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 16 

Abstract 17 

The environment can strongly influence the survival of aquatic organisms and their resulting 18 

dynamics. Our understanding of these relationships, typically based on correlations, underpins 19 

many contemporary resource management decisions and conservation actions. However, such 20 

relationships can break down over time as ecosystems evolve. Even when durable, they may not 21 

be very useful for management if they exhibit high variability, context dependency, or non-22 

stationarity. Here, we systematically review the literature to identify trends across environment-23 
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recruitment relationships for aquatic taxa from California’s San Francisco Bay and Sacramento-24 

San Joaquin Delta Estuary. This is one of the most heavily modified aquatic ecosystems in North 25 

America, and home to numerous species of concern whose relationships with the environment 26 

inform regulatory actions and constraints. We retested 23 of these relationships spanning 9 27 

species using data that have accumulated in the years since they were first published (9-40 28 

additional years) to determine whether they persisted. Most relationships were robust (i.e., same 29 

or stronger in magnitude) to the addition of new data, but the ability to predict how a species will 30 

respond to environmental change did not generally improve with more data. Instead, prediction 31 

error generally increased over time and in some cases very quickly, suggesting a rapid regime 32 

shift. Our results suggest that more data alone will not necessarily improve the ability of these 33 

relationships to inform decision making. We conclude by synthesizing emerging insights from 34 

the literature on best practices for the analysis, use, and refinement of environment-recruitment 35 

relationships to inform decision making in dynamic ecosystems. 36 

 37 

Introduction 38 

The environment can have a profound and complex influence on aquatic organisms and their 39 

population dynamics (e.g., Szuwalski et al. 2015). Understanding when and how the 40 

environment influences the survival, abundance, and recruitment of fishes and other aquatic 41 

organisms has long fascinated and perplexed fish and fisheries scientists and managers (Hjort 42 

1914; Cushing 1995; Jacobson and MacCall 1995). Knowing how the environment influences 43 

the survival and dynamics of fishes is of general ecological interest because of the light it can 44 

shed on, for example, the relative influence of bottom-up and top-down control in ecosystems. 45 

Quantifying how the environment influences recruitment can in theory help inform fisheries and 46 

improve management. Given the now pervasive influence of humans over the world’s aquatic 47 
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ecosystems (e.g., Halpern et al. 2015), understanding when and how the environment -- and 48 

human influences on it -- affect the dynamics and abundances of aquatic organisms is critical to 49 

many decisions in natural resource management. 50 

Relationships between the environment and recruitment, defined here as any relationship 51 

between the number of individuals in a population (or their survival rate) and their environment 52 

(e.g., river flow, pesticide concentration, water temperature), may break down over time. In a 53 

now classic review of fisheries literature, Ransom Myers (1998) found that only 22 of 77 54 

environment-recruitment relationships still held after being re-examined with new data. The 55 

relationships that were most likely to stand the test of time were those with temperature at the 56 

limit of a species’ range, where the influence of physical tolerance thresholds outweighs that of 57 

more complex ecological interactions. Even when such correlations are reliable, they may not be 58 

very useful for informing management if the described relationship is characterized by high 59 

variability, context dependency, or non-stationarity as is often the case with recruitment data. 60 

Nonetheless, relationships between the environment (which we define broadly as both natural 61 

and those aspects under human control) and fish recruitment are central to contemporary 62 

resource management decision-making and the conservation of aquatic species. Considering this, 63 

and the potential for environment-recruitment relationships to break down over time, there is a 64 

pressing need for guidance on best practices for the analysis, use, and refinement of 65 

environment-recruitment relationships to inform decision making in natural resource 66 

management.  67 

California’s San Francisco Bay and Sacramento-San Joaquin Delta Estuary (hereafter “Bay 68 

Delta”) (Figure 1) is an ideal system in which to examine the durability and usefulness (i.e., 69 

predictive power) of environment-recruitment relationships and their implications for decision 70 

making. The Bay Delta system has been continuously monitored in a systematic manner for long 71 
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periods of time, it is heavily altered and managed, and it is home to numerous endangered 72 

species and associated regulatory actions and constraints including some which are based upon 73 

environment-recruitment relationships (reviewed in Kimmerer 2004). Numerous relationships 74 

have been described for taxa in the Bay Delta, but very few have been revisited to test whether 75 

these correlations are reliable in the face of new data. 76 

Here, we systematically review the literature to identify environment-recruitment relationships 77 

for Bay Delta taxa. We then reanalyze the relationships where new data are available to quantify 78 

the extent to which the relationships still hold when confronted with new data. Finally, we 79 

synthesize emerging insights from the literature on best practices for the analysis, use, and 80 

refinement of environment-recruitment relationships to inform decision making in natural 81 

resource management.  82 

Methods 83 

Study area 84 

The Bay Delta is made up of a large interior delta formed by the Sacramento and San Joaquin 85 

Rivers feeding into a series of basins separated by narrow, deep tidal channels, which flow into a 86 

seaward region and ultimately into the San Francisco and San Pablo Bays which are connected to 87 

the Pacific Ocean (Figure 1A).  The Bay Delta is one of the most heavily modified estuaries in 88 

the United States, and is strongly influenced by state and federal water project operations. Two 89 

pumping facilities export delta inflows to meet metropolitan and agricultural water needs. Water 90 

exports can affect fish directly through entrainment into the pumping facilities, and indirectly 91 

though the influence of reduced flows on a wide range of abiotic and biotic variables (Figure 92 

1B). Established quantitative relationships between flow characteristics and fish abundance, 93 

survival, and migration underpin regulatory decisions regarding levels of allowable exports of 94 
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river flows and minimum outflow from the Bay Delta that maintain fish production and habitat 95 

within acceptable bounds (CDFW 2016a,b). 96 

 97 

Literature review 98 

We carried out a literature search of peer-reviewed publications, grey literature, and government 99 

agency reports to identify published examples of relationships between environmental variables 100 

and population parameters of aquatic Bay Delta species. Our initial search was carried out using 101 

Google Scholar and various combinations of search terms based on variables expected to 102 

influence organism abundance as described in comprehensive reviews of Bay Delta ecology 103 

(e.g., Kimmerer 2004; CDWR and USBR 2016). These search terms included “fish”, 104 

