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Abstract—Phenotypic heritability of complex traits and dis-
eases is seldom explained by individual genetic variants. Algo-
rithms that select SNPs which are close and connected on a
biological network have been successful in finding biologically-
interpretable and predictive loci. However, we argue that the
connectedness constraint favors selecting redundant features
that affect similar biological processes and therefore does not
necessarily yield better predictive performance. In this paper,
we propose a novel method called SPADIS that selects SNPs
that cover diverse regions in the underlying SNP-SNP network.
SPADIS favors the selection of remotely located SNPs in order
to account for the complementary additive effects of SNPs that
are associated with the phenotype. This is achieved by maxi-
mizing a submodular set function with a greedy algorithm that
ensures a constant factor (1− 1/e) approximation. We compare
SPADIS to the state-of-the-art method SConES, on a dataset of
Arabidopsis Thaliana genotype and continuous flowering time
phenotypes. SPADIS has better regression performance in 12
out of 17 phenotypes on average, it identifies more candidate
genes and runs faster. We also investigate the use of Hi-C data
to construct SNP-SNP network in the context of SNP selection
problem for the first time, which yields slight but consistent
improvements in regression performance. SPADIS is available
at http://ciceklab.cs.bilkent.edu.tr/spadis

Index Terms—Phenotype Prediction, GWAS, SNP Selection,
SNP-SNP Networks, Hi-C, Submodular Function.

I. INTRODUCTION

Genome-Wide Association Studies (GWAS) have led to a
wide range of discoveries over the last decade where indi-
vidual variations in DNA sequences, usually single nucleotide
polymorphisms (SNPs), have been associated with phenotypic
differences (Visscher et al., 2017). However, individual vari-
ants often fail to explain the heritability of complex traits
and diseases (Manolio et al., 2009; Goldstein et al., 2009)
as a large number of variants contribute to these phenotypes
and each variant has a small overall effect (Kraft and Hunter,
2009; Christensen and Murray, 2007). Thus, research efforts
have focused on evaluating and associating multiple loci with
a given phenotype (Moore et al., 2010; Cordell, 2009). Indeed,
detecting genetic interactions (epistasis) among pairs of loci
has proven to be a powerful approach as discussed in several
reviews (Phillips, 2008; Cordell, 2009; Wang et al., 2010a;

Wei et al., 2014).
Detecting higher-order combinations of genetic variations

is computationally challenging. For this reason, exhaustive
search approaches have been limited to small SNP counts (up
to few hundreds) (Nelson et al., 2001; Ritchie et al., 2001;
Lou et al., 2007; Lehár et al., 2008; Hua et al., 2010; Fang
et al., 2012) and greedy search algorithms have been limited
to searching for small combinations of SNPs – mostly around
3 (Storey et al., 2005; Evans et al., 2006; Yosef et al., 2007;
Varadan and Anastassiou, 2006; Varadan et al., 2006; Zhang
and Liu, 2007; Herold et al., 2009; Tang et al., 2009; Jiang
et al., 2009; Zhang et al., 2010; Wang et al., 2010b; Wan
et al., 2010; Guo et al., 2014; Ding et al., 2015; Ayati and
Koyutürk, 2016; Tuo et al., 2017). Multivariate regression-
based approaches have been used (Shi et al., 2008; Wu et al.,
2009; Cho et al., 2010; Wang et al., 2011a; Rakitsch et al.,
2012). However, (i) their predictive power is limited, (ii)
incorporation of biological information in the models is not
straightforward, and finally (iii) selected SNP set is often not
biologically interpretable (Azencott et al., 2013).

Assessing the significance of loci by grouping them based
on functionally related genes, such as pathways, reduces the
search space for testing associations and leads to discovery of
more interpretable sets (Wang et al., 2011b; de Leeuw et al.,
2015). Unfortunately, using gene sets and exonic regions for
association restricts the search space to coding and nearby-
coding regions. However, most of the genetic variation fall into
non-coding genome (Hindorff et al., 2009) and our knowledge
of pathways are incomplete.

An alternative strategy to avoid literature bias is to select
features on the SNP-SNP networks by applying regression
based methods with sparsity and connectivity constraints
(Jacob et al., 2009; Huang et al., 2011). These regularized
methods jointly consider all predictors in the model as op-
posed to univariate test of associations. Nevertheless, using
a SNP-SNP interaction network with these regression based
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methods on GWAS yields intractable number of interactions.
An efficient method called SConES uses a minimum graph
cut-based approach to select predictive SNPs over a network
of hundreds of thousands of SNPs (Azencott et al., 2013;
Sugiyama et al., 2014). In their network, edges denote either
(i) spatial proximity on the genomic sequence or (ii) functional
proximity as encoded with PPI closeness of loci. The method
selects a connected set of SNPs that are individually related
to the phenotype under additive effect model and has been
shown to perform better than graph-regularized regression-
based methods.

