetic kinship distance, suggesting that phenotypic similarity may be driven by 

genetic similarity (Figure S1A). To assess the variation between individual mice's homeostatic 
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composition (a vector of multiple cell subset frequencies) we performed a Principal Component Analysis 

(PCA) of bone marrow cell subset composition (Figure 1B). We noted that the first two principle 

components axes explained 48.3% of total variance, with the first component capturing variation in 

lymphoid lineage B and T cell subsets and the second component capturing variation in myeloid cell 

subsets and NK cells. To quantify the extent of variation in homeostatic composition, we measured the 

pairwise distance between individual mice profiles within replicate mice, founder and CC strains. CC 

strains created a continuous scale of phenotypes likely introduced by synergistic genetic interactions, 

whose dynamic range was largest and mean distance significantly greater than that observed between 

replicate strains (Figure 1C, p<0.001 by Student's t-test). Interestingly, we noted no significant 

differences of homeostatic composition distances between bone marrow samples profiled from ten 

healthy adults and CC strains, supporting the observation that these strains phenotypic variation is close 

to that observed in humans (Figure 1C, Figure S1B for human gating scheme) (Rogala et al., 2014; 

Elbahesh and Schughart, 2016). Taken together, we demonstrate that immune cell subset variation is high, 

yet non-random, in genetically diverse mice raised in a shared clean environment. 

Next, we sought to link phenotypic variation to genotype. To increase our statistical power we deployed 

several strategies: First, we leveraged the Scaffold algorithm which avoids bias in cluster identity by 

mapping high dimensional clusters to manually gated populations using the same set of markers, thereby 

allowing to increase the mouse samples size (Spitzer et al., 2015) (Figure 1D, Figure S1C for gating 

scheme, see Methods). Second, we focused on loci harboring genes expressed in immune cells and for 

which coding region functional mutations were predicted (Table S5). This filtering procedure yielded 

6,961 genes covering a broad set of functions, spanning from broad cellular to immune specific 

functionalities. Next, we mapped per mouse loci, the likelihood of it stemming from each founder strain, 

using haplotype reconstruction (see Methods) and computed the logs odds ratio (LOD) score of each 

locus with each of the 11 manually gated cell subset populations (Figure 1E). This procedure yielded a 

total of 1,617 loci, corresponding to 1,579 genes which matched our filtering criteria, namely below a 

false discovery rate (FDR) threshold of 5% and robust to a leave-one-out procedure (Figure 1F, Figure 

S1D, Table S6, see Methods). Thus, a large number of genes are associated with this multi-cellular 

complex trait. 

Genetic associations differ by cell-type and include inter-cellular influences 

The regulation of immune cell subsets homeostasis may be common to all cell subsets, or unique per 

population or lineage, based on functionality and developmental constraints. We noted that the number of 

associated hits was not uniformly distributed across immune cell subsets (Figure 2A, Table S7). This 
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imbalance in trait-gene associations may be attributed to differences in regulatory complexity yet is most 

likely due to multiple complex issues involving both biological and technical limitations in experimental 

design. To overcome these issues and increase the strength of detected associations, we repeated our 

analysis in a second independently collected cohort of 24, non-overlapping, mouse CC strains, whose 

bone marrow we profiled by CyTOF similarly to the first cohort (see Methods, Tables S8-S9). This 

yielded successful validation of 788 genes (51%) from the initially detected set (Figure 2B, Table S10 

for adjusted p-values). Of interest, for 45 genes out of this set we noted that their mutation is known to 

affect leukocyte levels according to the Mammalian Phenotype Ontology (p<10-12 by hypergeometric test) 

(Smith and Eppig, 2009). For example, genes specific to the immune system: Pax5, Cd28, Ltbp1 and 

genes with more housekeeping functionality: Myo3b, Hnrnpr and others (for full list see Table S11). 

Overlaying the genetic association by cell-type, we observed regulation that was overwhelmingly cell-

type specific rather than shared across multiple cell types (Figure 2C). Per cell-type, we identified that 

the associated genes formed a functionally connected network, suggesting they act synergistically to 

control a cell subset's frequency (Figure S2A-B).  

Genetic regulation of a cell's homeostatic condition may be determined by the cell subset itself, or by 

other cell subsets. For the majority (84%) of genetic variants we detected an association only in a single 

cell subset. To delineate the relationship between a gene's cellular genetic association and its expression 

pattern we checked each gene's cellular expression profile across the ImmGen sorted cell gene expression 

compendium (Heng and Painter, 2008) (see Methods). For the overwhelming majority of the genes whose 

variants were associated with a specific cell subset's frequency we detected their expression to be specific 

for that same cell subset (from hereon in-cyto-cis), (Figure 2D, mean 86.5%, ranging between 83-100% 

across subsets). Whereas, 1.5% of genes were expressed in the same lineage, but not in the associated cell 

subset, and an additional 5% not expressed by any of the immune subsets whose association we tested. 

The remaining 12% we defined as in-cyto-trans, that is genes whose variants were associated with a 

specific cell subset frequency, but not expressed in that cell or in other subsets of the same lineage. The 

distribution of genes between these latter three genes sets was expression threshold dependent, yet their 

existence could not be discounted and robust to false discovery assessments (see Methods). Taken 

together this suggests that homeostatic composition is a polygenic trait which at the highest significance 

level is cell type specific, that is, determined for each cell independently by different genes; yet influences 

on each cell's abundance by genetic variants of genes expressed in other cell-types may exist. 