“invertebrate”, “abundance”, “survival”, “entrainment”, “migration”, “environment-105 

recruitment”, “environmental variable”, “X2”, “flow”, “conductivity”, “turbidity”, and “prey 106 

density”. The resulting set of publications and reports was then supplemented by consulting 107 

regulatory documents to identify additional relationships that underpin contemporary 108 

management decisions.  109 

We created a catalogue of all identified publications to document their various characteristics, 110 

including publication year, focal species, the number of relationships examined, and whether the 111 

publication is cited in regulatory documents as informing management decisions (included here 112 

as Supplementary Online Material). Because most of the government agency and grey literature 113 

reports were review documents that reproduced results from primary literature, we chose to focus 114 

further investigations only on the peer-reviewed literature. For each peer-reviewed study in our 115 

catalogue, we extracted each individually reported relationship into a second catalogue and 116 

documented characteristics including the focal species, predictor and response variables, type of 117 
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analysis, timeframe, primary data source, and reported model outputs including intercept and 118 

slope parameters, R2, p-value, AIC, and others. This catalogue of relationships was used both to 119 

carry out a qualitative analysis of trends in the study of such relationships in the Bay Delta, and 120 

to select a subset of environment-recruitment relationships suitable to retesting to quantify the 121 

extent to which the relationships still hold when confronted with new data.  122 

Relationship selection criteria 123 

We developed three tiers of criteria used to screen the full set of published environment-124 

recruitment relationships to identify those suitable for reanalysis.  125 

Tier 1 criteria excluded relationships for which reanalysis would be impractical due to (1) 126 

inability to obtain new data for reanalysis because of reliance on either one-time experiments 127 

(e.g., paired releases of tagged fish), data collection programs that have since ended, or second-128 

order variables derived via complex integration of many other environmental variables; (2) use 129 

of analytical methods that would be impractical to replicate for a review study of this scale (e.g., 130 

whole ecosystem simulation models) or which make it difficult to compare strength and 131 

statistical support across relationships (e.g., non-linear correlations such as GAMs, rank 132 

analyses, etc.); or (3) because the published relationship is so recent there would be few 133 

additional data points available (i.e., we excluded relationships if the number of years of new 134 

data were less than the number in the original time series or less than 10 years, whichever was 135 

less). In practice, this resulted in retention of linear correlations based on data from long-term 136 

monitoring programs with publicly available data sets, which formed a large majority (~75%) of 137 

all the published relationships in our dataset examined prior to the application of screening 138 

criteria. 139 
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Tier 2 criteria screened out relationships with little or no statistical support in the initial analysis, 140 

given that the objective of our work was to evaluate the extent to which established relationships 141 

hold over time. For this purpose, we defined little or no statistical support as p > 0.1, or ΔAIC > 142 

2 from the top model or, where neither is reported in older publications, the absence of a fitted 143 

regression line and equation on a scatter plot of the relationship.  144 

Lastly, Tier 3 criteria were used to reduce redundancy in the remaining set of relationships by 145 

selecting only a single relationship for each unique species – variable pair for reanalysis. When 146 

more than one relationship existed for the same species-variable pair relying on the same source 147 

data (e.g., delta smelt ~ X2), the following sub-criteria were used to select a single relationship 148 

that was: (1) most recently updated among the set to avoid reproducing past retests; (2), the 149 

longest time-series among the set for greater statistical power; (3) based on indices of abundance 150 

rather than extrapolated abundance estimates to reduce propagation of error, and (4) where all 151 

relationships in the set are statistically significant,  the relationship with the strongest support 152 

based on variation explained (e.g., via R2) or other rationale provided by the authors. We 153 

considered similar relationships using different source data (e.g., delta smelt (Fall Midwater Trawl) ~ 154 

X2 and delta smelt (Bay Study Midwater Trawl) ~ X2) distinct and therefore were retained due to known 155 

differences in methodology, target life stage, and conclusions that can be drawn from alternative 156 

source surveys. 157 

The full catalogue of original and screened publications is available in the Supplementary Online 158 

Materials. 159 

Data sources 160 

For each relationship retained for reanalysis, we sought to obtain the same data used in the 161 

original analysis from the source identified by the authors. In some cases, this data was available 162 

directly, and in others, annual means of data needed for analysis were derived from raw data sets 163 
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using the same or similar methods originally described by the authors, including applying data 164 

transformations. In some cases, we were not able to reproduce the data using the methods 165 

described by the authors and either used a modified method or excluded the relationship from 166 

our analysis (Table 1). Population data for these relationships were derived from the California 167 

Department of Fish and Wildlife’s fall midwater trawl (FMWT), summer townet survey (TNS), 168 

beach seine surveys, and salvage surveys; the Bay Study otter trawl (Bay OT) and midwater 169 

trawl (Bay MWT) surveys; and the U.S. Fish and Wildlife Service’s Chinook salmon trawls. 170 

Environmental data was derived primarily from Hutton et al., (2015) and calculations therein for 171 

X2, from the California Department of Water Resources DayFlow data portal for flows, from 172 

environmental data collected alongside population data as part of the FMWT survey, and in 173 

some cases directly from the study authors (Table 1, Supplementary Online Materials). 174 

Analysis 175 

We conducted a quantitative reanalysis of selected environment-recruitment relationships. 176 

Source data for the analyses was transformed (as per original analyses; see Table 1), subset to the 177 

relevant timeframes, and standardized (by subtracting the mean and dividing by the standard 178 

deviation) to allow estimated relationships to be comparable across species and environmental 179 

variables. All relationships selected for reanalysis were based on linear correlations and so scaled 180 

data was analyzed using ordinary least squares regression with an abundance measure as the 181 

response variable and one or more environmental factors as the predictor variable, with none of 182 

the ultimately selected relationships including interactions among variables 183 

Several relationships selected for reanalysis (e.g., Kimmerer et al. 2009) included a step-change 184 

or data-splitting before and after the introduction of invasive Asian clam (Corbula amurensis) 185 

into the Bay Delta in 1986. Introduction of this clam is thought to be responsible for a sudden 186 

and substantial decline of zooplankton and, subsequently, of fish in the Bay Delta (Kimmerer et 187 
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al. 1994). Where published analyses found statistical evidence for a split or step change in 1987 188 

