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Abstract

Motivation: Function annotations of gene products, and phenotype annotations of genotypes, provide
valuable information about molecular mechanisms that can be utilized by computational methods to identify
functional and phenotypic relatedness, improve our understanding of disease and pathobiology, and lead to
discovery of drug targets. Identifying functions and phenotypes commonly requires experiments which are
time-consuming and expensive to carry out; creating the annotations additionally requires a curator to make
an assertion based on reported evidence. Support to validate the mutual consistency of functional and
phenotype annotations as well as a computational method to predict phenotypes from function annotations,
would greatly improve the utility of function annotations.
Results: We developed a novel ontology-based method to validate the mutual consistency of function and
phenotype annotations. We apply our method to mouse and human annotations, and identify several
inconsistencies that can be resolved to improve overall annotation quality. Our method can also be
applied to the rule-based prediction of phenotypes from functions. We show that the predicted phenotypes
can be utilized for identification of protein-protein interactions and gene-disease associations. Based on
experimental functional annotations, we predict phenotypes for 1, 986 genes in mouse and 7, 301 genes
in human for which no experimental phenotypes have yet been determined.
Availability: https://github.com/bio-ontology-research-group/phenogocon
Contact: robert.hoehndorf@kaust.edu.sa

1 Introduction
Although several definitions of what constitutes a phenotype have been
proposed over time, a phenotype can be operationally defined as an
observable characteristic of an organism arising from interactions between
the organism’s genotype and the environment (Johannsen, 1909, 1911).
Understanding the molecular and functional basis of phenotypes is an
important factor in our understanding of disease mechanisms.

Abnormal phenotypes associated with loss of gene function provide
valuable information for a variety of computational methods, such as
identification of gene-disease associations (Hirschhorn et al., 2002),
protein-protein interactions (Kahanda et al., 2015; Hu et al., 2011),
disease causative variant prioritization (Boudellioua et al., 2017), finding
orthologous genes (Hoehndorf et al., 2011), and drug discovery (Moffat
et al., 2014) and repurposing (Hoehndorf et al., 2014). Identifying which
phenotypes a gene may be associated with is challenging; even in the case
of a complete loss of function of a gene, phenotypes may be highly variable
(de Angelis et al., 2015).
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2 Kulmanov et al.

Several consortia and research initiatives aim to systematically catalog
the phenotypes associated with loss of function mutations in model
organisms (Ring et al., 2015), and the experimental results produced
by these initiatives provide valuable information for understanding gene
function (Ring et al., 2015) or their role in disease (Meehan et al., 2017). In
addition to high-throughput phenotyping, there are also ongoing efforts to
identify genotype–phenotype relations from literature (Smith and Eppig,
2015), and to record phenotypes observed in a clinical setting which are
associated with particular genotypes (Landrum et al., 2013).

There are several computational methods available for predicting the
functions of proteins (Kulmanov et al., 2017; Cozzetto et al., 2016;
Gong et al., 2016). Computational methods for function prediction
have improved in predictive performance and, subsequently, in their
utility, over recent years (Radivojac et al., 2013). Consequently, it is a
reasonable question to ask whether the same or similar approaches may
also work for phenotypes, i.e., whether we can build efficient methods
to predict phenotypes from genotypes, and whether these methods can
provide information that may be of clinical utility. While methods for
protein function prediction are maturing, computational methods to predict
phenotypes are still in their infancy.

There are many challenges in predicting phenotypes, both biologically
and computationally. From a biological perspective, predicting the
phenotypes that arise from a particular genotype is challenging due to
the complex molecular and physiological interactions that give rise to
phenotypes, open-ended environmental influences and determinants of
phenotypes, incomplete penetrance and resilience of organisms to certain
phenotypic manifestations, epigenetic regulation not detectable on the
level of a genotype, and many other factors contributing to the variability
and heterogeneity of phenotypes. The impact of pleiotropy and genetic
background were themselves instrumental in motivating the very large
scale knockout mouse project (IKMC), precisely because of the problems
intrinsic to predicting phenotype from genotype (Tyler et al., 2016; Austin
et al., 2004).

From a computational perspective, there are also several additional
challenges. First, there is a substantial lack of potential training
data that limits the application of machine learning approaches.
The high variability in phenotypes and their descriptions (Gkoutos
et al., 2005) makes it challenging to identify whether genotypes are
involved in identical or similar phenotypes. There is also a lack
of computationally represented background knowledge necessary to
determine the relationship between phenotypes and their physiological
and patho-physiological basis; in particular, there is no computationally
accessible, qualitative representation of physiological interactions in
mammals. Furthermore, representation of environmental influences is
challenging, partly due to their heterogeneity, but also failure to capture
environmental parameters in many phenotyping studies (Beckers et al.,
2009; Schofield et al., 2016).