Immune cellular profiles are governed by a polygenic network-of-networks with distinct 

architectural attributes  
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Given the complexity of the immune system we hypothesized that shared regulation of cell subsets is 

more pervasive but could not be detected due to stringent GWAS cut-offs. To overcome this, we 

leveraged the entire genetic association profiles, irrespective of association strength, of each of the 788 

validated genes across cell types to identify those genes likely to be associated with multiple cells. To do 

so, we clustered gene-phenotype association profiles and discovered 13 modules of cell-gene association 

profiles (see Methods). We identified 419 multi-cell-associated (MCA) genes, out of the 788 validated 

genes, which exhibited high LOD scores across two or more cell types (Figure 3A). We noted that genes 

associated with the progenitor cell population (from hereon progenitor MCA) were enriched for MCA and 

associated on average with more cell-types than non-progenitor associated (Figure S3A, p<10-42 by 

hypergeometric test for MCA enrichment). Fitting with this, we noted that LOD scores of genes with the 

cell-populations below the association cutoff, were significantly higher for progenitor MCA genes than 

those LOD scores we observed for non-progenitor MCA genes (Figure 3B, p< 10-6 by Wilcoxon). 

Summarizing the results of this signal-propagation methodology yielded a four level grading of associated 

genes: first, a global regulatory group of progenitor MCA genes (178 genes), second, pan-lineage MCA 

genes common to two or more lineages (169 genes), third, lineage-specific MCA genes shared solely 

between cell types in same lineage (72 genes) and finally those genes associated exclusively with a single 

cell-type tested (369 genes).  

From a functional perspective progenitor MCA genes formed a protein-protein interaction network 

(Figure 3C) whose members play a role in the regulation of cytoskeleton remodelling, migration (e.g. 

Rac2, DOCK2, FAK (Ptk2), integrin β7), apoptosis and hematopoiesis (Bcl2, Csf1, Il7-receptor, BLK); 

processes underlying key homeostatic functionalities whose dysfunction has been reported to drive 

immune-deficiencies and provoke cancer (Puel et al., 1998; Ambruso et al., 2000; Neri et al., 2011; 

Schuetz et al., 2011; Infusino and Jacobson, 2012; Dobbs et al., 2015; Dezorella et al., 2016). 

Generalizing on these functional observations, we performed a pathway enrichment analysis on all 

homeostatic network associated genes (Figure 3D, Table S12 for significantly enriched functions, 

threshold at p<0.01 BH adjustment). We observed that 52% of functionally enriched genes were 

annotated for homeostatic functions and mainly were being divided into one of four processes: 

proliferation, cell death, differentiation and cellular movement (p =10-8, 10-5, 10-4, 10-10 respectively, BH 

corrected). These functions were observed in each cell subset (Figure S3B). Thus, that akin to mRNA or 

protein species abundance, cell subset abundance is largely determined by genetic variants of genes 

associated with turnover. 

Combining the results of our gene-cell association grading with the information on mRNA expression 

cellular expression profiles, protein-protein interactions and functional analyses we performed conferred 
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three attributes to the immune cellular homeostasis network (Figure 3E):  (1) Commonality across cell-

types of cell-abundance-trait determination dictated by MCA genes,  (2) Specialization of cell type 

specific abundance dictated by in-cyto-cis cell-specific genes,  (3) Synchronization of systems-level 

balance between cell-subsets dictated by in-cyto-trans genes. Taken together our analysis suggests that 

homeostatic composition is governed by a polygenic "network of networks" with distinct architectural 

attributes and functionally enriched groups fitting the distributed and coordinated multi-cellular biology 

of the immune system. 

Genetic variants of evolutionary conserved turnover genes dictate immune cell subset abundance 

The architecture of immune homeostatic network and the central attributes which it confers may have 

risen over evolutionary timescales as the immune system developed to the rich multi-cellular 

communicating network it is today; beginning with an ancestral cell-type, the system diversified to 

include specialized cell-types which communicate with one another to achieve immune protection. 

Attributes such as shared regulation, a specialized cell-specific programs and inter-cellular 

synchronization program each pose a leap in the evolution of a complex system. We hypothesized that 

information on the evolution of these network attributes could be garnered through the evolution and 

function of genes tethered to each attribute. To do so, we used a gene sequence conservation score 

computed across 60 vertebrate species spanning an evolutionary time span exceeding 601 million years 

(see Methods). Testing differences in evolutionary conservation based on the expression of the 

functionally enriched genes, we observed that in-cyto-trans genes showed significantly reduced 

conservation score than in-cyto-cis genes (Figure 4A, p< 0.0002 by KS test), suggesting that 

synchronization functionality between cell-types evolved at later stages of the homeostatic network. 

However, analyzing differences in evolutionary conservation, we observed significantly higher 

conversation score of progenitor MCA genes compared to the cell-specific genes (Figure 4B, p< 10-5 by 

Student's t-test), suggesting genes associated with cell cycle regulation in multiple cell-types, and in 

particular progenitor MCA, appeared earlier in the evolution of the immune system compared to genes 

with similar annotation but with a cell-specific association. Interestingly, we observed an enrichment of 

in-cyto-trans genes for MCA (p<10-5 by hypergeometric test), suggesting that MCA status may be 

achieved either via conservation of ancestral association (e.g. progenitor MCA) or by trans-regulation.  

To show the importance of these turnover genes with trait determination, we sought to assess whether 

similarity in genetic profiles would yield a similarity in cellular profiles. Breaking down homeostatic 

associated genes by function, we noted proliferation genes showed significantly higher conservation score 

(Figure 4C, p< 0.0005 by ANOVA). We chose to focus on proliferation, given our evolutionary 
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conservation analysis and that we could experimentally assess proliferation rate by measuring the percent 

of cells in S phase by IdU incorporation (Methods). We clustered mice from the validation cohort based 

on their genetic variants of validated proliferation genes associated with a specific cell-type (Figure 4D, 

left) and contrasted the differences in cell abundance and percent of proliferating cells in each subset 

between clusters (Figure 4D for late B-cells, Figure S4 for monocytes, Table S13 for proliferation 

estimates). We observed that the mice having PWK/PhJ or CAST/Eij founder strains contributing to the 

allelic variants of genes associated with late B-cell subset, had significantly higher proliferation rates (p< 

0.05, by ANOVA) and higher subset abundance (p<0.01, by ANOVA). Taken together, these findings 

support a model of immune homeostatic network evolution in which a polygenic profiles similarity in 

these genes suffices to determine cell subset turnover and its abundance.  