(using a dummy variable), we chose to reanalyze the relationship using only data after this cut-189 

off both to simplify the analyses and because prior data could be considered irrelevant for 190 

interpreting how relationships have changed in the context of additional data.   191 

For each relationship, we quantified the strength (R2; correlation coefficient) and magnitude 192 

(slope; in standardized units) of the relationship based on the scaled original and updated time 193 

series and then compared them to quantify the extent to which the relationships still held when 194 

confronted with new data. We also quantified prediction error using unscaled original and 195 

extended time series for each relationship to characterize how well the observed relationships 196 

would be expected to predict future (out of sample) observations and to provide an indication of 197 

how useful the relationship may be from a decision making and management perspective. 198 

Prediction error was estimated as the normalized root mean squared prediction error (CVn): 199 

𝐶𝐶𝐶𝐶𝑛𝑛 =
�1
𝑛𝑛
∑ �𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖

1−ℎ𝑖𝑖
�𝑛𝑛

𝑖𝑖=1
2

1
𝑛𝑛
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1

�     (eqn. 1) 200 

where hi  is the diagonal element of the operator matrix that produces the least squares fit (i.e., 201 

hat matrix). This measure of prediction error can be interpreted as the percent error in future 202 

predictions relative to the average observed abundance for a given relationship. For example, a 203 

prediction error of 100% would mean that the relationship allows us to predict future abundances 204 

to within +/- 50% of the mean predicted abundance.  205 

We compared the raw data, parameters, and fit of relationships using the original time series to 206 

those reported in the original publications to ensure that our approach successfully replicated the 207 
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previously published relationships before proceeding to retesting. Instances where we were not 208 

able to reproduce past relationships were not further considered (detailed in Table 1).  209 

Our retests of environment-recruitment relationships using data that has accumulated since a 210 

relationship was first established has the potential to be biased by an imbalance in the number of 211 

pre- to post-retest observations. In instances where there are many (e.g., 30) years of pre-retest 212 

observations and only a few (e.g., 10) post-retest observations it is possible that the pre-retest 213 

observations obscure what is otherwise a weakening or different relationship in the post-retest 214 

observations. To quantify the extent to which this was the case with the relationships we retested, 215 

we carried out a secondary analysis where we randomly sub-sampled the pre-retest data so that 216 

there was an equal number of pre- and post-retest data points, and then, as above with the full 217 

time series, quantified the strength and magnitude of the relationship based on the subsetted data. 218 

We repeated this exercise 1000 times for each relationship, and then compared the median 219 

strength and magnitude of the relationship based on the original (subsetted) and updated time 220 

series. 221 

All analyses were carried out in the R statistical software suite (R Core Team 2017), and we 222 

provide the source code, and data, for our analyses in the Supplementary Online Materials. 223 

Results 224 

Literature review 225 

Our literature search identified 98 publications describing environment-recruitment relationships 226 

in the Bay Delta ecosystem. Of these, 40 were reviews citing primary literature or offered only 227 

general observations on raw data without conducting any analysis, and 3 were not available 228 

online and so not examined further. The remaining 55 peer-reviewed publications were retained 229 
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for further analysis. This subset included papers published between 1977 and 2017, with a mean 230 

publication date of 2002. These studies examined an average of 10 relationships per study, and a 231 

minority of papers examined a large number (>100) of competing models describing the same 232 

relationship. Each study examined between 1 and 17 focal species (mean ~ 3).  233 

These 55 peer-reviewed studies described 420 individual relationships which overwhelmingly 234 

focused on examining the influence of environmental variables on population abundance as 235 

opposed to other biological characteristics (Figure 2A). This is likely a result of the fact that 236 

roughly 70% of all relationships relied on publicly available long-term abundance survey data 237 

that has been collected in the Bay Delta for decades (e.g., California Department of Fish and 238 

Wildlife fall midwater trawl (FMWT), summer townet survey (TNS), and San Francisco Bay 239 

Study otter trawl (OT) and midwater trawl (MWT) surveys), whereas other types of population 240 

variables are generally not routinely collected for most species and were obtained using one-off 241 

experiments or surveys to inform 18% of these relationships. The distribution of relationships 242 

was also strongly biased towards species that are either currently or historically listed as 243 

Threatened or Endangered (Figure 2B). There was a more even distribution of environmental 244 

variables examined across studies, but the most frequently examined variables were X2 (the 245 

distance in kilometers from the Golden Gate up the axis of the estuary to where the tidally-246 

averaged near-bottom salinity is 2 ppt or 2 x 10-9 mg/L; Jassby et al. 1995), or other measures of 247 

salinity, and flow (Figure 2C). Most relationships examined only a single environmental variable 248 

(maximum of 7) through simple linear correlation (60% of all relationships). However, the 249 

number of variables has generally increased in more recent studies as researchers continue to 250 

adopt more complex analytical methods including multivariate models, generalized additive 251 

models, and whole-ecosystem simulations. While about 42% of all relationships have been 252 

identified as underpinning regulatory decision-making, only 14% of all relationships have been 253 
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retested to quantify their durability (i.e., extent to which their magnitude of effect holds up in the 254 

face of new data).  255 

Across the published relationships there was broad variation within and among environmental 256 

variables in the amount of variation in the abundance that was explained. For example, some 257 

environmental variables like flow and salinity tended to explain over half the variation, while 258 

others such as temperature and water export rates (measured in cfs - cubic feet per second - or 259 

m3/s, where 35.31 cfs = 1 m3/sec) explained much less variation in abundance (Figure 3).  260 