The premise underlying comprehensive phenotyping studies is that,
uniquely, the phenotype of an organism lacking a functioning copy
of a given gene provides definitive information on gene function; the
primary goal of functional genomics. Here, we investigate the relationship
between Gene Ontology (GO) (Ashburner et al., 2000) functions that are
associated with gene products, and phenotypes associated with a loss
of function in these gene products (either through targeted or random
mutation, epigenetic modification or pharmaceutical effects). Our aim is
to identify how much information functions of gene products carry about
the phenotypes in which these gene products are involved. Specifically, we
test the hypothesis that a loss of a regulatory function (i.e., the up- or down-
regulation of some other process) will result in a regulatory phenotype. For
example, if a protein is (unconditionally) involved in a positive regulation
of B cell apoptosis, then a loss of function in that protein should lead to
a phenotype in which the rate of B cell apoptosis is decreased. We first

formalize our assumptions in rules that relate axioms in the Web Ontology
Language (OWL) (Grau et al., 2008). We then test how many function –
phenotype pairs in the laboratory mouse (Mus musculus) and the human
(Homo sapiens) satisfy these rules, how many annotations are consistent
with our hypothesis, and how many annotations are not consistent with
out hypothesis. We investigate some of the inconsistent pairs we identify,
and characterize the reasons for the inconsistency; we find that they can
be a result of incomplete or under-specified contextualization of function
or phenotype annotations (such as by cell type), conflicting annotation
derived from literature, or a consequence of inference over the ontology
structure.

After validating and characterizing possible inconsistent annotations,
we apply our hypothesis predictively and predict regulatory phenotypes
associated with loss of function mutations in 11,987 gene products in
the mouse and 15,680 in the human. We validate our predictions by
predicting gene-disease associations and protein-protein interactions from
phenotypes and demonstrate that our rules result in predictions that are
predictive of known associations.

2 Methods

2.1 Data sources

We use functional and phenotypic annotations for mouse and human.
We downloaded Gene Ontology (GO) (Ashburner et al., 2000)
annotations from http://geneontology.org/ on December 5th
2017. The file contains 439,128 distinct annotations to 19,452
human gene products, and 376,532 distinct annotations to 24,526
mouse gene products. We use the phenotype annotations for mouse
downloaded from the Mouse Genome Informatics (MGI) (Smith and
Eppig, 2015) database (http://www.informatics.jax.org/
downloads/reports/index.html) on December 5th 2017. We
use the MGI_Gene_Pheno.rpt file which contains phenotypes for non-
conditional loss of function mutations in single genes; the file contains
phenotypes for 11,887 mouse genes and 206,272 distinct associations
between a gene and a Mammalian Phenotype Ontology (MP) (Smith and
Eppig, 2015) class. For human, we downloaded annotations provided by
the Human Phenotype Ontology (HPO) database (Robinson et al., 2008)
on December 5th 2017. We use the file containing phenotypes from “all
sources” and “all frequencies”; the file contains phenotype associations
for 3,682 human genes and 120,289 distinct associations between human
genes and HPO classes.

For reasoning and processing formal definitions of phenotypes, we
use the multi-species integrated PhenomeNET ontology (Hoehndorf et al.,
2011; Rodríguez-García et al., 2017). We downloaded the latest version
of the PhenomeNET ontology from the AberOWL (Hoehndorf et al.,
2015) ontology repository http://aber-owl.net/ontology/

PhenomeNET/. We also downloaded the GO in its OWL format, released
on December 2nd 2017, from the AberOWL ontology repository.

2.2 Filtering GO annotations

To obtain only experimental GO annotations, we filtered all GO
annotations by their evidence codes so that we only retain annotations
with an experimental evidence. Specifically, we only keep annotations
with evidence codes EXP, IDA, IPI, IMP, IGI, IEP, TAS, and IC. We
removed all annotations which are negated (i.e., using a NOT qualifier);
we also excluded all annotations that are context specific, i.e., which are
explicitly conditional on a particular environment or other restrictions
(such as occurring only in particular cell types, or tissues, or during certain
developmental stages).
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Ontology-based phenotype prediction 3

After filtering all annotations, our GO annotation set contains 100,336
annotations to 11,987 mouse gene products and 295,357 annotations to
15,680 human gene products. We mapped all protein identifiers to MGI
identifiers for mouse proteins, and to HUGO (Yates et al., 2017) standard
human gene names.

