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Abstract 22	

The molecular makeup of the offspring of a dividing cell gradually becomes phenotypically 23	

decorrelated from the parent cell by noise and regulatory mechanisms that amplify pheno-24	

typic heterogeneity. Such regulatory mechanisms form networks that contain thresholds 25	

between phenotypes. Populations of cells can be poised near the threshold so that a subset 26	

of the population probabilistically undergoes the phenotypic transition. We sought to char-27	

acterize the diversity of bacterial populations around a growth-modulating threshold via 28	

analysis of the effect of non-genetic inheritance, similar to conditions that create antibiotic-29	

tolerant persister cells and other examples of bet hedging. Using simulations and experi-30	

mental lineage data in Escherichia coli, we present evidence that regulation of growth am-31	

plifies the dependence of growth arrest on cellular lineage, causing clusters of related cells 32	

undergo growth arrest in certain conditions. Our simulations predict that lineage correla-33	

tions and the sensitivity of growth to changes in toxin levels coincide in a critical regime. 34	

Below the critical regime, the sizes of related growth arrested clusters are distributed ex-35	

ponentially, while in the critical regime clusters sizes are more likely to become large. 36	

Furthermore, phenotypic diversity can be nearly as high as possible near the critical regime, 37	

but for most parameter values it falls far below the theoretical limit. We conclude that 38	

lineage information is indispensable for understanding regulation of cellular growth. 39	

  40	
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Author Summary 41	

One of the most important characteristics of a cell is whether it is growing. Actively grow-42	

ing cells can multiply exponentially. In the case of infections and cancer, growth causes 43	

problems for the host organism. On the other hand, cells that have stopped growing can 44	

allocate cellular resources toward different activities, such as bacteria surviving antibiotics 45	

and tissues in multicellular organisms performing their physiological roles. Observing 46	

small bacterial colonies in a microscope over time, we have found that cells closely related 47	

to each other often have similar growth state. We were curious if lineage dependence was 48	

an intrinsic property of growth regulation or if other factors were needed to explain this 49	

effect. We therefore built a computational model of a growing and dividing cellular colony 50	

with an encoded growth regulation network. We found that regulation of growth is suffi-51	

cient for lineage dependence to emerge. We next asked if lineage dependence constrains 52	

how diverse the cellular population can become. We found that cellular diversity can reach 53	

a peak that is nearly as high as possible near the conditions that have the highest lineage 54	

dependence, but that most conditions do not permit such high diversity. We conclude that 55	

lineage is an important constraint and discuss how the growth arrest transition is in some 56	

ways like a phase transition from physics, and in some ways strikingly different, making it 57	

a unique phenomenon. 58	
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Introduction 59	

The process of cellular growth is both the distinguishing feature of living matter and 60	

central to the roles of regulatory networks from microbes to metazoa. Growth and division 61	

is also a primary source of phenotypic diversification. For instance, when a bacterial cell 62	

divides, and its cellular contents become partitioned into two daughter cells, diffusible cy-63	

toplasmic components are often randomly distributed into the daughter cells in a binomial 64	

distribution. Such phenotypic diversification permits populations to be robust to unpredict-65	

ably changing environments, a phenomenon known as bet-hedging. A striking example of 66	

this effect is the regulation of growth rate by toxins. 67	

 
 
Figure 1. Simulated effects of a molecular network with an endogenous growth-regu-
lating threshold in bacteria. a. Simplified toxin-antitoxin module, depicting its interac-
tion with cellular growth rate. b. Deterministic steady state model predictions for a toxin 
with growth feedback. A regime with no deterministic molecular steady state (labeled 
"Growth Arrest") arises when toxin production sufficiently exceeds the growth feed-
back-imposed threshold. Growth rate is normalized to the maximum = 1. c. Binomial 
phenotypic inheritance at a constant molecule production rate. With no effect on cellular 
growth rate, the population exhibits regression to the mean within a few generations of 
division. d. With a discrete growth arrest threshold, the population becomes increas-
ingly skewed over time. Box and whisker plots represent median, interquartile range, 
and range of a population started from a single simulated cell. Details on model imple-
mentation are presented in Supplemental Materials. 
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Most of the molecular content in the bacterial cytoplasm undergoes growth-mediated 68	

dilution (in some cases, such as most proteins, as the primary mechanism of degradation). 69	

Reduction in cellular growth rate by a cytoplasmic toxin, or other molecule with toxic ef-70	

fect, creates an effective positive feedback loop, trapping some cells in a growth arrested 71	

state until they can escape in changed conditions [1-3]. This mechanism is associated with 72	

antibiotic-tolerant persister cells arising in the population, which cause difficulty in antibi-73	

otic treatment [4]. Various feedback mechanisms are associated with growth bistability [5]. 74	

Thus, understanding the processes that result in growth diversification is an important goal 75	

on the path to solving the impending antibiotic resistance crisis. 76	

Growth arrested cells typically represent a small subset of a bacterial population [6]. In 77	