 261 

Reanalysis of bay delta environmental-recruitment relationships 262 

Applying our screening criteria to the full set of relationships resulted in 31 relationships suitable 263 

for retesting (Table 1). The publications originally reporting these relationships varied widely in 264 

the details provided on methodology, and it was often difficult to determine how the 265 

environmental variables were derived or what the source of the data was that was used to derive 266 

them. We were unable to complete re-analyses for 8 of these 31 relationships due to an inability 267 

to re-create the input variables using the methodology described by the authors or because of 268 

errors or missing information in the original publications, leaving 23 relationships (17 univariate 269 

and 6 multivariate) from 8 publications which were fully re-analyzed using the most recent 270 

available data (between 9 and 40 additional years, median 9 years).  271 

When updated data were used to retest previously published relationships, the direction and 272 

statistical significance of the relationships remained the same (Figure 4; Table 1). Of the 273 

univariate relationships, 9 of 17 became stronger (i.e., either more negative or positive depending 274 

on the original relationship), 3 of 17 became weaker and 5 of 17 remained nearly identical. These 275 

general patterns remained the same for the multivariate relationships (Table 1) and when the 276 
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dataset used to retest relationships was balanced to achieve an equal number of original and 277 

updated data points (Figure 4; Table 1).  278 

In some instances, the addition of more years of data resulted in more variation in the 279 

relationship being explained (i.e., higher R2; Figure 5A, B). However, on average considering 280 

more recent data did not increase the estimated strength of the relationships, and in some cases 281 

reduced it (Figure 5A). For example, relationships between striped bass abundance and flow saw 282 

substantial declines in R2 with the addition of more years of data, despite the fact the magnitude 283 

of the relationship remained nearly identical (Figure 4). This occurred because the overall 284 

abundance of striped bass declined between the original time series and the updated one, which 285 

has been attributed to introduction of the Asian clam in 1987, but abundance still increased with 286 

increases in flow during both periods (Figure S1).  287 

In most cases, considering more years of data did not improve the predictive power of the 288 

environment-recruitment relationships. Instead, counterintuitively, the prediction error of each 289 

relationship typically increased with the addition of more years of data (Figure 5C, D). The 290 

median percent increase in prediction error across the relationships retested was 30%. As with 291 

the variation explained, these changes were most pronounced for relationships between striped 292 

bass abundance and flow.  293 

Discussion  294 

Our review of the literature identified 98 publications examining 420 individual environment-295 

recruitment relationships in the Bay Delta. These relationships overwhelmingly focused on the 296 

influence of environmental variables on population abundance as opposed to other biological 297 

characteristics and were biased towards species that are either currently or historically listed as 298 

Threatened or Endangered. About half of these relationships are used in regulatory decision-299 
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making, but only one in five relationships have been retested to quantify the extent to which they 300 

stand the test of time. We retested 23 relationships using data that have accumulated in the years 301 

since they were first published. In contrast to Myers (1998), who found that the proportion of 302 

relationships that held up when retested was low, we found that when new data were used to 303 

retest previously published Bay Delta relationships, the direction and statistical significance of 304 

the relationships remained the same, though the amount of variation explained by the 305 

relationships and our ability to predict how a species will respond to change in their environment 306 

did not generally improve with more data. Instead, in most cases, prediction error actually 307 

increased when extending the time series, suggesting that accumulating more data will not 308 

necessarily improve the ability of these relationships to inform decision making (insofar as 309 

predictive power is useful for decision making). Perhaps this should not come as a surprise given 310 

the original relationships examined here were typically identified based on their ability to explain 311 

observed data (e.g., R2 from linear regression) as opposed their ability to predict future 312 

observations using, for example, approaches like data splitting and cross-validation (Power 1993; 313 

Harrel 2015). However, a large reduction in predictive power when relationships are re-tested 314 

with more data may be diagnostic of an established relationship that is breaking down (i.e., as is 315 

the case with striped bass and potentially Sacramento splittail in Figure 5), and might prompt 316 

action to search for unmeasured drivers of this change.  317 

Our review of published environment-recruitment relationships in the Bay-Delta also highlights 318 

some methodological shortcomings of studies in this discipline. First, our review has made clear 319 

the great value of long-term data collection programs that follow standardized and consistent 320 

protocols to detect and validate long-term trends in biological variables, and has shown that a 321 

large share of studies in this space leverage these datasets. However, the availability and 322 

accessibility of such survey data may also reduce the likelihood that researchers in this region 323 

will embark on independent data collection to study other species and biological variables that 324 
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are not the focus of existing surveys. Second, despite the accessibility of long-term survey data 325 

and the simplicity of analysis by correlation, we were still unable to reproduce originally 326 

published parameters for many relationships otherwise meeting our criteria for re-testing. In 327 

some cases, this was due to errors in the original work, unreported assumptions about data 328 

transformations that only became clear after contacting the authors, or the prior use of 329 

interpolated data that has since been corrected at the source by survey operators. These 330 

challenges highlight the importance of reproducibility in research in general, and into 331 

environment-recruitment relationships in particular, echoing a growing call for greater 332 

reproducibility both in ecology and across other scientific disciplines (Cassey and Blackburn 333 

2006; Nosek et al. 2015; Borregaard and Hart 2016). Trends towards the use of coding for 334 

ecological analysis, and for the publication of that code alongside manuscripts as we do in our 335 

Supplementary Online Materials for this study, will play a significant role in improving the 336 

reproducibility of ecological research going forward (Mislan et al. 2016). 337 

Our conclusions should be considered in light of potential biases in both our study selection 338 

criteria and in the type of data these studies draw upon. As with all studies based on literature 339 

review, our results are subject to publication bias (Cooper et al. 2009) relating to our decision to 340 

focus on peer-reviewed studies, a propensity towards publication of significant relationships in 341 

peer-reviewed journals, and a disproportionate number of publications on particular variables 342 

(e.g., X2 and flow) coming from a few very active authors in this field. In addition, recent work 343 

has shown that the long-term survey data used to create many of these relationships may itself be 344 

inherently biased by unquantified changes in detection probability. Detection probability, or 345 

catchability, may vary considerably over time with (1) overall abundance (i.e., it is more difficult 346 

to catch a rarer species or size class) (Mahardja et al. 2017), (2) with changing environmental 347 

conditions (e.g., catchability may decrease with increasing water clarity as fish are better able to 348 

see and avoid survey gear in clearer water) (Latour 2016), and (3) with differences in gear type 349 
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across surveys (J. T. Peterson and M. Barajas, unpubl.). When not accounted for, these changes 350 

in detectability may be incorrectly interpreted as real changes in abundance or occupancy. 351 