2.3 Gene-Disease associations

Our phenotype predictions are evaluated by assessing how well they permit
recapitulation of known gene-disease relationships based on phenotype
similarity. Specifically, we predict association between mouse and human
genes and Mendelian diseases from the Online Mendelian Inheritance in
Man (OMIM) database (Amberger et al., 2011); we use the associations
between mouse genes and OMIM diseases from the MGI database, and
the associations provided by the HPO team for human genes and OMIM
diseases, downloaded on 27 January 2018.

We downloaded phenotypes associated with diseases from the HPO
database phenotype_annotation file provided by HPO team from http:

//compbio.charite.de/jenkins/job/hpo.annotations.

monthly/lastStableBuild/ on January 27th 2017. For human
genes, we used phenotype annotations of homologous genes in the mouse
from the MGI database.

2.4 Protein-Protein Interaction

For further validation of our predictions, we use protein-protein
interactions provided by the STRING Database (Szklarczyk et al., 2015).
We downloaded all mouse and human interactions from STRING version
10.5 and filtered the interactions by a confidence score higher or equal
to 300. We use the protein.aliases file provided by the STRING
database to map STRING protein identifiers to MGI identifiers (for
mouse genes and proteins) and HUGO gene names (for human genes and
proteins).

2.5 Computing semantic similarity

We measure the similarity between sets of MP and HPO classes by
computing Resnik’s pairwise similarity measure using the PhenomeNET
Ontology (Hoehndorf et al., 2011), and using the Best-Match-Average
(BMA) (Pesquita et al., 2009) strategy to combine pairwise similarities
into a single similarity score between two sets of annotations. We use
the normalized similarity value as a prediction score for PPI or gene-
disease association and compute the area under the receiver operating
characteristic (ROC) curve (Fawcett, 2006) as a quantitative measure of
predictive performance.

Resnik’s similarity measure uses the information content (IC). IC is
computed as the probability of occurrence of a class in annotations:

IC(c) = −log(p(c))

The similarity value between two classes is the IC of the most
informative common ancestor (MICA), i.e.:

SimResnik(c1, c2) = IC(MICA(c1, c2))

For two sets of classes we compute the similarity value between each pair
and use the BMA combination strategy:

SimBMA(A,B) =

avg
c1∈A

(max
c2∈B

(s(c1, c2)))+ avg
c1∈B

(max
c2∈A

(s(c1, c2)))

2

where s(x, y) = SimResnik(x, y).

2.6 Predicting protein functions with DeepGO

In order to evaluate our method for predicting phenotypes from functions
for gene products without experimental annotations, we predicted GO
function annotations using the DeepGO function prediction system
(Kulmanov et al., 2017). We downloaded SwissProt reviewed human
and mouse protein sequences from the UniProt database (The UniProt
Consortium, 2017) on 28 January 2018.

Initially, our dataset had 16,950 mouse and 20,244 human proteins.
To meet the DeepGO requirements and limitations, we filtered this set of
proteins and removed all sequences with ambiguous amino acid symbols
(i.e., B, O, J, U, X, Z); we also removed all proteins with more than 1002
amino acids. After filtering, we retained 14,916 mouse and 17,837 human
proteins for which we could predict functions using DeepGO. We mapped
UniProt identifiers to MGI identifiers and HUGO gene names.

2.7 Implementation

We implemented our approach using the OWL API (Horridge and
Bechhofer, 2011) version 4.1.0 and used the Similarity Measures Library
(Harispe et al., 2014) for measuring semantic similarities. The source code,
documentation, and data files are freely available athttps://github.
com/bio-ontology-research-group/phenogocon.

3 Results

3.1 The correspondence between regulation and
regulatory phenotypes

Our main hypothesis is that there should be a close relationship
between some functions to which gene products are annotated and some
phenotypes. In particular, if a gene product is involved in the up- or
down-regulation of a process P , then a loss-of-function of that gene
product (introduced, for example, through a pathogenic variant, a targeted
mutation, or an epigenetic interference) will usually lead to a phenotype
in which the rate or intensity of P is decreased or increased.