E. coli, growth arrested persister cells are associated with alterations in metabolic activity 78	

via the stringent response [7, 8], and with efflux of antibiotics [9]. Depending on the mech-79	

anism of induction, persister cell fractions can be spontaneously produced or respond to 80	

external stresses [6]. Persistence in E. coli is associated with toxin-antitoxin systems and 81	

global metabolic regulation [10], with a core mechanism of toxins that are neutralized by 82	

antitoxins [11] (Fig. 1a-b). The competing effects of toxin and antitoxin create a threshold 83	

in a stoichiometric effect via molecular titration that can cause conditional cooperativity of 84	

TA gene regulation [12, 13]. When accounting for gene expression noise and proteolysis 85	

of antitoxins, free toxin levels will gain sufficient concentration to result in a growth feed-86	

back mechanism that ultimately induces growth arrest in above-threshold cells. The result 87	

is skewed phenotypic distributions, with a core fast-growing group of cells along with rarer, 88	

growth arrested cells, as opposed to regression to mean levels observed in networks without 89	

the growth arrest threshold (Fig. 1c-d). 90	
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Motivated by observations on phenotypic inheritance [14-16] and the effects of lineage 91	

correlations on daughter cell phenotypes [17-21], we asked how much phenotypic diversity 92	

could be attained for various levels of endogenous growth regulation, and to what extent 93	

lineage determines phenotypic outcomes. Based on our previous study [17], we hypothe-94	

sized that a higher chance of growth arrest amplifies the effects of cellular lineage on phe-95	

notypic correlations. 96	

To explore this hypothesis, we used an established experimental model of threshold-97	

based growth arrest in E. coli to experimentally confirm lineage dependence. We then cre-98	

ated a minimal multiscale computational framework that allowed more extensive charac-99	

terization of the various growth regimes than were possible with time-lapse microscopy. 100	

Our computational model represents the processes of cellular growth and division, with 101	

binomially distributed inheritance of a simplified toxin-antitoxin-like system subject to sto-102	

chastic molecular kinetics in individual cells over time. We modeled a functional depend-103	

ence of growth on toxin concentrations as an exponential function with a key parameter, α, 104	

that quantifies how toxic the toxin is. We used various specific realizations of the frame-105	

work to simulate growth of small bacterial populations from a single common ancestor and 106	

growth regulation by the simulated toxin for various toxin:antitoxin production ratios. Our 107	

computational results confirm and extend the experimental results, showing that the bet-108	

hedging regime results in complex lineage structures. 109	

These results show, for the first time, how important lineage is to growth regulation 110	

and bet-hedging phenotypes involving growth. Consideration of lineage is now indispen-111	

sable for studies on phenotypic heterogeneity, phenotypic memory, and regulation of the 112	

growth arrest transition. Finally, our results suggest that lineage space used in evolutionary 113	
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[22] and multicellular organism development studies [23] is an important concept to apply 114	

in studies of bacterial phenotype. 115	

Results 116	

Lineage Dependence in an Experimental Model 117	

We first sought to establish an empirical basis for growth arrest kinetics and threshold-118	

based amplification of lineage correlations. An established experimental model of thresh-119	

old-based growth arrest [17] provided a simple way to track growth in a lactose-sensitive 120	

strain of E. coli. In this model, lactose stimulates growth at sufficiently low concentrations, 121	

but creates toxicity in a subset of cells at high concentration that results growth arrest or 122	

death of those cells. Presently, the precise mechanism of toxicity is not known in this 123	

model, but the competing effects of lactose import rate and processing rate are the most 124	

likely culprit, and the threshold-based mechanism for growth arrest and persistence is es-125	

tablished [17]. In the high-lactose condition, bacterial colonies have a slow net growth rate 126	

and a high likelihood of any individual cell eventually undergoing growth arrest and/or 127	

death. 128	

We used time-lapse fluorescence microscopy to track individual microcolonies in a 129	

microfluidic device with constant perfusion of fresh minimal medium containing defined 130	

concentrations of a single sugar as the sole carbon source. We used two carbon sources: a 131	

growth-arrest-prone condition with a high lactose concentration (50 g/l), and a condition 132	

that does not induce a growth arrest threshold, with a moderate glucose concentration 133	

(2 g/l) (Fig. 2; Movies S1 and S2). As inferred from extension of cellular major axis length, 134	

cells grow exponentially at heterogeneous rates (Figs. 2a-b, 2e-f, S1) and are capable of 135	

quickly shifting between growth rates, e.g., from fast to slower or non-growing (Fig. 2b, 136	
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2f). To identify cases of mid-cell cycle shifts in growth rate, we fit each cell cycle to an 137	

exponential growth model, applied Bonferroni correction to the resulting fit significance 138	

levels, and selected the non-significant cases (Fig. S3). A constitutive fluorescent reporter 139	

provides clear visual evidence of mother-daughter cell correlations only in the growth ar-140	

rest-prone condition (Fig. 2c, 2g). 141	

We reconstructed the microcolony lineage in both conditions to quantify the effects of 142	

non-genetic inheritance in this experiment (Fig 2d, 2h). The result of the growth arrest 143	

threshold is a striking effect on the structure of the lineages. The growth arrest-prone line-144	

age shows distinct clusters of growth arrested or dead cells, and clusters of faster growing 145	

cells, resulting in an asymmetric tree (Fig. 2d). On the other hand, absent the growth arrest 146	

threshold, the tree is nearly symmetric (Fig. 2h). In the growth arrest prone condition, we 147	

classified cells into being growth arrested or dead (apparent growth rate = 0) or actively 148	

growing. Of the 63 total cells in the final lineage, 16 (25.4%) were determined to be com-149	

pletely growth arrested or dead at the final time point. We determined the pairwise lineage 150	

distance, defined as the time since the most recent common ancestor, for three subsets: all 151	

cells, only growing cells, and only growth arrested cells (Fig. S2). The all-growing and all-152	

growth arrested subsets both had significantly closer lineage distances compared to the all 153	

cells set (p < 0.05, Mann-Whitney U). From these results, we conclude that lineage has a 154	

strong effect on phenotypic heterogeneity during colony development around a growth-155	

modulating threshold. 156	
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 157	