Notwithstanding these potential biases, we believe that the breadth of species, environmental 352 

variables, and survey types covered in our analysis still allows us to draw some more general 353 

conclusions about the utility of environment-recruitment models, and to synthesize insights from 354 

the literature on best practices for the analysis, use, and refinement of environment-recruitment 355 

relationships to inform decision making in natural resource management. 356 

Correlation, causation, and strength of evidence 357 

Correlations underpin most natural resource management decisions where one must predict how 358 

the environment responds to human action. These correlations are based on experience, and 359 

accumulated observations of the relationship between a species (e.g., abundance or survival) and 360 

its environment (e.g., flow, temperature, prey abundance, etc.). Such historic relationships are 361 

usually assumed to be causative, but we are often reminded of the adage “correlation does not 362 

equal causation”. Ideally, manipulative experiments can be used to determine whether a specific 363 

human action causes a response in an ecosystem component. Such learning by manipulation 364 

embraces the three key elements of experimental design: controls, randomization of treatments, 365 

and replication. Controls (i.e., monitoring systems that are not subject to a specific management 366 

intervention) provide critical contrast needed to disentangle the effects of the management 367 

actions (treatment) from other system change. Randomization ensures that the choice of which 368 

systems receive the management intervention is based on chance, thereby reducing the potential 369 

for confounding and bias due to factors not accounted for in the experimental design. Lastly, 370 

replication, whereby treatment and control groups are replicated over space and/or time, allows 371 

for more precise estimates of the effect of the management intervention. 372 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/256404doi: bioRxiv preprint 

https://doi.org/10.1101/256404
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

Much has been learned in natural resource management through manipulative experiments. For 373 

example, hatcheries manipulate the timing and size of fish released to determine which 374 

combination result in optimal survival (e.g., Irvine et al. 2013) and hydroelectric facility 375 

operators manipulate timing and magnitude of flow releases to determine which flows are most 376 

likely to improve fish survival (e.g., Bradford et al. 2011). While manipulative experiments are 377 

the gold standard approach to establishing causation, scope for manipulative experiments 378 

decreases at increasing scales, and so we are left interpreting correlative relationships in order to 379 

manage some of the largest human-influenced ecosystems in the world.  380 

When opportunities for learning by manipulation are limited or impossible, the weight of 381 

evidence for a hypothesized causal correlation can be assessed based on the strength, 382 

consistency, specificity and plausibility of the mechanism underlying the relationship (e.g., Hill 383 

1965; Hilborn 2016). The stronger the association between two variables and implied magnitude 384 

of effect (e.g., a small [2%] versus large [50%] change in abundance), the more likely the 385 

relationship is causal. When the same relationship is found repeatedly across space (e.g., in other 386 

systems or species) and over time (e.g., with addition of more years of data), the stronger the 387 

evidence that it is indeed directly causal or related to the same causal driving variable (e.g., 388 

relationships to flows ultimately driven by precipitation) and not due to another unmeasured 389 

confounding factor. How likely are alternative explanations (hypotheses) for a given 390 

relationships? When few or no alternative explanations exist, causality is more likely than under 391 

circumstances where alternative explanations abound. Lastly, the plausibility of the mechanism 392 

underlying the association between two variables can shed light on the likelihood it is causal; 393 

when there is clear evidence of a mechanism that could be responsible for the relationship (e.g., 394 

from laboratory experiments) then there is stronger evidence that the relationship is indeed 395 

causal relative to instances where support for (or nature of) the underlying mechanisms is 396 

unknown.  397 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/256404doi: bioRxiv preprint 

https://doi.org/10.1101/256404
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

While strength, consistency, specificity and plausibility can help guide the degree of support for 398 

a given relationship, they should not come at the cost of maintaining multiple working 399 

hypotheses, and evaluating the evidence for each simultaneously when using correlations to 400 

guide decision making (Hilborn and Mangel 1997; Plowright et al. 2008). An illustrative 401 

example of the simultaneous consideration of multiple working hypotheses is the development 402 

and application of a state-space multi-stage life cycle model to investigate for drivers of 403 

population decline in delta smelt by Maunder and Deriso (2011).  404 

Adaptive management in the face of ecosystem change  405 

Even when relationships are truly causative, using past relationships to guide future management 406 

decisions can fail to have the intended effect when the system in which they occur changes over 407 

time (i.e., exhibits non-stationary). Such non-stationarity in aquatic systems can arise from both 408 

slow-moving environmental change or rapid regime shifts and “tipping points” between 409 

alternative stable states (Scheffer et al. 2001, 2009). There is widespread evidence of regime 410 

shifts in aquatic ecosystems arising from both natural (e.g., climate) and human (e.g., pollution, 411 

species introductions) caused factors (Carpenter 2003; Hunsicker et al. 2016) and the state of the 412 

ecosystem can have a strong influence on the outcomes of management actions. For example, 413 

large releases of hatchery salmon reduce the survival of endangered wild salmon but only during 414 

periods of poor ocean conditions (Levin et al. 2001), and translocation of wild juvenile salmon 415 

past hydropower installations carries greater benefits for their ocean survival in cooler but not 416 

warmer oceanic regimes (Gosselin et al. 2017). These examples highlight the fact that the 417 

benefits of management interventions (e.g., reducing hatchery releases to minimize impacts to 418 

wild fish, translocation of fish past barriers) are contingent upon the ocean regime the system is 419 

experiencing in any given year. In the Bay Delta, the introduction and rapid expansion of the 420 

invasive Asian clam in the late 1980s is believed to have caused a major increase in grazing 421 
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pressure on phytoplankton, leading to a persistent decline in overall pelagic food resources 422 

(Carlton et al. 1990; Nichols et al. 1990; Baxter et al. 2010). The so-called “step change” towards 423 

this new stable state has had varying influences on different species within the ecosystem. For 424 

example, the regime shift due to Asian clam has led to a change in the overall magnitude 425 

(intercept) but not the rate of change (slope) of existing abundance-flow relationships for striped 426 

bass (Kimmerer et al. 2009, and reproduced in this study), but has been suggested to have driven 427 

a new abundance-flow relationship for threatened Delta smelt that brought with them significant 428 

implications for the way flows in this system are managed (CDFW 2016a,b).  429 

Given the ubiquity of regime shifts and non-stationarities in aquatic systems (Möllmann and 430 