Cell subset abundance determining genes are conserved in humans yet expand as a function of the 

environment 

The immune system is affected by the environment which alters over an individual's life history. Trait 

determination in such a scenario may result in genes being added or possibly even removed from the gene 

regulatory network governing the trait, as a function of whether a certain genetic variant plays a role in 

the biology condition at hand. Given the evolutionary conservation we observed for the genes governing 

the homeostatic network in the mouse, we next aimed to check how this network will manifest in 

environmentally experienced human adults. To do so, we analyzed the outcomes of three human GWAS 

studies aimed at identifying genes associated with immune homeostatic conditions. In total, these three 

studies tested the association over 300 traits of immune cell subset frequencies or counts, identifying total 

of 59 genes associated with one of these phenotypes. For these genes we observed functional enrichment 

that broadly split into two broad categories (Table S14): immune specific-related functionalities of 

response (e.g. 'stimulation of lymphocyte', ' activation of lymphocytes') which formed the overwhelming 

majority of functional enrichments, and a minority of functions annotated for homeostatic control. 

Beyond this, we noted were annotated for various immune diseases including influenza, celiac, 

rheumatoid arthritis (Table S15). Contrasting this functional annotation information with that we 

obtained in the mouse strongly highlighted the opposite trend, namely homeostatic control genes formed 

the majority of associated genes and enrichment for immune-specific-related functionality was 

predominantly absent. (Figure 5A left for mouse, right for human). The differences in lifespan and 

environmental exposure between mouse and man, suggests that genes associated with controlling immune 

cell abundance may be divided into genes whose functions are associated with environmental-interaction, 

such as TLR family members responsible for the alteration of the cell subsets due to pathogenic response, 
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and those associated with homeostatic control independent from the environment, such as ATG family 

members responsible for autophagy. 

We reasoned that the network governing an organisms' cell subset abundance must include genes whose 

function is directly associated with cellular turnover. These we predominantly identified only in the 

mouse but not the human. We analyzed the association of validated mouse orthologs with one or more of 

130 measured immune cell subset traits in a human immunophenotyping GWAS (see Methods) (Roederer 

et al., 2015). Testing 42,616 relevant SNPs, corresponding to 710 orthologous genes, we detected 47 

genes which were associated with the abundance of one or more cell subsets (Table S16, p< 1.9*10-6 

using an adjusted significance threshold, see Methods). Next, we asked whether the 47 CC-originating 

genes interact with one another and to those associations discovered by the human GWASs. Protein-

protein interaction analysis of the human associated genes pooled from all three GWAS, did not form a 

coherent network of interacting genes (Figure S5A). Yet, incorporating the CC-originating genes with 

those identified in human, we observed a large connected component consisting of 51 genes with direct 

interactions between immune specific and homoeostatic control genes (Figure 5B, Figure S5B, see 

Methods). In agreement with the human functional enrichment analysis, the function of genes in the 

connected component was not equally spread between species; rather immune specific functions were 

derived from the human studies and homeostatic from the CC mice. Considering the complementary 

nature of the mouse and human hits, and the differences in environment between the two species. Taken 

together, this suggests that over time as a function of environmental exposure the gene regulatory network 

governing immune cell abundances changes and adds additional environmentally sensitive components, 

with genetic variants of environment-interacting genes regulating cellular abundance via their interaction 

with environment-independent genes.   

Given the homeostatic functionality we detected in the associated genes, we reasoned that their mutation 

may play a role in diseases in which the normal process of proliferation and/or death is disrupted. We thus 

leveraged information regarding patient somatic mutations in TCGA cancers, including both solid and 

blood tumors, to check the behavior of genes associated with control of cell subset frequencies (see 

Methods). Across the majority of cancers, we observed a strong enrichment for mutation accumulation in 

this gene set compared to equally sized random controls sampled from the entire human genome as well 

as to a more conservative background consisting of genes expressed in immune cells only (p< 10-7, 

 p<10-17 respectively by Fisher’s combined probability test, Figure 5C when performed for 106 cell 

subset associated genes, Figure S5C when restricted to 47 CC derived genes validated in human, see 

Methods). This mutational enrichment was observed even following exclusion of known proliferation and 

death annotated genes (p<10-6, p<10-7 respectively by Fisher’s combined probability test). Taken together 
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this suggests that tumors may preferentially mutate member genes of this homeostatic control network for 

co-option, from their original immune origin, to control growth.  

Discussion 

Here we coupled the high variability of Collaborative Cross mice with the high dimensional phenotypic 

capabilities of mass cytometry to identify a global genetic architecture that is responsible for between 

individuals' homeostatic differences. Our analysis revealed an unprecedented number of novel 

associations of genes with immune cellular homeostasis. Using a network propagation approach, we 

detected a complex gene regulatory network made up of distinct cell-type networks and an inter-cellular 

network connecting them which governs homeostatic balance. Moreover, this genetic network is enriched 

for homeostatic functionalities, whose genetic variants are the origin of individual immune variation and 

can determine phenotype as we experimentally show. By hypothesis driven testing we validate a subset of 

the network in human GWAS which exhibits mutational enrichment across multiple cancer types.  

Control of cell abundance is a key feature of all immune cells in response to stimuli. The evolutionary 

sequence conservation we observe for homeostatic network genes mirrors a model of evolution whereby 

the immune protection shifted from being the responsibility of a single cell types, to multiple cell types 

which work in a synchronized manner to achieve an emergent immune protection. Progenitor MCA 

genes, are oldest and may have formed the earliest part of the network, with cell-type specific genetic 

variants following as cells could tune their abundance by specialized mechanisms fitting their biology. 