 

Figure 2. Growth rate of E. coli B REL606 GFP+ cells prone to stochastic growth arrest 
in high lactose reveals lineage dependence. Numbers indicate time in hours. a – d. Col-
ony grown in a commercial microfluidic device with continuous perfusion of minimal 
medium containing 50 mg/ml lactose as described in Methods. e – h. Colony grown 
with continuous perfusion of minimal medium containing 2.5 mg/ml glucose, which 
does not predispose cells to growth arrest. a, e. Growth kinetics of a selection of cells. 
Individual trajectories are divided by cell division or different growth rates by a least-
squares fit of the data to the model L(t) = L0egt. b, f. Growth rates from exponential 
model fit. Vertical lines indicate cell division times for the corresponding trajectory 
color. c, g. Selected frames of the time-lapse microscopy experiment. d, h. Lineages 
derived from time-lapse microscopy. Colors indicate growth rate. Lack of color indi-
cates insufficient data for a significant fit. Note asymmetry in d and symmetry in h. 
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Lineage Dependence is Reproduced in a Simple Computational Branching Process Model 158	

To determine the minimal set of mechanisms necessary to reproduce the interactions 159	

between threshold-based molecular regulation of growth rate and population dynamics, we 160	

created a computational model containing cell agents growing and dividing at a typical rate 161	

for enteric bacteria (30 minute doubling time), each with a cell volume and division upon 162	

doubling of the volume. Each cell agent has embedded stochastic kinetics of a growth-163	

inhibiting molecule (analogous to a toxin) and a neutralizing molecule that binds and pre-164	

vents toxicity (analogous to an antitoxin). As discussed in more detail in Methods, we as-165	

sume toxin and antitoxin production, growth-mediated dilution, and binding-unbinding ki-166	

netics of the molecules. We used a phenomenological exponential function layer that trans-167	

lates between concentrations of toxin and resultant growth rate, with a single parameter, α, 168	

that determines the level of toxicity. 169	

The key similarity between our experimental and computational approaches is the ex-170	

istence of a threshold in the molecular network that determines the growth rate of the cell. 171	

There are many potential mechanisms for such a threshold to arise, as discussed in the 172	

Introduction. We do not claim that the mechanism implemented in the computational 173	

model is the same as the experimental model. Rather, there is an underlying fundamental 174	

interplay between growth regulation and lineage structure that we will show is conserved. 175	

To determine the effect of the growth threshold on microcolony dynamics, we scanned 176	

the rate of toxin production, keeping antitoxin production constant. (In most natural toxin-177	

antitoxin systems, the antitoxin is unstable. We simulated this case as well, below). The 178	

simulations were seeded with a single cell growing with excess antitoxin and permitted to 179	

grow for 100 simulation minutes before changing the toxin production rate to a positive 180	
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value. After several generations of growth, we found three qualitative regimes across dif-181	

ferent toxin production rates: symmetrical growth with no or little growth arrest (toxin 182	

production rate 0-2.5 /min), a critical regime with clusters of growing and growth arrested 183	

cells (toxin production rate 3-4.5 /min), and a regime of nearly instantaneous growth arrest 184	

(toxin production rate >4.5 /min) with the colony trapped in its near-initial state. Figure 3 185	

shows representative cases with growth rate (Fig. 3a) or toxin concentration (Fig. 3b) de-186	

picted with coloring of each cell. 187	

Sub-lineages of fast-growing and slow-growing cells are evident in the critical regime 188	

(with toxin production rate 5-6 /min; Fig. 3a). Lineage effects are also evident from toxin 189	

levels, where there are sublineages escaping from entry into high toxin concentrations (blue 190	

clusters in Fig. 3b). The precise time of entry into growth arrest can have a large effect on 191	

toxin levels, suggesting that growth rate is a more precise phenotype to follow for the study 192	

of lineage effects in this system. 193	

 
Figure 3. Simulated lineages over a range of toxin production rates. Time proceeds 
downward in each lineage and begins at the onset of toxin production (t = 100 h). a. 
Lineage growth rate superimposed on the lineages. b. Free toxin concentration super-
imposed on the lineage. Lineages for production rates 3.5 /min and higher are plotted 
with wider trajectories for visibility. 
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Lineage Dependence is Strongest in the Critical Regime 194	