Specifically, we assume that, if a phenotype is defined as a change of
some biological process (such as an increased or decreased rate or turnover
of the process), then we can annotate the gene products which negatively
or positively regulate or contribute to P biological process with the given
phenotype. For example, when a protein that is normally involved in
positive regulation of B cell apoptotic process (GO:0002904) is inhibited
(for example through a genetic mutation, or through a small molecule
which inhibits the protein), we would expect that the rate with which
processes of the type B cell apoptotic process (B cell apoptotic

process) occur to decrease.
We formalize this hypothesis in the form of rules that assign a new

annotation to a protein with a particular function annotation. Let X be
a protein involved in (i.e., annotated with) the function P . We then
implement our hypothesis through the following three rules:

• Increase Function – Decreased Phenotype: If P SubClassOf

’positively regulates’ some P2, then a loss of function
ofX results in the phenotype’phenotype of’ some (P2 and

’has quality’ some ’decreased quality’).
• Decreased Function – Increased Phenotype: If P SubClassOf

’negatively regulates’ some P2, then a loss of function
ofX results in the phenotype’phenotype of’ some (P2 and

’has quality’ some ’increased quality’).
• Abnormal Function – Abnormal Phenotype: A loss of function

of X results in the phenotype ’phenotype of’ some (P and

’has quality’ some (’has modifier’ some abnorm-

al))
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While the first two rules directly implement our hypothesis, the third
rule establishes a correspondence between a loss of GO function and the
resulting phenotype; it is, in a sense, more general than the previous two
rules which establish a correspondence between regulatory functions and
phenotypes. The inverse of the abnormality rule has already been used to
predict GO functions from phenotypes (Hoehndorf et al., 2013).

To determine whether a pair of classes in GO and a phenotype ontology
class match our hypothesis and subsequent rules, we use the formal
definitions and axioms that constrain the GO classes and the classes in
phenotype ontologies. Many classes in phenotype ontologies are formally
defined using definition patterns based on the Entity–Quality (EQ) method
(Gkoutos et al., 2005; Mungall, 2009; Gkoutos et al., 2017). In the EQ
method, phenotypes are decomposed into an entity – either an anatomical
entity or a biological process or function – and a quality. We identify
the GO class underlying each phenotype in MP and HPO based on these
EQ-based definition patterns, and we also identify for each phenotype the
direction (i.e., increased or decreased) in which the process or function is
modified. As a result, we obtain, for each phenotype in HPO or MP that
is based on an abnormal function or process, a pair of a GO class and a
direction.

For example, the class Increased thymocyte apoptosis (MP:0009541)
is defined using the Entity Thymocyte apoptotic process (GO:0070242)
and the Quality Increased rate (PATO:0000912); the Quality is further
constrained by adding the Abnormal (PATO:0000460) quality (in order
to distinguish the abnormal phenotype from a physiological increase in
thymocyte apoptotic rate).

In total, there are 287 phenotype classes in HPO based on GO processes
or functions, of which 17 are increased in rate, 54 are decreased in rate,
and 216 are abnormalities of a process or function. In MP, 1,543 classes are
based on GO processes or functions, of which 272 classes are increased in
rate, 342 classes are decreased in rate, and 929 classes are abnormalities
of a process or function.

As next step in our workflow, we identify all GO processes
that up- or down-regulate other processes. For this purpose, we
use the Elk OWL reasoner (Kazakov et al., 2012) to query
GO for all equivalent classes of ’Biological regulation’

and ’positively regulates’ some X and ’Biological

regulation’ and ’negatively regulates’ some X for all
classes X. In total, we identify 3,013 processes that positively regulate
another biological process, and 3,043 processes that negatively regulate
another biological process.

In total, we identify 1, 570 correspondence rules between GO and
phenotype classes of which 1, 328 classes are from MP and 242 classes
are from HPO. The complete set of correspondences between a GO class
and phenotype class is available on our project website. We use the
correspondences between regulatory phenotypes and GO functions in two
ways: first, we evaluate how many annotations are inconsistent with these
rules, and determine why they are inconsistent; second, we use these rules
to predict phenotypes from GO functions.

3.2 Determining consistency between function annotations
and phenotype annotations

We define a consistency between regulation functions and regulatory
phenotypes as annotations that do not contradict our rules, i.e., when either
no evidence about a phenotype (or function) is provided in the annotations,
or when they correspond to our rules. An inconsistent pair of annotations
is a pair of function and phenotype annotations which contradict our rules
(i.e., the function annotation is to the up- or down-regulation of a process
and the phenotype of the loss of function is an increased or decreased rate
of that process). We generated 423 GO–phenotype pairs that represent an

inconsistency; of these 423 pairs, 398 pairs are GO–MP classes and 25
pairs are GO–HPO classes.