Finally, genes with in-cyto-trans pattern of regulation could develop for coordination of inter-cellular 

homeostatic balance (Figure 6A). More broadly, this immune system growth model would suggest that 

over evolutionary time scales, as the system becomes more complex the number of genes involved in 

homeostatic determination would grow (Figure 6A, top, 'black line').  

Beyond evolutionary timescales, our results suggest that the polygenic network which determines 

immune cellular homeostasis also changes on a much shorter time scale, that of an individual's life 

history. Our analysis of human GWAS suggests that as environmental exposures occur through life, 

additional genes begin playing a role, possibly becoming the more dominant effectors of the network 

phenotypic outcome. The total size then of the gene regulatory network associated with the trait expands 

over lifespan, though the number of genes with a large effect size on the phenotypic outcome may vary 

over the course of an individual's lifetime (Figure 6A left, 'black solid and dashed line', Figure 6B).  

Our study sheds light on several burning issues related to polygenic trait determination: First, and recently 

hotly debated issue (Boyle, Li and Pritchard, 2017; Wray et al., 2018), is whether a  set of 'core' genes 
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exists in a polygenic network which are directly associated with phenotype functionality, and thus more 

important to investigate. Our choice to study cellular homoeostasis is illuminating in this regard, as based 

on mathematical principles defining turnover as a set of equations describing production and removal, a 

core set of genes may be reasonably well defined. Our results suggest that turnover genes, are the core of 

the network (52%) yet over an individual's life history and possibly over evolutionary time scales, the 

relative contribution to the network of this core homeostatic gene set will shrink due to addition of other 

genes or substitution of the relevant core. This implies, that a focus on core genes, even in this well-

defined trait may be problematic (Figure 6A top and left, 'red line', Figure 6B). We expect this to be even 

more problematic, when a trait's biology is difficult to ascertain or may even change as a function of life 

or disease progression.  A second interesting point is that 46% of associated genes in our study are 

associated only with the regulatory network of a single cell-type, whereas it has been suggested that the 

genetic contribution of cell-type specific regulatory elements is minor (Boyle, Li and Pritchard, 2017). 

This contrast may be explained by the increased cell-type level resolution of our study whereas the prior 

expression profiles of genes were obtained at a tissue level (‘The Genotype-Tissue Expression (GTEx) 

pilot analysis: Multitissue gene regulation in humans’, 2015). Last, due to power considerations we 

exclusively studied SNPs located in coding regions, despite the fact that it has been suggested that 

complex trait variation is predominantly determined by non-coding regions (Pickrell, 2014). Our 

discovery of a large number of genetic associations in coding SNPs does not discount the non-coding 

regions, but does suggest an underestimate for the role alteration in protein structure may create in a gene 

regulatory network. 

The large variation exhibited by CC mice, coupled with their controlled genetics and clean environment 

make them an ideal model for systems level studies, providing opportunity usually unavailable in human 

– such as to profile bone marrow. It would be interesting to analyze mice under controlled simulation of 

real-life environmental exposure, as our inferences on changes in the homeostatic network as a function 

of environmental exposure currently come from studying humans. The polygenic network we uncovered 

in that the bone marrow might be reflected in other tissues as well, and likely affected by other cell types 

in the tissue. It might be of interest to understand how the polygenic network that governs immune cell 

subset abundance communicates with other regulatory networks in the body, for example microbiome, 

which have been shown to have an impact on immune cell homeostatic balance (Snijders et al., 2016).  

Evidence of immune cellular profiles or immune states being of clinical relevance for diagnostic purposes 

has been shown across multiple disease conditions and health outcomes. These states are reached through 

a developmental trajectory which begins in early life. The position of an individual on this trajectory is a 

function of the interaction of the genetic network we identify here with the environment in which the 
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individual resides. This suggests that our results may be built on for tailoring immune cellular clinical 