To quantitatively characterize the properties of growth transitions in our simple com-195	

putational framework, we considered the fate of simulated microcolonies at 250 minutes 196	

of growth, which is shortly before the fastest growing cases begin to become computation-197	

ally intractable, but after the population size is beyond the minimal requirement to be con-198	

sidered a microcolony. Mean population growth rates and toxin concentrations across mul-199	

tiple (N = 100) replicates reveal a growth-regulatable region flanked by regions of almost 200	

full growth and almost complete growth arrest (Fig. 4a). In the region where population 201	

growth is low but positive, toxin concentrations increase monotonically but non-linearly 202	

with increases in toxin production (Fig. 4a).  203	
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To quantify the amount of lineage information shared by pairs of cells in their pheno-204	

types, we calculated mutual information between phenotypic differences between pairs of 205	

cells and pairwise lineage distance. From each simulation, we sampled one pair of cells 206	

randomly to ensure independent, identically distributed samples and performed a 207	

resampling procedure 100 times to increase the confidence in our estimate. This was done 208	

for absolute growth rate differences and absolute toxin concentration differences (Fig. 4b). 209	

Various studies of have found mutual information between different points on a lattice to 210	

be indicative of a phase transition [24, 25]. While our model may not exhibit a true phase 211	

transition, our mutual information estimator reveals a similar peak for both growth rate and 212	

 
Figure 4. Growth, lineage information, and diversity of simulated cellular lineages at 
various rates of toxin production at 4 h. a. Average cellular growth rates (red) and toxin 
concentrations (blue) 150 minutes after onset of stress are proportional to toxin produc-
tion rate, with distinct growth regulation regimes. Error bars indicate standard deviation. 
b. Mutual information between cell pair growth rate differences, in red (or toxin con-
centration difference, in blue) and their lineage distance reveals a lineage-dependent 
effect on cellular phenotypes near the regulatable region. c. Dispersion of average 
growth rate for low toxin production rates. Vertical bar represents the peak mutual in-
formation depicted in panel b. d. Growth rate distributions in the population at various 
toxin production rates as indicated. Red represents the mean frequency at a given growth 
rate; blue, standard deviation in the frequency. 
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toxin concentrations in the critical regime, where the population growth rate is most sensi-213	

tive to changes in toxin production rates. 214	

Distributions of growth rates reveal the underlying population structure not evident 215	

from mean growth rates shown in Figure 4a. Distributions that emerge from the model 216	

include uniformly fast (Fig. 4c, top left in Fig. 4d) or slow growing (Fig. 4c, bottom right 217	

in Fig. 4d), bimodal between fast and slow growing (top right in Fig. 4d), and long-tailed 218	

with a peak at either fast (at toxin production rate 3 /min, not shown) or slow growing 219	

(bottom left in Fig. 4d). 220	

Fluctuating Cell Growth Dynamics in the Critical Regime 221	

To examine a further indicator of criticality in this system, we calculated the dynamics 222	

of growing cell numbers below (toxin production rate 0-2.5 /min), near (toxin production 223	

rate 3-4.5 /min), and above the regulatable region (toxin production rate >4.5 /min) of 224	

growth rate. With toxin production well below the regulatable region, the predicted cell 225	

growth becomes equivalent to an uncoupled case where toxin has no effect on growth.  226	

Growing cell numbers show variability between simulation replicates near the critical 227	

region (Fig. 5a). Over time, the dynamics of the mean number of growing cells approaches 228	

exponential growth at low toxin production rates, critical growth at intermediate toxin pro-229	

duction rates (as shown in Fig. 5a), and extinction (elimination of all growth) at high toxin 230	

production rates. Mean cell numbers in critical growth show persistent oscillations that 231	

dampen as the simulated growth rates become decorrelated by noise (Fig. 5a). As toxin 232	

production approaches the critical regime, some cells accumulate high toxin and, depend-233	

ing on individual cellular toxin accumulation, subsets of the population will enter the ex-234	

ponential or extinction phase. Thus, the time required to conform to the exponential or 235	
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extinction regimes is high in the critical regime, reminiscent longer relaxation times ob-236	

served near critical points in other models [e.g. 26]. Autocorrelations of growing cell num-237	

bers at lag times after the onset of toxin production reveal this effect. For example, high 238	

autocorrelation around lag time 100 min in critical regime (vertical dotted line) signifies 239	

growth remaining correlated for a longer time compared to the autocorrelation at toxin 240	

production rate 3.0 /min. The presence of more than two zeroes in the absolute autocorre-241	

lations indicates the oscillatory regime (Fig. 5b). 242	

Attainable Levels of Phenotypic Heterogeneity Under Lineage Constraints 243	

 
Figure 5. Critical slowing down of growing cell dynamics. a. Growing cell numbers 
over time in individual simulations (blue-green lines) and averaged between them (red 
line) reveals persistent dampening oscillations in the critical regime. b. Mean absolute 
autocorrelations near the critical regime. Δt, lag time after onset of toxin production. 
Toxin production rates with three zeroes indicate oscillatory solutions that converge 
slowly to the regimes of exponential growth or extinction. Vertical dashed line indicates 
peak lineage-growth rate mutual information; see Fig. 4. N = 100 simulations for each 
toxin production rate. 
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If lineage is capable of constraining the attainable phenotypes of offspring cells, it 244	

stands to reason that the amount of phenotypic heterogeneity attainable in a microcolony 245	

is lowered by lineage dependence in systems that generate heterogeneity by diversifying 246	