Diekmann 2012), including in the Bay Delta (Kimmerer 2002; Kimmerer et al. 2009; Thomson 431 

et al. 2010), how should one evaluate the evidence for environment-recruitment relationships and 432 

use them to inform decision making when system change is suspected? In some cases, change in 433 

a system will be so pronounced that there is little question about when it occurred and so the 434 

nature of a relationship post regime change should be the one that is used to inform future 435 

management actions. In other instances, the timing of abrupt change, and indeed whether it has 436 

occurred at all, will be uncertain for several years and so debated (at times vociferously) until 437 

clear evidence accumulates that a regime shift has occurred. In such cases, quantifying the 438 

statistical support for changes in system state using, for example, change-point analyses 439 

(Thomson et al. 2010) or dummy variables in linear regression (e.g., Kimmerer 2002; Kimmerer 440 

et al. 2009), is one way to quantitatively evaluate the evidence for system change. In addition, 441 

and perhaps more importantly, one should quantitatively evaluate the decision-making 442 

consequences of incorrectly assuming a regime shift has or has not occurred so as to be able to 443 

understand and clearly communicate the costs (e.g., biological, economic and social) of getting it 444 

wrong. Lastly, it has also been found that when non-stationarity is present (or suspected to be 445 
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present), using recent observations to predict the consequences of alternative management 446 

actions can improve management outcomes (e.g., Ianelli et al. 2012).  447 

In systems that have undergone dramatic change (e.g., tipping points), failure to regularly re-448 

evaluate the durability and predictability of environment-relationships risks making management 449 

decisions based on information with increasingly large margins of error, with the potential for 450 

negative ecological, social and economic consequences. To illustrate this point we estimated 451 

prediction error for a few Bay delta environment-recruitment relationships spanning the period 452 

before and after the Asian clam invasion in 1987 for species that have (striped bass and longfin 453 

smelt; Kimmerer et al. 2009), and have not (Sacramento splittail; Kimmerer et al. 2009), 454 

responded to the invasion (Figure 6). For those species that declined in abundance coincident 455 

with the invasion, failure to account for this change results in relationships with increasing 456 

prediction error as time goes by after the invasion, relative to relationships that account for the 457 

change by including a step change in 1987 (striped bass and longfin smelt; Figure 6). In contrast, 458 

for Sacramento splittail, which did not appear to respond to the invasion, there is no benefit to 459 

including a step change in the relationship. Interestingly, these analyses suggest that the 460 

environment-recruitment relationships for striped bass and longfin smelt have experienced 461 

subsequent regime shifts (~1995 for striped bass and ~ 2005 for longfin smelt) that have further 462 

eroded their predictive power. This subsequent shift may be explained by observed changes in 463 

distribution likely to affect catchability in long-term surveys. Prior studies have suggested that a 464 

reduction on pelagic food resources due to overgrazing by Asian clam appears to have driven 465 

shifts in the distribution of young fish in the 1980s and 1990s away from the primary sampling 466 

regions of long-term surveys and towards areas characterized by fewer clams and better foraging 467 

prospects. This manifested as a lateral shift from deeper channel habitat preferentially sampled 468 

by annual surveys towards shallower slough habitat for striped bass (Sommer et al. 2011), and as 469 

a longitudinal shift from upstream habitat towards more saline downstream habitat for longfin 470 
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smelt (Baxter et al. 2008; Sommer et al. 2011). Thus, these two shifts in prediction error align 471 

and illustrate with two stages rapid environmental change driven by a trophic cascade, the first 472 

likely related to a species introduction, and the second likely related to two different behavioural 473 

responses to adapt to the consequences of this introduction. 474 

Our findings suggest that when environment-recruitment relationships underpin decision-making 475 

they should be re-evaluated on a regular basis as part of a broader adaptive management 476 

approach to ensure that they remain robust in the face of new data and continue to provide an 477 

accurate representation of a continually evolving ecosystem. Such an adaptive approach to 478 

evaluating environment-recruitment relationships is aligned with broader calls for increasing the 479 

implementation of more proactive adaptive management in Bay Delta ecosystems to address 480 

accelerating environmental change (Delta Independent Science Board 2015, 2016; Zandvoort et 481 

al. 2017). 482 

Environment-recruitment relationships in decision making 483 

The widespread use, and at times misuse, of environment-recruitment relationships to inform 484 

decision making has produced several general insights into best practices for incorporating such 485 

relationships into natural resource management.  486 

First, uncertainty should be both quantified and propagated in any analysis that seeks to predict 487 

the consequences of alternative management actions and identify those actions most likely to 488 

achieve desired objectives. This uncertainty comes in at least four distinct forms (e.g., Peterman 489 

2004): (1) natural variation in both physical and biological processes, (2) uncertainty due to 490 

imperfect assessment arising from measurement error, (3) structural uncertainty due to 491 

incomplete understanding of how a system functions, and lastly (4) outcome uncertainty or 492 

implementation error in how well a given management target (e.g., increase flow by 20%) is 493 
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achieved by a management action (e.g., releasing water from a reservoir). While uncertainty 494 

resulting from points 2-4 can in theory be reduced by improved measurements, greater 495 

understanding of system function, and better management control, all of which can be 496 

accomplished to some extent with the collection of more years of data, uncertainty arising from 497 

natural variability is irreducible. We found that prediction error was not reduced for Bay Delta 498 

environment-recruitment relationships with the accumulation of more years of data, and in fact 499 

increased in many cases. This finding suggests that natural variation in the physical or biological 500 

processes of the system is an important and ongoing source of uncertainty that will limit the 501 

extent to which improvements in predictions of how taxa from the Bay Delta will respond to 502 

changing environmental conditions and human action can be achieved.  503 

Second, there is increasing recognition of the value of developing and using life cycle models to 504 

evaluate the predicted consequences of alternative management actions on species of concern in 505 

the face of this uncertainty (e.g., Good et al. 2007; Ruckelshaus et al. 2002; Zeug et al. 2012). In 506 

contrast to single life stage, habitat type, or environmental relationships, life-cycle models 507 

simultaneously consider extrinsic (environment, management action) and intrinsic (density 508 

dependence) factors influencing multiple life stages. Life cycle models can either be mechanistic 509 

where survival between life stages is based on specific mechanisms (Scheurell et al. 2006) or 510 

statistical where life stage specific survival is not defined by specific mechanistic relationships 511 