assays for personalized medicine.  
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Figure 1. Immune cellular profiles are highly variable across genetically diverse CC mice strains and their regulation is polygenic. 
(A) Tree structure of Citrus high dimension clustering of single cell bone marrow hematopoietic cells from Collaborative Cross mice. Cell subsets are color-labeled according to 
phenotypic markers distinctive for major bone marrow populations. Circled nodes were used for further downstream analysis. Inset shows example of Ly6c and CD11b single cell 
marker expression distributions (red and blue, cluster versus background respectively), contributing to cluster characterization of monocytes. (B) PCA of immune cellular profiles
obtained from manual gates of CC (purple) and founder (green) strains. Only strains with complete set of markers were included (Table S3). (C) CC strains form a continuous 
phenotypic variation in immune homeostatic profiles whose dynamic range exceeds that of founder strains and is similar to that observed in humans. Boxplots showing pairwise 
analysis of distances in PC space (the first and second dimensions were used) within groups of duplicates, founder or CC strains as well as ten humans healthy bone marrow. 
Student's t-test p-value are: **p<0.01, ***p<0.001. Pairwise distances between replicate strains appear in the Duplicate group. (D) Scaffold mapping between manually gated 
populations and those obtained from Citrus clustering analysis overcomes heterogeneity in marker expression. (E) Illustration of QTL mapping in CC mice: CC strains genome is 
reconstructed at each locus to one of eight founder strains are assayed for a quantitative trait such as an immune cell subset frequency. For each locus, and each CC strain, mice 
are split based on which founder strain contributed the locus (e.g. 'Locus X’ for the left mouse is contributed by 129S1/SvImJ and for the second mouse by NZO/HlLtJ), we then test 
phenotypic association across all founders. (F) Manhattan plot for all associated loci, the threshold of association is set according to FDR of each population. Colors denote cell
subset gene was mapped to.
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Figure 2. The regulation of immune cell subsets is cell specific and includes both in-cyto-cis and in-cyto-trans regulatory genes. 
(A) An imbalance in genetic associations across immune cell subsets. Bar-plot showing the number of associations per cell type. Bars are colored according to the cell type. 
(B) Validation of gene-trait associations in a second cohort of 24 non-overlapping CC mice strains (p<0.05 following BH adjustment). Filled-opaque bars show the percent of validation
success for each immune cell subset out of the total number of associated loci for that subset. (C) A circular heatmap of per cell-type associated genes, abbreviation of cell types is 
indicated on each ring. NK-NK cells, CD4-CD4 T cells, CD8-CD8 T cells, GN-Granulocytes, MO-monocytes, SP-progenitor cell population. (D) Homeostatic condition of immune cells is 
predominantly determined by genetic variants expressed in the same cell subset. Split Circos plot, depicting the fraction of genes expressed in each cell subset (right) based 
on ImmGen sorted cell gene expression patterns and the cells in which we detected an association of a gene's genetic variant with the cell's frequency (left). The color of the ribbon
is set according to the cell subset the genes are associated with. Inset (top) shows log2 expression across cell-types of Il7r and Bex1 and inset (bottom) shows the strength of association
for Il7r and Bex1 across cell subsets (blue and red lines respectively, expression threshold in grey). Il7r is associated with pro-B cell subset frequency and also expressed in it, while Bex1 
is associated with pro-B cell subset however is not expressed in it. (Short abbreviations used for: T-T cells, NK-NK cells, GN-Granulocytes, Stem- Stem and progenitor cells). (E) An 
illustration of regulatory process: expression pattern differs by cell-type (filled bubbles are genes expressed in the cell-type, hollow bubbles are not expressed). Two main patterns of 
regulatory genes : in-cyto-cis genes are expressed in and associated with the same cell-type (cell-type A regulates cell-type B blue line), in-cyto-trans genes are expressed by other
cell-type. The latter type of regulation may exist between same lineage members (cell-type C regulates cell-type B purple line) or between members of different lineages (cell-type A 
regulates cell-type B red line).    
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Figure 3. Polygenic network-of-networks regulates immune cell subset frequencies in homeostasis. 
(A) Signal propagation approach reveals additional regulatory layers of the immune homeostasis. Clustering gene association profiles across multiple cell types identifies modules of 
genes with similar association pattern, the percent out of maximal association median LOD score is shown for a module. Inset: individual module profiles, each line represents a gene in 
a module, red line shows median association for each LOD score. Modules are divided to cell type specific or shared across multiple cell types (blue or orange color in annotation bar
respectively). (B) Progenitor MCA genes form a cell-gene association hub. Density plot of LOD scores of progenitor MCA genes (green) versus other MCA genes (grey) achieved in
non-associated cell populations (p<10-42 by hypergeometric test). (C) Protein-protein interaction network of progenitor-MCA group of genes, the genes are colored according to their
related pathways. (D) Immune cell subset abundance is largely determined by genetic variants of genes associated with homeostatic functionalities. Bar-plot shows functionally 
enriched categories. X-axis indicates -log10 adjusted p-value of the enrichment analysis (BH corrected Fisher’s exact test). Homeostatic functions indicated in orange, immune-related in 
blue and housekeeping in grey. (E) From left to the right: (i) Per cell type circular heatmap of associated genes following the signal propagation approach. Genes are colored according
to regulation type (in-cyto-cis in blue, in-cyto-trans in yellow). Outer circle color reflecting type of association: cell specific, lineage specific MCA, pan-lineage MCA and progenitor MCA 
genes colored (purple, pink, orange, green accordingly). (ii) Immune regulation is performed by polygenic network-of-networks with distinct architectural attributes. Commonality dictated 
by shared genes, Specialization by cell-specific genes, Synchronization by genes affecting a cell-type they do not expressed in. (iii) Representative bar-plots for granulocytes, B cells and 
Late-B cells regulatory composition. Two color bars are showing the annotation of each group of genes, for example, first group has both blue and purple annotation, indicating cell specific 
in-cyto-cis group of genes. 
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Figure 4. Immune cell subset abundance is determined by evolutionary conserved turnover genes. 
(A) Inter-cellular synchronization of immune cell homeostatic control evolved at later evolutionary stages. Density plots of mean conservation score for in-cyto-cis and in-cyto-trans 
group of genes (p< 0.0002 by KS test). (B) Box plots showing progenitor MCA genes associated with cell cycle pathway are more conserved compared to cell-specific genes with 
similar annotation (p< 10-5 by KS test). (C) Comparison of mean conservation score between enriched homeostatic functions groups of genes (p < 0.0005 by ANOVA). (D) Genetic 
similarity dictates phenotypic similarity. Clustered genetic profile of CC mice based on late B-cell subset associated proliferation genes. Alleles that differ from the C57BL/6J mouse
are colored by founder strain. CC mice clustered by the hamming distance. (ii) For each clustered group, two boxplots are shown: (1) the abundance (colored contour, p<0.01, 
by ANOVA) and (2) percent of proliferating cells (colored fill, p< 0.05, by ANOVA), (iii) Histogram of IdU staining of a representative sample for each clustered group.
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Figure 5. Cell subset associated polygenic network validates in human GWAS and expands during lifetime as a function of environmental exposure. 
(A) Human and mouse associated genes show opposite trends in functional annotations. Enrichment analysis of genes found in CC mice study and three human GWAS categories 
with the highest number of genes are shown in the bar plots. The names of the categories are annotated in orange for homeostatic functions, green- functions that are related to immune
response. (B) Homeostatic control genes identified in the CC and validated in human and the human set from GWAS formed a network of 51 genes with direct interactions between
immune response and homeostatic genes. Genes are colored by homeostatic functions (migration, death and survival, proliferation and immune response colored respectively 
orange, blue, purple and green), no coloring- genes with no enriched functions. (C) Tumors may preferentially mutate genes from the homeostatic control network. Genes associated 
with immune cell subset frequency are at the top percentile of mutated genes in cancers, compared to equally sized random controls. Bar-plot shows different TCGA cancers with 
percentile calculated against a background consisting of genes expressed in immune cells (blue), or all human genes (light blue).
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A