growth rates. It is difficult to generalize what constitutes meaningful diversity in growth 247	

rates; small changes may or may not be important to fitness in the long run, but the im-248	

portance of the distinction between growth arrested and fast-growing cells is clear. There-249	

fore, we used two possible definitions of meaningful diversity: in one, arbitrarily small 250	

changes in growth rate or toxin concentration are meaningful. In the other extreme, we 251	

assumed that only growing versus non-growing cells (or high versus low toxin) is a mean-252	

ingful distinction.  253	

We quantified the phenotypic heterogeneity as information entropy (base 2), binning 254	

the simulated cells according to the two definitions of diversity (Fig. 6). We calculated the 255	

maximum entropy in the fine-grained binning case by assuming each cell had a unique 256	

value. Note that the maximum entropy is extensive, decreasing with lower total cell count 257	

(Fig. 6a). In the binary case, the maximum entropy is simply 1 bit. Regardless of the 258	

 
Figure 6. Entropy of growth rates and toxin concentrations at 250 h. Vertical line indi-
cates the point of highest lineage-dependent mutual information between growth rate 
and lineage distance. a. Fine-grained binning. b. Binary binning into growing-non grow-
ing or high-low toxin concentration. Error bars indicate standard deviation. 
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definition used, the peak entropy of the population can get surprisingly close to the maxi-259	

mum entropy. Note that peak entropy of growth rate nearly coincides with peak mutual 260	

information between growth rate differences and lineage distance (Fig. 6, vertical line). 261	

However, entropy away from this peak sharply decreases from the maximum. In the critical 262	

regime, population heterogeneity is affected by two key factors: sensitivity of growth rate 263	

to toxin and lineage dependence. Given that we observed higher lineage dependence in the 264	

critical regime, the key question here is whether this dependence reduces the possible at-265	

tainable heterogeneity in bet-hedging. The entropy plot (Fig. 6) shows that sensitivity of 266	

growth rate to toxin dominates and thus phenotypic heterogeneity is maximal at when the 267	

lineage is most structured.  268	

Growth Regulation as a Criterion for Lineage Dependence 269	

To explore the generality of our results, we created models with variations on the orig-270	

inal, and tested for lineage dependence. 271	

The first set of variations test two simplifications in the primary model: stability of the 272	

antitoxin, and bursty production of the molecular species. While we regard the model to be 273	

a general threshold-based growth control mechanism, it is worthwhile to determine if a 274	

toxin-antitoxin module with unstable antitoxin qualitatively reproduces our main results. 275	

Varying the stability of the antitoxin, we indeed found the same qualitative results (Fig. 276	

S4a). Similarly, simulating bursts of gene expression producing toxin and antitoxin pro-277	

duced the same qualitative results (Fig. S4b). 278	

Our next model variation was to vary the effect of growth regulation, increasing it 279	

(α=0.3 in 𝑔(𝑇, 𝑡); see Methods below) and abolishing it completely (α=0 in 𝑔(𝑇, 𝑡)). As 280	

expected, a larger quantitative effect of toxin preserved the main results, but shifted the 281	
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toxin concentration necessary to see the lineage dependence (Fig. S4c). Abolishing growth 282	

regulation eliminated the peak in mutual information, and thus lineage dependence (Fig. 283	

S4d). 284	

Distributions of Growth Arrested Cluster Sizes  285	

Large clusters of growth arrested cells could have effects on the spatial development 286	

of bacterial colonies, as daughter cells tend to be correlated in space as well. We therefore 287	

asked what growth arrested cluster size distributions arise in the region where there is high 288	

mutual information between growth rate and lineage distance. We performed 10,000 sim-289	

ulations each and clustered the end-point populations according to lineage neighbors hav-290	

ing similar growth rate (with a cutoff of 0.01 /h to be considered growth arrested). Resulting 291	

clusters were pooled across simulations of the same parameter set. We present distributions 292	

of raw absolute cluster size, not normalized. 293	

Below the critical regime, the absolute cluster size distribution is nearly exponential 294	

(Fig. 7, red line with exponential fit as gray dashed line). As the probability of growth arrest 295	

increases (with high toxin production rate), the distributions diverge from exponential to 296	

make large clusters of growth arrested cells more likely (Fig. 7). At higher toxin production 297	

rates, the distribution is bimodal between large clusters and single growth arrested cells.  298	

 299	

  300	
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Figure 7. Distribution of growth arrested cluster sizes in sim-
ulated lineages. Clusters are exponentially distributed below 
the critical region (red line, simulation; gray dashed line, ex-
ponential fit ae–bc for cluster sizes c) but diverge from an ex-
ponential distribution near the critical region, eventually be-
coming bimodal (purple, blue, green, and orange lines). Each 
parameter set was simulated 10,000 times. a. Raw probability 
distributions. b. Probability distributions normalized to the 
probability of cluster size 1. 
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Discussion 325	

Regulation of growth is a central part of phenotypic control. Many factors can control 326	

growth rate, including extrinsic conditions such as starvation, and intrinsic regulators of 327	

growth that often operate with a threshold-based mechanism. Using an experimental model 328	

of threshold-based growth arrest arising from metabolic toxicity, we tracked cell growth in 329	

a bacterial microcolony with a high probability of undergoing the growth arrest transition, 330	

and a colony grown in a condition that does not display the threshold-based growth arrest. 331	