We determine whether the function and phenotype annotations in
the Mouse Genome Informatics (MGI) (Smith and Eppig, 2015) model
organism database are consistent with our hypothesis, and whether the
function annotations for human proteins provided by UniProt (The UniProt
Consortium, 2017) and the phenotypes associated with these proteins
provided by the HPO database (Robinson et al., 2008; Köhler et al., 2017)
are consistent. In the first instance, and to identify only unambiguously
matching pairs, we ignore inferences over the ontology and consider only
exactly matching phenotypes, i.e., only the annotations in which the direct
annotation to the phenotype matches our rule. We find 105 function–
phenotype annotation pairs for mouse and one annotation for human which
are inconsistent according to our set of inconsistent pairs.

We manually analyzed some of the annotations we tagged as
inconsistent with our rules. In many cases, inconsistency with our rules
may arise from conflicting GO or phenotype annotations. For example,
folliculin interacting protein 1 (Fnip1, MGI:2444668) is annotated
with the GO function Positive regulation of B cell apoptotic process
(GO:0002904), and the loss of function of Fnip1 is annotated with
the phenotype increased B cell apoptosis (MP:0008782). Using our
rule (Increased Function – Decreased Phenotype), we flagged this pair
of annotations as inconsistent. Both annotations are asserted based on
evidence from the same publication (Park et al., 2012), which reports
a negative regulatory role for Fnip1 in B cell apoptosis and uses as
experimental evidence that B cell apoptosis is increased in response to
metabolic stress in mice lacking Fnip1 function. The reports in the paper,
together with our rule-based identification of the possible inconsistency,
indicates that the GO annotation of Fnip1 to Positive regulation of B
cell apoptotic process may not be correct and should be replaced by an
annotation to Negative regulation of B cell apoptotic process.

Another example involved glypican 3 (Gpc3, MGI:104903), which
is annotated with the function Negative regulation of growth and the
phenotype Postnatal growth retardation. Here, the asserted annotation
to postnatal growth retardation is based on Chiao et al. (2002). The
postnatal growth catch-down and catch-up seen in homozygote nulls was
subject to extensive analysis in the paper and the authors conclude that
the normal, growth suppressing, function of Gpc3 is restricted to the
embryonic period. The knockout phenotype should therefore have been
annotated as Increased embryo size, not Postnatal growth retardation as
the closest description to the phenotype described in the paper.

The complexity of phenotypic annotations is well demonstrated by the
inconsistency we detect for an annotation of the CD28 cell surface receptor.
Annotated in GO to Positive regulation of T cell proliferation, the knockout
strain phenotype is annotated in MGI to Increased T cell proliferation
(Bour-Jordan et al., 2004). Regulatory T cells (Tregs; CD4+CD25+)
depend on CD28 for activation and proliferation. Effector T cells are
suppressed in non-obese diabetic (NOD) mice by active Tregs. In the
absence of CD28, Tregs do not proliferate, thereby permitting effector
cells to proliferate. This proliferation of effector T cells is reported in the
manuscript on which the phenotype annotation is based, and leads to the
phenotype annotation of the knockout. Formally this is accurate, but the
phenotype reported is dependent on the function of a cell type whose own
function is affected by the loss of CD28 in a different cell. This “russian
doll” effect is likely to be a significant confounder in relating phenotype
to function, particularly at a high level of phenotypic granularity.

We also experimented with extending the scope of our method
and included inferred phenotype annotations (we consider a phenotype
annotation to phenotype class C as inferred if and only if the annotation
is made to a subclass of C in the phenotype ontology). This allows us to
identify significantly more potentially inconsistent function – phenotype
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pairs. We find, for example, the inconsistent annotation pair in BCL2-
associated athanogene 6 (BAG6) between the GO process Negative
regulation of apoptotic process (GO:0043066) and Decreased apoptosis
(MP:0006043). However, the directly asserted annotation of BAG6 is
to Decreased susceptibility to neuronal excitotoxicity (MP:0008236),
a subclass of Decreased apoptosis in MP. While a direct annotation to
Decreased apoptosis would likely have implied that apoptotic processes
are, in general, decreased in rate, an annotation to Decreased susceptibility
to neuronal excitotoxicity does not have the same implications: apoptotic
processes occurring in neurons under certain conditions are decreased
in rate, but most apoptotic processes are unaffected. Due to these
implications, we do not apply our rules to phenotypes that are inferred
over a phenotype ontology.