Figure 6. A model of a multi-cellular regulatory network dynamics as it alters as a function of system evolution and environment. 
(A) Complex trceaits are determined by genetic regulatory networks that change over both evolutionary and life span time scales. On the evolutionary axis, 
when only a single cell type existed, a genetic network which regulated that cell type included mainly MCA genes. With time the system diversified to include 
additional cell types, such that more cell specific genes were added, finally genes responsible for synchronization were created to control the abundance of multiple
cell types. On the life span axis, this polygenic network changes with life span, as with increased environmental exposure additional genetic variants begin playing 
a role in the regulatory network. The number of core homeostatic genes, set of genes directly associated with the phenotype, those responsible for homeostasis 
maintenance and the regulatory network size change over individual's life span and possibly over evolutionary time scales.  
(B) Both genetics and environment impact the immune system and the impact of the latter grows with age. Identifying genes which underlie immune
cellular homeostasis in early and late life stages may thus result in non-overlapping gene sets. This can be generalized to all environmentally 
sensitive systems where both genetics and environment impact the phenotype, and where the balance between them shifts over time.
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STAR Methods 

Samples collection and processing 

Mouse samples- founder strain males (n=3 per strain) of the A/J, C57BL/6J, 129S1Sv/ImJ, NOD/ShiLtJ, 

NZO/H1LtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ strains were purchased from The Jackson Laboratory 

and sacrificed at 6-8 weeks. For the Collaborative Cross strains, the Systems Genetics Core Facility 

(University of North Carolina) provided 129 mice aged 8-14 weeks from 55 different complete lines, at 

least two mice per strain. Mice genetic information can be found at http://csbio.unc.edu/CCstatus/. Mice 

were bred and sacrificed at UNC facility. All procedures involving animals were performed according to 

the Guide for the Care and Use of Laboratory Animals with prior approval by the Institutional Animal 

Care and Use Committee within the Association for Assessment and Accreditation of Laboratory Animal 

Care-accredited program at the UNC at Chapel Hill (Animal Welfare Assurance Number: A-3410-01). 

Bone marrow was collected from necropsy following humane euthanasia by CO2. Bone marrow was 

flushed with cold CSM (PBS + 0.5% BSA) from the femur and tibia using a 27.5-gauge needle and a 

10mL syringe to achieve a single cell suspension. 

Human samples- bone marrow aspirates from AML patients presenting at the Hematology Department in 

Rambam Medical Health Care Campus were collected.  All patients gave informed consent according to 

the declaration of Helsinki (IRB number: 0573-10). Mononuclear cells were separated by centrifugation 

over a layer of LymphoprepTM (Axis-Shield PoC AS, Oslo, Norway) and then stored in freezing medium 

[fetal bovine serum (FBS) with 10% DMSO] in a liquid nitrogen tank. 

Cell staining- Primary conjugates of mass cytometry antibodies were prepared using the MaxPAR 

antibody conjugation kit (Fluidigm Inc.) according to the manufacturer protocol and optimal 

concentration was determined by titration. Cells from each sample were washed twice and a total of 3 

million cells were used for staining. Cells were resuspended in 500ul containing 1:2000 Rh DNA 

intercelator for 20 min of live/dead cells staining. Samples were washed with CSM buffer and 

resuspended in total of 100 ul metal-tagged antibody mix for cell surface markers staining for 1 hour. 

Cells were then fixed in 1.6% PFA (Sigma-Aldrich) in a total volume of 200 ul and stored at 40C.  DNA 

intercalator Ir191/193 staining was performed post-PFA removal for 20 min at 1:2000 concentration in 

500 ul volume. Finally, fixed samples were washed 3 times with DIW immediately prior to acquisition.  
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Samples acquisition and data analysis -Samples were acquired using CyTOF 1 machine at 500 events/sec 

for a total of 100-200K events. Internal metal isotope bead standards were added for sample 

normalization as described (Finck et al., 2013) to account for the decline in mean marker intensity over 

time. Acquired data were uploaded to a Cytobank web server (Cytobank Inc.) for data processing and 

gating out of dead cells and normalization beads. To account for intra-run declines in mean marker 

intensity over time, we performed a within-sample-over-time normalization step by using a running 

window to adjust mean marker intensity throughout each individual run such that the mean expression 

over time was equal to that measured at the beginning of the run. We manually gated all the major cell 

populations in human and mouse bone marrow (Figure S1B-C). Resulting phenotypes were than 

exported and adjusted to the total number of cells in the sample. Cell subset frequencies for each sample 

are summarized in (Table S4).  

Phenotyping of immune variation and mapping of associated genetic loci 

Single cell data of bone marrow populations from CC mice were analyzed by Citrus, a high dimensional 

clustering analysis algorithm. 40,000 cells were sampled from each sample and the minimum cluster size 

was set to 1%. The resulting tree structure organizes clusters of single cells sharing similar set of 20 

markers. Clusters are organized in a hierarchy with leaves of the tree in the periphery being more specific 

and those inward aggregating multiple leaves. Next, we performed PCA analysis on clustered bone 

marrow cell subset frequency profiles of the 15 CC strains and 3 founder strains, which had a full set of 

phenotypic markers and calculated the Euclidian distance between each two mouse samples taken into 

account first two PCA dimensions. We repeated the analysis for ten human samples. Finally, we mapped 

manually gated populations to high dimensional clusters using Scaffold algorithm, which calculates 

distance between populations based on a predefined set of phenotypic markers (Table S2 for the list of 

selected markers for mapping).  