We found several large, discrete shifts in growth rate to occur at a faster timescale than our 332	

5-minute recording intervals (Fig. 2). Quantifying the lineage dependence of cellular 333	

growth phenotype, we found that growth arrested or dead cells tend to be clustered in the 334	

lineage, as do fast-growing cells. The difference in lineage shapes between the growth ar-335	

rest-prone and and non-growth arrest prone conditions is striking (Fig. 2d,h). 336	

We therefore sought the simplest possible model of microcolony growth dynamics that 337	

reproduces the effect. Our basic model captures single-cell biochemical kinetics on one 338	

scale (microscopic) interfacing population growth dynamics on another scale (macro-339	

scopic). We found striking phenotypic lineage dependence to emerge with the following 340	

criteria: (i) growth rate dependence on a toxin; (ii) stochastic dynamics around a cellular 341	

threshold embedded within the network; (iii) kinetic parameters calibrated so that the pop-342	

ulation average growth rate is near the regulatable region.  343	

As the probability of cellular transition to growth arrest increases, the mutual infor-344	

mation between growth rate and lineage distance increases to a peak, then decreases as the 345	

simulated microcolony reaches the condition of immediate growth arrest. This transition 346	

bears a resemblance to a phase transition, with correlation of microscopic length scales 347	
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peaking at the critical boundary. Here, the correlation length is in lineage space: we have 348	

assumed no traditional spatial information about the cells in the simulation. 349	

Lineage space is a binary tree growing with extinction probability based on micro-350	

scopic dynamics. Distances are modified by dynamical growth rates, which explains why 351	

a higher probability of heterogeneous growth results in structured trees. Thus, relating per-352	

sister and other threshold-based growth arrest mechanisms to the established mathematics 353	

of branching processes [27, 28] is an important direction for microbial physiology.  354	

After 100 simulated minutes we imposed a continuous rate of increased toxin produc-355	

tion (or antitoxin degradation, in one derived model) on the developing microcolony. The 356	

constant input of more toxin created an irreversible threshold. Once a cell crosses the 357	

growth arrest threshold, there is an irreversible stoppage of growth that arises from toxin 358	

growth feedback. The growth arrest condition can then be considered an absorbing state. 359	

Continuous transitions from active to absorbing states are generically characterized by the 360	

scaling properties of critical directed percolation [29-31]. Our model qualitatively repro-361	

duces characteristics of directed percolation, including longer relaxation times near the 362	

critical region (Fig. 5) and different regimes of growth arrested cluster size distribution 363	

(Fig. 7). However, the dimensionality of the space is unclear, and may be shaped by the 364	

probability of growth arrest. Thus, we are doubtful that bet hedging quantitatively con-365	

forms to the classic criteria for directed percolation. 366	

If lineages impart spatial structure onto growth phenotypes, then do they impose an 367	

upper limit to the level of phenotypic heterogeneity that can be attained by a microcolony? 368	

The population is most sensitive to fluctuations directly in the region with the highest lin-369	

eage dependence, the latter of which appears to imply a dampening of phenotypic 370	
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heterogeneity. However, multiple methods of measuring total population entropy suggest 371	

that the population can still approach the maximum total entropy in cases where growth 372	

rates are both finely-binned and binned into only two phenotypes – growing and growth 373	

arrested (Fig. 6). Heterogeneity is reduced as the population reaches either extreme of high 374	

or low average toxin level. Thus, counterintuitively, a more highly structured lineage yields 375	

a higher level of heterogeneity. Lineage plays an interesting role in determining the phe-376	

notypes of extant growing cells, but it does not appear to restrict what phenotypes can be 377	

attained. 378	

The purely intracellular phenomena considered here allow lineage to be the only type 379	

of space considered. However, closely related cells in many conditions, such as surface-380	

attached conditions or channels, will be physically closer together as well. In many bacte-381	

rial colonies with a substantial chance of endogenous and exogenous conditions interacting 382	

to determine the growth arrest transition (such as quorum sensing), an information metric 383	

that includes components of both real space and lineage space will need to be considered. 384	

 385	

  386	
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Methods	387	

Cell Culture Conditions 388	

E. coli B REL606 lacI– PlacO1-GFP was grown from -80º C cryogenic culture for 18 h 389	

in LB medium in a shaking incubator (37º C), acclimatized by incubating in Davis minimal 390	

medium containing either 50 mg/ml lactose (DMlac50) or 2 mg/ml glucose (DMglc2) for 391	

24 h, and resuspended either in fresh DMlac50 or DMglc2 culture, respectively, for 3 hours 392	

before beginning time-lapse microscopy. 393	

Microscopy and Image Analysis 394	

We used an Olympus IX81 inverted fluorescence microscope with an incubated imag-395	

ing chamber (Olympus, Tokyo, Japan). The chamber with objective was pre-heated, bac-396	

terial cultures were added to a pre-heated CellAsic ONIX microfluidic plate (Millipore, 397	