3.3 Predicting phenotypes from functions

Predictions Increased Decreased Abnormal

Mouse
Predicted 61875 11656 4591 45628
Found
(Exact)

3170 170 253 2747

Found
(Inferred)

42175 370 503 41302

Human
Predicted 78298 18114 9588 50596
Found
(Exact)

116 0 0 116

Found
(Inferred)

13142 6 89 13047

Table 1. Number of predicted annotations using exact matching rules and
rules inferred with ontology structure, and the number of annotations that are
already asserted. For inferred matches we assume that genotypes are annotated
to all superclasses of their annotated classes and propagate both functional and
phenotypic annotations. For example, if a genotype has the phenotype Increased
B cell apoptosis and application of our rule predicts increased apoptosis, we
will also consider this as a match.

We can also use our rules to predict phenotypes from function
annotations. In this case, we take function annotations of a gene product as
input, and predict a phenotype that satisfies the definition in our rules. Not
all function annotations readily imply a phenotype; therefore, we cannot
generate phenotype annotations for all proteins. We generated 78,298
phenotype annotations for 10,041 human genes, and 61,875 phenotype
annotations for 7,314 mouse genes. Of the generated annotations, 116
human gene annotations and 3,170 mouse gene annotations are already
present in our data while the remaining predictions are novel. Notably,
we predict phenotypes for 1,986 genes that have no phenotypes at all in
the mouse, and for 7,301 genes without any phenotype annotations in the
human. Table 1 summarizes our findings.

Phenotype annotations have many applications; in particular, it is
accepted that phenotypes reflect underlying physiological interactions
and networks (Costanzo et al., 2016) and phenotype annotations are
widely used to investigate the molecular basis of diseases (Köhler
et al., 2009; Singleton et al., 2014). To validate our phenotype
predictions, we performed two experiments. First, we apply a measure of
semantic similarity to compute the pairwise similarity between phenotypes
associated with genes and diseases, and we evaluate how well this
similarity recovers known gene–disease associations. Second, we compute
the pairwise similarity between phenotypes associated with genes, and we
use the gene–gene phenotypic similarity to predict interactions between the

genes (combining different interaction types aggregated in the STRING
database (Szklarczyk et al., 2015), including genetic interactions and
protein–protein interactions).

To predict gene–disease associations, we perform two experiments.
First, we recover mouse models of human diseases as characterized in
the MGI database, and second, we predict genes associated with diseases
in the HPO database (Köhler et al., 2016). We evaluate our performance
using a receiver operating characteristic (ROC) curve (Fawcett, 2006). A
ROC curve is a plot of a classifiers true positive rate as a function of
the false positive rate, and the area under the ROC curve (ROCAUC)
is a quantitative measure of a classifier’s performance (Fawcett, 2006).
The ROC curves obtained for predicting mouse models of human disease
are shown in Figure 1, and the ROC curves for predicting gene–disease
associations in humans in Figure 2. We find that when we use only our
predicted sets of phenotypes, we can predict gene–disease associations
with a ROCAUC of 0.65 (to identify mouse models of human disease)
or 0.63 (to identify human gene–disease associations), which is a weak
but positive predictive signal. When we merge our predictions and the
original phenotype annotations, predictive performance slightly drops in
comparison to using only original annotations.
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Mouse Gene-Disease prediction ROC Curves

Original (area = 0.861)

Predicted (area = 0.652)

Merged (area = 0.857)

Fig. 1: ROC Curves for predicting Gene-Disease associations for mouse
genes. Original uses asserted phenotype annotations, Predicted uses
only predicted phenotypes, and Merged combine asserted and predicted
phenotypes.

In addition to predicting gene–disease associations, we compute
the pairwise phenotype-similarity between genes to predict interactions
between genes and proteins. We again use a ROC curve to evaluate
the predictive performance. Notably, the performance for predicting
interactions improved even over the performance achieved with the
original annotations when using the phenotypes generated by our method.
Performance further improved when merging original phenotypes and
the phenotypes we predict, demonstrating that there is significant
complimentary information in both (see Table 2, and Figures 3 and 4).