(Nobriga and Rosenfield 2016). The use of life cycle models allows for more realistic and 512 

comprehensive evaluation of the predicted outcomes of alternative management actions than 513 

considering single life stage, habitat type, or environmental relationships, because it considers 514 

environmental effects across linked stages in a life cycle while also accounting for population 515 

processes (e.g., growth, movement, mortality and reproduction).  516 
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Even when uncertainty is successfully incorporated into modelling approaches, the broader 517 

question remains – how can we account for and propagate uncertainty into the broader 518 

management of a complex system with many conflicting management objectives when our 519 

understanding of that system is not, and will never be, complete? In a review of management 520 

approaches in the Bay-Delta ecosystem for the National Research Council, the Committee on 521 

Sustainable Water and Environmental Management proposes that agencies should adopt 522 

management approaches that assume “ ‘universal nonstationarity,’ or the idea that all aspects of 523 

the environment will constantly be changing.” (NRC 2012). Such approaches may prove 524 

challenging for many traditional decision-making pathways, which are often constrained by 525 

static or slow-moving policy frameworks (Aladjem 2013; Delta Independent Science Board. 526 

2016). However, a number of approaches with shared characteristics have been developed to 527 

help facilitate formalized decision-making in complex systems characterized by their uncertainty 528 

and are among the approaches recommended by the NRC review. Among these are decision 529 

analysis or decision scaling, risk assessment, and management strategy evaluation. 530 

Decision analysis, a form of risk assessment, is a systematic approach to incorporating 531 

uncertainties in the managed system into decision making using models to project outcomes of 532 

alternative actions (Peterman and Anderson 1999). These outcomes (or performance measures) 533 

act as criteria for comparing and ranking the actions against specific objectives (e.g., ecological, 534 

social and economic). Decision analysis can be coupled with stochastic simulations (e.g., Peters 535 

and Marmorek 2001) to identify management “actions” that explicitly consider multiple sources 536 

of uncertainty, where management actions refer to a combination of sampling design for data 537 

collection, approaches to analyzing the data, and decision rules for how to manage a specific 538 

aspect of the system. However, such risk assessments and decision analysis can overestimate risk 539 

by failing to account for management reactions to the information provided by future data. An 540 

alternative version of the approach known as “decision scaling” begins with a bottom-up analytic 541 
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framework that first identified the most critical management uncertainties that influence 542 

decision-making, and uses this information to tailor top-down environmental monitoring and 543 

modelling to provide the most credible information at appropriate temporal and spatial scales to 544 

project the outcomes of alternative actions (e.g., different flow management regimes) under a 545 

range of possible futures (e.g., wet and dry years) (NRC 2012). Explicitly considering 546 

management feedback is also a central feature of what has been variously referred to as closed-547 

loop simulations (Walters 1986), Management Strategy Evaluations (Sainsbury et al. 2000), and 548 

Management Procedure Evaluations (Butterworth and Punt 1999), which are in effect risk 549 

assessment methods and formal decision analyses which consider management feedback. While 550 

most widely applied in relation to fisheries and cetacean conservation and management, 551 

Management Strategy Evaluations have also been used to inform decision making focused on 552 

multi-species and ecosystem objectives (reviewed by Punt et al. 2014). All of these approaches 553 

lend themselves to robust evaluation of the value of different sources of information, including 554 

environment-recruitment relationships and the uncertainty inherent therein, into a broader 555 

assessment of the best way forward for natural resource management decisions in complex 556 

systems.  557 

Conclusions 558 

Moving forward, there is a growing recognition of the importance of maintaining multiple 559 

working hypotheses when quantifying the support for correlations in environmental management 560 

(Hilborn 2016), that quantitative assessment of policies that consider these relationships should 561 

be done using approaches that allow for realistic incorporation and propagation of multiple 562 

sources of uncertainty (Peterman 2004), and that, ultimately, managers in the Bay-Delta and 563 

elsewhere should identify policies that are robust to a range of alternative hypotheses (NRC 564 

2012; Schindler and Hilborn 2015).  565 
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Despite advances in the tools available to improve our assessment of environment-recruitment 566 

relationship and their consideration in decision making, we should remain humble in our zeal to 567 

either accept them as fact or discount them entirely because they are “just correlations”. As Hill 568 

emphasized in his 1965 Presidential Address on correlation and causation to the Royal Society of 569 

Medicine (Hill 1965): “All scientific work is incomplete – whether it be observational or 570 

experimental… [and] is liable to be upset or modified by advancing knowledge. That does not 571 

confer upon us a freedom to ignore the knowledge we already have, or to postpone the action 572 

that it appears to demand at a particular time.”  573 
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Tables 

Table 1: Summary of previously published environment-recruitment relationships retested with additional years of data. 

Source Species Response Variable Predictor Variable(s) Time Series 
(Original and / Extended) 

Bennett et al. 2005 Delta smelt TNS Index Log total salvage 1979 - 2002 / 2016 
Brandes et al. 2006 Fall Chinook salmon Chinook salmon fry / m3 at Chipps Island (Jan–Mar) Mean daily February flow at Freeport (cfs) 1985 - 2005 / 2011 
 Fall Chinook salmon Chinook salmon fry / m3 at Sacramento (Apr–Jun) Mean daily February flow at Freeport (cfs) 1985 - 2005 / 2011 
 Fall Chinook salmon Chinook salmon fry / m3 at Chipps Island (Apr–Jun) Mean daily April to June flow at Rio Vista (cfs) 1978 - 2005 / 2015 
Kimmerer et al. 2009 American shad FMWT Abundance Index Spring X2 (km) 1988 - 2007 / 2014 
 Bay goby Bay Study OT Abundance Index Spring X2 (km) 1988 - 2007 / 2014 
 Bay shrimp Bay Study OT Abundance Index Spring X2 (km) 1988 - 2007 / 2012 
 Longfin smelt Abundance Index (3 models: FMWT; Bay Study MWT,OT) Spring X2 (km) 1988 - 2007 / 2014 
 Sacramento splittail Abundance Index (FWMT) Spring X2 (km) 1988 - 2007 / 2014 
 Starry flounder Abundance Index (Bay Study OT) Spring X2 (km) (1 year lag) 1988 - 2007 / 2013 
Sommer et al. 1997 Sacramento splittail Abundance Index (FWMT) Delta outflow (cfs) 1967 - 1995 / 2014 
 Sacramento splittail Abundance Index (FWMT) Days Yolo Bypass inundated 1967 - 1995 / 2014 
Sommer et al. 2007 Longfin smelt Abundance Index (FWMT) Flows Jan to June (cfs) 1988 - 2006 / 2014 
Stevens 1977a Striped bass Abundance Index (TNS 38 mm Index) Mean daily Delta outflow (June-July) (cfs) 1959 - 1970 / 2016 
 Striped bass Abundance Index (TNS Suisun Bay) Mean daily Delta outflow (June-July) (cfs) 1959 - 1976 / 2011 
Feyrer et al. 2007 Delta smelt Abundance Index (TNS) Mean Annual Conductance (µS/cm) (FMWT) 