Billerica, Massachusetts) at an approximate OD450 of 0.005, and a continuous media flow 398	

of 1 psi DMlac50 or DMglc2 was maintained for the duration of the experiment. Images 399	

in brightfield and green fluorescence (488 nm stimulation / 509 nm emission) channels 400	

were captured every 5 minutes with a 4k CMOS camera, followed by ZDC autofocus. For 401	

the DMlac50 experiment, we used a 100x oil immersion objective. Due to technical issues 402	

with the objective, we used a 60x air objective for the DMglc2 experiment. Thus, the pixel 403	

lengths of the cells between the two experiments should not be directly compared. 404	

Images were cropped after identifying a stable microcolony originating from a single 405	

cell. We developed a semi-supervised cell tracking algorithm in Mathematica (Wolfram 406	

Research, Champaign, Illinois) with manually input cell division times and cell lengths. 407	

From this information, we reconstructed the lineage and approximated growth rates with 408	

exponential growth models. When mapping the growth rates to the lineages in Fig. 2, we 409	
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approximated growth rates of cells with non-significant exponential fits using piecewise 410	

linear regression as reviewed in [32]. 411	

Multiscale Growth Simulation Framework 412	

To capture the minimal mechanisms necessary that recapitulate non-genetic inheritance 413	

and effects of cellular lineage, we created a multiscale growth simulation framework with 414	

individual cell agents, each containing a molecular network of interacting proteins, referred 415	

to as toxin and antitoxin, with toxin affecting cellular growth rate. 416	

We track the simulated number of toxin and antitoxin molecules as well as cell volumes 417	

for each cell agent across time. In the next time step, t+δt, the number of toxin and antitoxin 418	

molecules are determined by stochastic simulation (below) and are updated for that cell. 419	

Cellular growth rates are set by a deterministic function of the toxin concentration (#/vol). 420	

The change in the volume (δv) in δt is determined by the amount of toxin present at that 421	

time. When cell volume doubles, the number of each molecule is distributed binomially 422	

into the two daughter cells. From that time on, the two daughter cells are labeled as differ-423	

ent cells and are iterated in the same way. We initiate each simulation as a single cell with 424	

no toxin and allow growth for a few generations (100 minutes) before applying toxin pro-425	

duction rate (or antitoxin degradation rate) of a given quantity. The primary purpose of this 426	

model is to capture the qualitative effect of the growth arrest threshold, so several important 427	

details about the biophysics of kinetics in growing cells were omitted, such as the effects 428	

of chromosome replication and the volume dependence of bimolecular stochastic reaction 429	

propensities. 430	

Estimation of Mutual Information from Simulated Lineages 431	
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We sought to develop a sampling methodology to ensure independent, identically dis-432	

tributed samples from lineage simulations to estimate the mutual information between lin-433	

eage distance d and phenotypic differences between pairs of cells φ. Phenotypic differences 434	

(φ) could be growth rate or intracellular toxin concentration. To do so, we performed 100 435	

independent simulations in each condition, and randomly drew a single pair of cells from 436	

each lineage. Our estimate of mutual information was calculated from the resulting distri-437	

bution of i.i.d. samples: 𝐼(𝐷, 𝛷) = ∑ ∑ 𝑝(𝑑,𝜑) log2(
3(4,5)
3(4)3(5)

)4∈75∈8 . A more accurate es-438	

timate of absolute mutual information may extrapolate to an infinite sample size. In our 439	

case, the relative mutual information between different locations in parameter space suf-440	

fices to demonstrate the existence of a strong lineage dependence for certain parameter 441	

ranges. To estimate the uncertainty of our relative mutual information estimate, we 442	

resampled 100 cell pairs with replacement and present the resulting mean ± standard devi-443	

ation. Entropy was calculated by 𝐻(𝑋) = −∑ 𝑝(𝑥=)>
=?@ 	𝑙𝑜𝑔2	𝑝(𝑥=), where 𝑝(𝑥=) repre-444	

sents the probability mass function of a discrete variable 𝑋. 𝑋 could be growth rate or toxin 445	

concentration. 446	

 447	

Stochastic Toxin-Antitoxin Threshold Model 448	

We considered a simple network consisting of three variables: toxin, antitoxin and 449	

toxin-antitoxin bound complex. Possible reaction events are synthesis of toxin and anti-450	

toxin, and binding and unbinding between toxin and antitoxin molecules. The reaction 451	

scheme for the basic model is: 452	
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   453	

The parameter kt is the toxin production rate varied in the simulations. Antitoxin production 454	

parameter, ka, is kept constant (ka = 4.2 /min) to allow the production ratio of toxin and 455	

antitoxin to be changed. Growth-mediated loss is implemented through g(T, t) which is a 456	

function of the cell volume in the algorithm (below). Parameters kb and ku are binding and 457	

unbinding rates; kb = 0.1 and ku = 0.1 throughout. In the most basic model, each species is 458	

considered long-lived on the timescales of the simulation, so we do not consider any addi-459	

tional degradation processes. Variations on this model are discussed in Results. 460	

The relationship between toxin concentration and cellular growth rate, the most phe-461	

nomenological part of the framework, captures the interface between molecular and popu-462	

lation dynamic scales. We reasoned that, while some random factors may reduce or in-463	

crease the effect of toxin, the generality with which toxin affects global protein synthesis 464	

rates [11, 33-37] means that many stochastic effects will cancel, resulting in a nearly de-465	

terministic relationship. Because toxin levels generally halt ongoing processes without sig-466	

nificant delay [38-41], we approximated the effect of a given toxin level to be instantane-467	

ous. This assumption is supported by our experimental results, which show shifts in growth 468	

rate faster than the 5 minute intervals measured (Fig. 2). We thus constructed a determin-469	

istic function to reflect the functional dependence of growth on toxin concentrations: 470	