3.4 Predicting functions, predicting phenotypes

Our method mainly relies on functional annotations of gene products.
However, not all genes and gene products have experimental functional
annotations. Furthermore, the manual annotations are often derived from
mutant phenotypes, thereby limiting the scope of our approach. However,
with the recent advances in methods for computational prediction of
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Fig. 2: ROC Curves for predicting Gene-Disease associations for human
genes. Original uses asserted phenotype annotations, Predicted uses
only predicted phenotypes, and Merged combine asserted and predicted
phenotypes.
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Mouse PPI prediction ROC Curves
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Predicted (area = 0.672)

Merged (area = 0.705)

 DeepGO (Predicted) (area = 0.696)

DeepGO (Merged) (area = 0.694)

Fig. 3: Predicting Protein-Protein interactions using predicted phenotypes
for mouse. Original uses asserted phenotype annotations, Predicted uses
only predicted phenotypes, and Merged combine asserted and predicted
phenotypes. DeepGO (Predicted) uses only predicted phenotypes based
on DeepGO’s predicted GO function annotations, and DeepGO (Merged)
combines them with asserted phenotype annotations.

protein functions (Kulmanov et al., 2017; Cozzetto et al., 2016; Gong
et al., 2016; Radivojac et al., 2013), we can experiment with a two-step
process: first, we predict GO functions for proteins, and, second, we predict
phenotypes arising from a loss of function in the protein using our rules.

We recently developed DeepGO (Kulmanov et al., 2017), a
computational method for function prediction which uses a deep neural
network algorithm to predict functions from protein sequence and (when
available) a cross-species interaction network. Using DeepGO, we can
predict functions for gene products with known amino-acid sequences.
From the predicted function, we can predict phenotypes using our rules.

The DeepGO model can only predict annotations to 932 distinct
biological process classes in GO (Kulmanov et al., 2017). Of the 932
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Human PPI prediction ROC Curves

Original (area = 0.616)

Predicted (area = 0.749)

Merged (area = 0.902)

 DeepGO (Predicted) (area = 0.741)

DeepGO (Merged) (area = 0.928)

Fig. 4: Predicting Protein-Protein interactions using predicted phenotypes
for human. Original uses asserted phenotype annotations, Predicted uses
only predicted phenotypes, and Merged combine asserted and predicted
phenotypes. DeepGO (Predicted) uses only predicted phenotypes based
on DeepGO’s predicted GO function annotations, and DeepGO (Merged)
combines them with asserted phenotype annotations.

classes that DeepGO can predict, 443 classes are covered by our rules, and
28 classes are negative regulations and 55 classes are positive regulations.

We used DeepGO to predict at least one function for 14,916 mouse
and 17,837 human proteins, and based on them, we generated phenotype
annotations for 13,225 mouse and 14,187 human genes. 6,033 mouse
genes and 11,570 human genes for which we predicted phenotypes do
not currently have any experimental phenotype annotations.

We evaluated our predictions using interactions from the STRING
database, similarly to our evaluation of phenotypes predicted from
experimental GO annotations. Figures 3 and 4 show the performance of
predicting interactions in mouse and human, respectively. We find that
predicting phenotypes based on DeepGO’s predicted functions allows
us to further improve our ability to predict interactions in humans. For
the mouse, however, the performance of predicting interactions using
phenotypes generated from DeepGO’s predicted functions is slightly lower
than predictions based on experimental GO annotations. Table 2 provides
a summary of the results.

4 Discussion

4.1 Rules and statistical approaches for predicting
phenotypes

Accurate prediction of the phenotypes of an organism from its genotype,
and possibly some environmental features, is probably unachievable
in the foreseeable future. However, some phenotypes are sufficiently
fundamental that they can be predicted reliably given some basic
knowledge about a gene and the gene products it encodes. We identify three
rules that establish a correspondence between functions of gene products
and the phenotypes that a loss of function in these gene products would
entail. We believe these rules to be sufficiently robust to hold universally,
almost as a consequence of the definition of the corresponding phenotypes.
The main limitation in applying our rules predictively is the precision
with which function annotations are contextualized, i.e., how universally
a function annotation without any context constraints should be interpreted.
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Method AUC
(original)

AUC
(predicted)

AUC
(merged)

Mouse
Gene-Disease
association

0.861 0.652 0.857

PPI with
experimental
GO annotations

0.667 0.672 0.705

PPI with DeepGO
annotations

0.667 0.696 0.694

Human
Gene-Disease
association

0.773 0.630 0.756

PPI with
experimental
GO annotations

0.616 0.749 0.902

PPI with DeepGO
annotations

0.616 0.741 0.928

Table 2. Summary of evaluation of prediction phenotypes for mouse and human.
Original uses asserted phenotype annotations, Predicted uses only predicted
phenotypes, and Merged combine asserted and predicted phenotypes.