Filtering of loci- to reduce the number of multiple hypotheses tests, we chose to focus on associations 

with genomic loci that passed the following filter criteria: First, those loci which contained genes for 

which at least one of the CC founder strain is predicted to have an altered protein structure due to a 

sequence change compared to C57BL6 in exons of protein coding genes (Keane et al., 2011; Yalcin et al., 

2011); Second, those genes determined to be expressed in immune cells based on Immgen consortium 

(Ericson et al., 2008). Using these two filtering criteria reduced the number of tested loci from 77,725 to 

15,470.   

Gene-Phenotype Association- we performed QTL mapping using DOQTL R  package and MegaMUGA 

SNP chip (https://csbio .unc.edu/CCstatus/index.py) given the CC genotype reconstruction and the 

probability of descent from one out of eight founder strains for each genomic interval. We searched for 
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significant association between immune phenotype and each genomic locus, using an additive linear 

model. To check for stability of observed association we used a leave-one-out approach, calculating the 

strength of association. We only selected the associations which passed the threshold of significance in a 

strain independent manner. We set a significant association threshold based on the FDR of same 

population. We adjusted the threshold such that will allow an FDR of 5% and less. We calculated FDR 

for each phenotype separately by shuffling each time the mice ancestry in the locus and calculating the 

strength of the association, followed by a leave-one-out approach as previously described.  

Functional gene classification and validation of genetic associations 

Gene expression- We estimated expression of genes according to ImmGen, using a threshold of log2(47) 

(Ericson et al., 2008), as a threshold for genes of  intermediate and high probability of expression. To be 

conservative towards calling trans-associations based on the expression of a gene in the associated cell-

type or another cell-type, we considered intermediate and high threshold of expression genes as expressed 

in a cell. 

Validation of gene-trait association- We used a second cohort of mice to validate our findings. Each 

significant gene-phenotype association we identified in the first cohort was tested for significance in the 

second cohort (p<0.05).  

Enrichment analysis- we performed pathway enrichment analysis with IPA software (Ingenuity Pathway 

Analysis Qiagen), using the core analysis module. Repeating related functional terms groups were 

grouped together and the group with highest adjusted p-value and total number of genes for each 

functional enrichment is shown. Functionally enriched genes were annotated for at least one of four main 

processes: proliferation, cell death, differentiation and cellular movement. 

Validation of variants of proliferation genes- We injected the mice i.p. with 50mg/kg body weight IdU 

(5-Iodo-2′-deoxyuridine) twice: 48 hours and 24 hours prior to euthanasia. To test for differences in IdU 

levels we manually gated all the subsets for IdU positive and negative cells. Mice were clustered, per cell-

subset, by hierarchal clustering, based on the loci identified as associated with the cell-subset in the first 

cohort. One-way ANOVA was performed in order to test for difference in percent of proliferating cells 

(p<0.05).  

Genetic network analysis 

Signal propagation approach - for each cell type we chose relevant modules by comparing the median 

association LOD scores. We considered a module as associated with a cell type if its median LOD score 

was at least 40% of the highest median calculated for that module. Next, we constructed a network 
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including all cell types and associated genes, such that for each cell type, genes found by QTL mapping 

and genes from signal propagation procedure were included. 

MCA distribution comparison- we identified genes associated with progenitor cell population (i.e. genes 

member in one of six modules associated with progenitor cells). For these genes, all of which were MCA 

genes based on the incorporated modules, we computed across all genes, the distribution of LOD scores 

in those cell-subsets for which their association was below the association threshold (i.e. those cells with 

which they were not associated). This distribution we compared with a similar one obtained for MCA 

genes which were not members of these six modules (i.e. the five other MCA modules).  

Human GWAS analysis 

We obtained data from the study published by Roederer and colleagues (Roederer et al., 2015). Per trait, 

files (151 such files) contain association p-values for all SNPs tested in the study. Using Biomart R 

package, for each gene of interest we estimated which SNPs are in its closest neighborhood, the SNP with 

lowest p-value was chosen to account for gene- trait strength of association. We tested all genes found in 

the first cohort of our study and were validated in the second cohort, adjusting the GWAS threshold to be 

1.9*10-6 according to the number of SNPs we tested and correcting for 129 traits (out of 151) of cell 

subset frequency in the GWAS study. In such a way we identified 47 genes which passed the threshold 

and were associated with 4 immune traits. To assess the false discovery rate of the procedure we 

calculated the FDR for each LOD score by 100 randomly choices of list of genes (Figure S5B). Next, we 

searched for experimentally validation of protein-protein interaction between 106 genes (59 identified 

directly in one of the three human GWAS and 47 we identified in CC and validated in human). We 

identified a large interaction network covering 51 genes (16 of which were previously detected in the 

human and 35 novel human findings, stemming from the mouse). 

Cancer mutation enrichment 

We obtained somatic mutations of cancer patients TCGA. For each cancer type we computed the overlap 

between genes mutated in that cancer with a random gene set of equal size to the remaining set of 

identified genes post filtering for filtering for one-to-one orthologues. We performed this computation 