𝑔(𝑇, 𝑡) = 𝜆𝑒FGH(I)/K(I), where α is a parameter that represents the toxicity of the toxin, T. 471	

We used α = 0, 0.1 and 0.3 to represent cases with no toxicity, moderate toxicity, and high 472	

toxicity, respectively. Python scripts are given in S1-S3 Model. 473	

   

kt⎯ →⎯ T g T ,t( )⎯ →⎯⎯
ka⎯ →⎯ A g T ,t( )⎯ →⎯⎯

T + A kb

ku

! ⇀!!↽ !!! TA g T ,t( )⎯ →⎯⎯
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Simplified Computational Model of Binomial Inheritance 474	

To illustrate the effects of growth arrest on distributions of growth-modulating cyto-475	

plasmic contents (Fig. 1), we created a simplified computational model with constant pro-476	

duction, constant sub-threshold generation times, and binomially distributed molecular 477	

contents between two daughter cells. One simulation for each initial condition was run for 478	

12 generations, with 10 molecules produced per generation, and a growth arrest threshold 479	

of 20 molecules. Initial conditions were 0, 10, 20, or 30 molecules. A second case with no 480	

threshold was simulated with the same parameters and initial conditions. The Mathematica 481	

code is given in S4 Model. 482	

 483	
Deterministic Molecular-Scale Model as a Basis for Growth Feedback 484	

The exact functional dependency of growth on toxin is unknown. In our stochastic 485	

simulation framework, we considered an exponential dependence of growth on toxin. Fig. 486	

1b depicts a deterministic model of toxin growth feedback by a free toxin as follows: 487	

, where kt is the toxin production rate, γ is the maximum growth rate, 488	

and θ determines the toxicity level of the toxin. We chose the Hill form for the determin-489	

istic model because it has a closed-form steady state. The steady state is 𝑇L = 	 MN
OFPNQ

. When 490	

kt/θ > γ, there is no steady state at this scale and the containing cell is expected to enter 491	

growth arrest. This simple model demonstrates the basis for growth feedback-induced 492	

growth arrest in a single cell. For Fig 1b, parameters are: kt = 4.2 /min, γ = 0.023, and θ = 493	

100 molecules. We note that the basic growth arrest threshold effect readily emerges in 494	

both Hill and exponential model forms, and likely a variety of other mathematical forms.  495	

  
!T = kt −γ

θ
θ +T

T
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Supporting Information Captions 

S1 Video. E. coli microcolony undergoing frequent growth arrest. Time-lapse fluores-

cence microscopy of a cell lineage of Escherichia coli B. REL606 lacI– PlacO1-GFP in 

DMlac50. Cells are tracked and measured as indicated. Numbers represent time (minutes) 

after the first frame. Experimental details are given in Methods. 

S2 Video. E. coli microcolony growing without the growth arrest threshold. Time-

lapse fluorescence microscopy of a cell lineage of Escherichia coli B. REL606 lacI– PlacO1-

GFP in DMglc2. Cells are tracked and measured as indicated. Numbers represent time 

(minutes) after the first frame. Experimental details are given in Methods. 

S1 Figure. Growth trajectories for all cells in the microcolony depicted in Figure 2. 

S2 Figure. Probability distribution of lineage distance (time since most recent com-

mon ancestor) for the experimental lineage. All cells (a), only non-growth-arrested cells 

(b), and only growth-arrested cells (c) in the lineage shown in Figure 2d. p < 0.01 for 

growth-arrested cells to not to have lower lineage distances versus either of the other two 

groups (one-tailed Mann-Whitney U test). 

S3 Figure. Non-exponential cell length trajectories. Lengths of cells between divisions 

were tested for a significant fit to an exponential growth model in the growth arrest-prone 

condition. These cases failed the significance test with a Bonferroni-adjusted α = 0.05 (ad-

justed value = 0.000424). 

S4 Figure. Computational model extensions preserve the central results. a. Altering 

toxin degradation rates to represent the precise mechanism of toxin-antitoxin systems. b. 

Altering toxin and antitoxin production so that they are bursty with a telegraph (ON-OFF) 
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model. c. Increasing toxicity with parameter α = 0.3. d. Eliminating growth feedback (α = 

0) eliminates the peak of mutual information along with the lack of macroscopic growth 

regulation. 

S1 Model. Python script for simulating lineages with stochastic simulation of the in-

tracellular toxin-antitoxin system. 

S2 Model. Python script for simulating lineages with stochastic simulation of the in-

tracellular toxin-antitoxin system with bursty telegraph model of toxin and antitoxin 

production. 

S3 Model. Python script for simulating lineages with stochastic simulation of the in-

tracellular toxin-antitoxin system with fast degradation of the antitoxin. 

S4 Model. Simplified computational model of binomial inheritance Mathematica 

file. 

S1 Data. Data used to generate plots in Figure 3. 
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