There are likely more rules that can be used to reliably predict
phenotypes from functions; some may be as simple as the rules we
propose, while others may require complex combinations of functions, and
additional constraints, to be applied. Rule mining techniques (Bodenreider
et al., 2005), in particular those that can utilize axioms and rules in OWL
(Lehmann, 2009), could identify more rules of varying strength and may
provide an opportunity to further extend our approach.

We demonstrated that we could not only apply our rules to
experimentally determined function predictions, but we were also able
to use a function prediction method to predict GO functions, then
apply our rules and predict phenotypes. While this approach already
yields phenotypes that are useful in computational methods (such as
similarity-based prediction of protein-protein interactions), some technical
modifications could further improve the accuracy and coverage of
predicting phenotypes. A main limitation is that both parts of the method
are trained and generated separately; an end-to-end learning approach
in which phenotypes are predicted directly (and in which the DeepGO
model – or another function prediction method – is used as intermediate,
pre-trained part) may significantly improve the performance.

4.2 What do phenotype annotations mean?

Our method can be used both to identify possibly conflicting annotations
as well as to suggest phenotypes that may arise from a particular genotype.

One observation from our experiments is that the meaning of the
annotation relation can be different depending on whether the annotation
is asserted or inferred using the ontology structure. Specifically, there
seems to be a difference between annotations to a phenotype such as
Increased apoptosis, depending on whether the annotation is inferred from
the ontology hierarchy (as in the case of an annotation to Increased B cell
apoptosis), or asserted. If the annotation is asserted at the level of the least
specific class, we would usually expect all types of apoptosis processes
in the organism to be increased in rate, including apoptosis of B cells and
other specific cell types. However, if the annotation is to a more specific
class (such as increased B cell apoptosis from which an annotation to
Increased apoptosis can be inferred, this no longer holds true.

We can use OWL to provide the outlines of a data model in which
these considerations are made explicit. Let us assume that X is annotated
with the phenotype P , and, without loss of generality, that P is

defined as an increased rate of process F . There are multiple different
options for formalizing the meaning of this annotation. The “weakest”
form of interpretation (i.e., the form from which the least amount of
information can be derived) would be that an organism with X (e.g.,
an organism with a loss of function mutation in X) would have a
part in which at least one process of type F can be observed to be
increased in rate; formally, the organism with X would be a subclass
of has-part some ((inverse occurs-in) some (F and

has-quality some ’increased rate’))). A stronger interpre-
tation could be that all processes of type F occurring in an organism
with X would be increased in rate. In this case, processes of type F that
occur in an organism with X would be come a subclass of things with
increased rate, i.e, (F and occurs-in some X) SubClassOf:

has-quality some ’increased rate’.
From the first interpretation and its formal representation, we cannot

conclude that processes of type F will always, or usually, be increased
in rate. We can also not infer much information about subclasses of the
phenotype P ; we can only infer that the organism with X would also be
annotated to any superclass of P . In the second case, however, we can
infer that X would also be annotated with all subclasses of P (but not with
its superclasses).

To avoid ambiguity in interpretation of phenotype annotations, it would
be beneficial to make their intended meaning clear, in particular as the
inferences that can be drawn from the interpretations are different. There
have already been some efforts to integrate annotations and ontologies in a
single knowledge-based model (Santana da Silva et al., 2017; Hoehndorf
et al., 2016) which can be used as a formalized data model. Further work
on formalizing the intended meaning of annotations, and the adoption of a
semantic model, would further improve interoperability and reuse of these
annotations.

5 Conclusions
We have developed a novel rule-based method for predicting phenotypes
from functions. Our approach can be used as a method to validate
phenotype annotations in literature-curated databases, and also to predict
phenotypes from a loss of function genotype in a reverse genetics manner
(Gilchrist and Haughn, 2010). While the prediction of phenotypes from
genotypes is going to remain a challenge, our approach has implications for
computational methods that utilize phenotypes. We demonstrated that the
phenotypes we predict are predictive of interactions and of gene–disease
associations; using a multi-step method in which we first predict protein
functions from sequence and then phenotypes from the functions, we could
predict phenotypes for genes which have not yet been investigated using
a reverse genetic screen. Our approach can therefore extend the scope
of phenotype-based methods, including methods for predicting variants,
disease genes, or candidate drugs, to cover a significantly larger portion
of the mammalian phenome.
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