100 times to generate a distribution, and then checked the percentile at which the identified set of genes 

placed. We considered two sampling options, to sample genes out of the whole human genome or only 

from genes that are expressed in immune cell subsets. To conduct a more conservative test, we checked 

whether the results remain stable even when taking out genes that were previously functionally annotated 

as proliferation and death genes by IPA and/or GO.  As such, we analyzed the data in four conditions: 

every combination of background and gene set options. 
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Figure S1. Gating strategies that were used for mouse and human bone marrow samples and calculated FDR for QTL mapping 
results, Related to Figure 1.
(A) Phenotypic profiling of bone marrow populations follows genotypic similarity. Heatmap of scale Citrus cluster frequency (columns) for CC mice and founder
strains (rows). Founders indicated in black and the CC strains in grey. 
(B) Gating strategy of human bone marrow samples, 7 populations.
(C) Gating strategy of mouse bone marrow samples, 12 populations.
(D) Calculated FDR for each population is shown as a function of the LOD score.
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Figure S2. Cell specific network of regulation, Related to Figure 2.
(A) Pro-B cell specific network.
(B) Monocyte specific network.
Gene shapes are annotated based on IPA gene ontology, genes that were found as associated with monocyte and Pro-B cell subset 
frequencies are colored in grey. 
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Figure S3. Polygenic network with different level attributes regulates immune cell subset abundance in homeostasis and  
has an enriched ‘core’ of turnover genes, Related to Figure 3. 
(A) Genetic network of immune cell subset frequency associated genes, multi-cell-associated (MCA) genes are colored according to the number 
of cell types they associated with. 
(B) For every cell, genes associated with each of these four functions are found associated in a cell-specific manner. The subset identity is 
shown as : MO-monocytes, CD4T- CD4 T cells, GN-Granulocytes, Late B-cells, SP- Stem and progenitor cells, B cells, CD8T- CD8 T cells, 
NK- NK cells, pro-B cell. The colors of the enriched functions: blue- proliferation, orange- death, yellow migration, black-multi functional gene 
(all differentiation genes are multi-functional). 
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Figure S4. Validation of the proliferation function, Related to Figure 4. 
From the left to the right: (i) Clustered genetic profile of genes that are associated with monocyte cell subset frequency for 
each mouse. All possible alleles that differ from the C57/BL6J mouse allele for each gene were extracted, and the resulting 
profile across all associated genes was clustered by the hamming distance. (ii) For each clustered group, two boxplots are 
shown: (1) boxplot with colored contour for the abundance and (2) with a color fill for the percent of proliferating cells (bottom
and top axes respectively).
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Figure S5. Human GWAS results didn’t form a coherent network, mutational enrichment across genes validated in human GWAS ,
Related to Figure 5.
(A) A protein-protein interaction network of identified genetic associations in human GWAS.
(B) False discovery rate (red line) for 100 random sets of genes compared, LOD scores lower than the significant threshold are shown. 
(C) Analysis for 47 CC derived genes validated in human. Percentile is shown for cancer type, the percentile calculated after 
removing non-immune genes out of genes expressed in immune cell only (red), all human genes (light red).
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Supplementary tables 

Table S1- Related to Figure 1: All mouse strains that were included in the study. CC mouse have a typical 

CC strain identifier; founder strains the full strain name. The table determines at which cohort the mouse 

was profiled.  

Table S2- Related to Figure 1: Detailed list of all CyTOF antibodies (markers) that were used in the 

study, including clone and vendor. For each antibody indicated whether it was used for clustering 

purposes, as Citrus input for the calculation of events (cells) distances, and/or mapping, Scaffold uses 

markers to map clusters to appropriate manual gates based on distance between both.  

Table S3- Related to Figure 1: The table indicates for each CC strain in the first cohort of mice which 

immune cell subsets could be detected in that strain using our phenotypic panel.  

Table S4- Related to Figure 1: The table summarize frequency for each population identified in 1. 

manually gated populations in CC mice bone marrow 2. clustered populations in CC mice bone marrow 

3. manually gated populations in human bone marrow. 

Table S5- Related to Figure 1: All genes that were tested in QTL mapping process, the genes are 

expressed in immune cells according to ImmGen and predicted to have a mutation that has moderate or 

high impact on the protein structure according to Mouse Genome Project available at: 

http://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1505.  

The table also indicates which types of mutations are possible in the gene: single nucleotide 

polymorphisms (SNPs), insertions/deletions(INDELS), structural variants (SVs).   

Table S6- Related to Figure 2: Table of all associations that were detected in the study and met our 

filtering criteria. For each association (i) left flanking SNP of the genetic interval is shown, (ii) the 

chromosome on which located the genomic loci (iii) it’s actual position on the chromosome in cM (iv) 

LOD score of the association (v) phenotype to which the association was made (vi) Gene that is included 

in the interval (vii) effect size of the gene.  

Table S7- Related to Figure 2: Summarize the total number of associations with each cell subset.  

Table S8- Related to Figure 2: The table summarize frequency for each population identified in manually 

gated populations in CC mice bone marrow of second cohort of mice.  

Table S9- Related to Figure 2: The table indicates for each CC strain in the second cohort of mice which 

immune cell subsets could be detected in that strain using our phenotypic panel.  

Table S10- Related to Figure 2: The table shows adjusted p-value of the validation for each trait-gene 

association in the second cohort of mice.  

Table S11- Related to Figure 2: The table shows mouse phenotypes according to Mammalian Phenotype 

Ontology for part of genes that were found as associated to immune cell subset frequencies in our study.  
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Table S12- Related to Figure 3: Results of the enrichment analysis for mouse study by IPA. All 

significant categories after multiple testing correction are shown. The specific category, disease or 

functional annotation, global annotation (manually curated), the actual genes included, number of genes 

in the category and the adjusted p-value of the hypergeometric test.  

Table S13- Related to Figure 4: Table shows percent of IdU positive cells for each strain in each cell 

subset.  

Table S14- Related to Figure 5: Results of the enrichment analysis for three human GWAS by IPA. All 

significant categories after multiple testing correction are shown. The specific category, disease or 

functional annotation, global annotation (manually curated), the actual genes included, number of genes 

in the category and the adjusted p-value of the hypergeometric test.  

Table S15- Related to Figure 5: List of genes found in three human studies: Orrù et al., 2013; Roederer et 

al., 2015; Patin et al., 2018. 

Table S16- Related to Figure 5: Table shows genes that were found in mice and validated in human 

GWAS. For each gene we indicated association p-value, the immune phenotype it associated with and its 

name as it appears in the original paper Roederer et al., 2015. 
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