Fall Stock Abundance Index (FMWT) 
1987 - 2004 / 2016 

 Delta smelt Abundance Index (TNS) Mean Annual Secchi Depth (m) (FMWT) 
Fall Stock Abundance Index (FMWT) 

1987 - 2004 / 2016 

 Delta smelt Abundance Index (TNS) Mean Annual Conductance (µS/cm) (FMWT) 
Mean Annual Secchi Depth (m) (FMWT) 
Fall Stock Abundance Index (FMWT) 

1987 - 2004 / 2016 

Miller et al. 2012 Delta smelt Fall-to-Summer Survival 
(July TNS Index / previous year’s FMWT Index) 

Previous Fall Abundance (FWMT) 
Previous-Previous Fall Abundance (FWMT)  
Average E-P density, Apr–Jun  (#/m3) 
Proportional Entrainment 
Average E-P density, Jan–Mar (#/m3)  

1972 - 2006 / 2014 

 Delta smelt Summer-to-Fall Survival  
(FMWT Index / July TNS abundance  in the same year) 

July STN Abundance /1,000 
Average E-P density, Sep –Dec (#/m3) 

1972 - 2006 / 2014 

 Delta smelt Fall-to-Fall Survival 
(FMWT / previous year’s FMWT index)" 

Previous FMWT Fall Abundance 
Previous-Previous FMWT Fall Abundance 
Average E-P density, Apr–Jun (#/m3) 
Average E-P density, Sep –Dec (#/m3) 

1972 - 2006 / 2014 

TNS = summer tow net survey, FMWT = fall midwater trawl survey, MWT = Bay Study midwater trawl survey, OT = Bay Study otter trawl survey, E-P = Eurytemora sp. + Pseudodiaptomus sp., two dominant 
copepods of the upper San Francisco Estuary and major prey items for Delta smelt. 
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Figures 

 

Figure 1: Map of the Bay Delta region and key geographical features (A), along with an overlay of a 

conceptual model of key abiotic and biotic drivers known to influence fish production in this system 

(B). Adapted from the Delta Independent Science Board 2015. 
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Figure 2: Frequency distributions of the type of response variable (A), environmental variables (B) 

and focal species (C), represented in the 420 individual environment-recruitment relationships for 

the Bay Delta region examined in this study, showing the relative emphasis of this body of work. 

Superscripts in panel C indicate the species current (black) or historical (grey) conservation status 

as Endangered (E), Threatened (T), or Candidate (C) as reported by the U.S., Fish and Wildlife 

Service Environmental Conservation Online System. 
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Figure 3: Boxplots and underlying estimates of the distribution of the strength (R2) of published 

relationships for each broad type of environmental variable identified in the literature review (184 

papers reported this statistic). Some variables have stronger relationships (e.g., flow, salinity) with 

the abundance of species than others that are more variable (e.g., temperature, volume of exports) 

and may therefore depend more on the species and context involved. The “multivariate” 

environmental variable encompasses relationships that include two or more of the other 

environmental variables listed here. Black dots outside the range of the box and whiskers represent 

true outliers (i.e., beyond 1.5 times the interquartile range), while the jittered black dots represent 

the distribution of remaining data points. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/256404doi: bioRxiv preprint 

https://doi.org/10.1101/256404
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

 

Figure 4: Magnitude of environment-recruitment relationships for 17 univariate analyses spanning 

nine species based on original (), extended (), and extended but balanced () time series. 

“Balanced” refers to estimates based on analyses where we randomly sub-sampled (1000 times) 

the pre-retest data so that there was an equal number of pre- and post-retest data points. Where 

there is more than one relationship per species-variable combination, letters indicate the source of 

data as being from the FMWT (A), Bay Study MWT (B), Bay Study OT (C), TNS (D for the overall 

Delta, and D* for Suisun Bay only), or Chinook salmon trawls (E1 at Chipps Island, E2 at 

Sacramento). The standardized effect is the slope of the relationship between abundance and the 

environmental variable under consideration in standard deviation units. For example, based on the 

updated time series, a one standard deviation unit increase in Flow at Freeport in February is 

expected to result in a 0.4 standard deviation unit increase in juvenile fall-run Chinook salmon 

index abundance in the Chipps Island trawl. Error bars are ± 1 SE. 
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Figure 5: Percent change as well as absolute variation explained (R2; A, B) and predictive power 

(prediction error; C, D) of Bay Delta environment-recruitment relationships when additional years 

are added to the relationships.  Estimates of percent change in prediction error for the striped bass 

– flow relationship are not included in C and D due to their very large values (~600%; see Table 1). 

Prediction error (see equation 1) is the percent error in future predictions relative to the average 

observed abundance for a given relationship. For example, a prediction error of 50% would mean 

that the relationship is expected to predict future abundances within +/- 25% of the mean 

predicted abundance. The first two letters of each label are species codes as follows: AS = American 

shad, BG = Bay goby, BS = Bay shrimp, DS = Delta smelt, LFS = longfin smelt, CS = Fall-run Chinook 

salmon, LFS = longfin smelt, SPL = Sacramento splittail, SF = starry flounder, SB = striped bass. 
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Figure 6: Prediction error (equation 1) relative to the logged index values used in the models over 

time for three illustrative Bay Delta environment-recruitment relationships modelled without (thin 

lines) and with (heavy lines) a step change to account for the regime shift associated with the 

introduction of the Asian clam circa 1987. Prediction error in each year is based on all years of data 

up to that point in time. Some species (black: SB - striped bass, LFS - longfin smelt) show strong 

responses to the regime shift and benefit from reduced prediction error with the inclusion of a step 

change in the models, while others (grey: SPL – Sacramento splittail) do not. 
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