We argue that enforcing the selected features to be in
close proximity encourages the algorithm to pick features that
are in linkage disequilibrium or that have similar functional
consequences. One extreme choice of this approach would
be to choose all SNPs that fall into the same gene if they
are individually found to be significantly associated with
the phenotype. This leads to selecting functionally redundant
SNPs and variants that hit diverse processes may not be
recovered when there is an upper limit on the number of SNPs
to be selected. Genetic complementation on the other hand, is
a well-known phenomenon where multiple loci in multiple
genes need to be mutated in order to observe the phenotype
(Fincham, 1968). While there are numerous examples of
long-range (trans) genetic interactions for transcription control
(Miele and Dekker, 2008) and long-range epistasis is evident
in complex genetic diseases such as type 2 diabetes (Wiltshire
et al., 2006), such complementary effects may not be treated
with this approach. For disorders with complex phenotypes
like Autism Spectrum Disorder (ASD), this would be even
more problematic since multiple functionalities (thus gene
modules in the network) are required to be disrupted for an
ASD diagnosis, whereas damage in only one leads to a more
restricted phenotype (Geschwind, 2008).

We hypothesize that diversifying the SNPs in terms of
location would result in covering complementary modules in
the underlying network that cause the phenotype. Based on
this rationale, here, we present SPADIS, a novel SNP selection
algorithm over a SNP-SNP interaction network that favors (i)
loci with high univariate associations to the phenotype and (ii)
that are diverse in the sense that they are far apart on a loci
interaction network. In order to incorporate these principles,
we design a submodular set scoring function. To maximize this
set function, we use a greedy algorithm that is guaranteed to
return a solution which is a constant factor (1− 1/e) approxi-
mate to the optimal solution. We compare our algorithm to the
state-of-the-art, on a GWAS of Arabidopsis Thaliana (AT) with
17 continuous phenotypes related to flowering time (Atwell
et al., 2010). Replicating the experimental setting of Azencott
et al. 2013 on the same dataset, we show that SPADIS has
better regression performances on average in 12 out of 17
phenotypes with better runtime performance. We show that
our method doubles the number of candidate genes identified
and hits 23% more Gene Ontology (GO) terms indicating that
selection of SPADIS is more diverse.

Finally, we also employ Hi-C data in the context of SNP se-

lection problem for the first time. Emerging evidence suggests
that the spatial organization of the genome plays an important
role in gene regulation Bickmore (2013) and contacts in 3D
have been shown to affect the phenotype (Martin et al.,
2015; Jäger et al., 2015). Hi-C technology can detect the
3D conformation genome-wide and yield contact maps which
show loci that reside nearby in 3D (van Berkum et al., 2010).
We construct a SNP-SNP network based on genomic contacts
in 3D as captured by Hi-C and use this network to guide SNP
selection. Our results show that use of Hi-C based network
provides a slight overall increase in the prediction performance
for all methods tested.

II. MATERIALS AND METHODS

The problem is formalized as a feature selection problem
over a network of SNPs. Let n be the number of SNPs. The
problem is to find a SNP subset S with cardinality at most k �
n that explains the phenotype, given a background biological
network G(V,E). In G, vertices represent SNPs and edges link
loci which are related based on spatial or functional proximity
as explained in sections below. G can be a directed or an
undirected graph.

We utilize a two-step approach. In the first step, we assess
the relation of each SNP to the phenotype individually using
the Sequence Kernel Association Test (SKAT) (Wu et al.,
2011). In the second step, our goal is to maximize the total
score of SNP set while ensuring the selected set consists of
SNPs that are remotely located on the network. Under the
additive effect model, we define the set function shown in
Equation 1 to encode this intuition.

F (S) =
∑
i∈S

ci + β

1−
∑
j∈S

K(i, j)

2k

 (1)

K(i, j) =

{
1− d(i, j)/D d(i, j) ≤ D, i 6= j

0 otherwise

Here c is the scoring vector such that ci ∈ R≥0 indicates
the level of the i-th SNP’s association with the phenotype.
D ∈ R>0 is a distance limit parameter and d(i, j) is the
shortest path between vertices i, j ∈ V . Note that, d(i, j) =∞
if j is not reachable from i. K(i, j) is a function that penalizes
vertices that are in close proximity. That is, the vertices i
and j are considered close if and only if d(i, j) ≤ D. The
second parameter, β ∈ R≥0 controls the penalty to be applied
when two close vertices are jointly included in S. Note that,
K(i, j) ∈ [0, 1], ∀i, j ∈ V and ci is non-negative.

Our aim is to find a subset of SNPs S∗ of size k that
maximizes F :

S∗ = argmax
S⊆V,|S|≤k

F (S) (2)

Subset selection problem with cardinality constraint is NP-
hard. Thus, exhaustive search is infeasible when k or V
is not small. Hence, heuristic algorithms are required. We
make use of the fact that the function defined in Equation
1 is submodular. Although submodular optimization itself is
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Algorithm 1 Greedy Algorithm

Input: Set function F , ground set V , cardinality constraint
k ≤ |V |.

Output: Set S ⊂ V such that |S|= k.
1: S ← ∅
2: while |S|< k do
3: S ← S ∪ argmax

x∈V \S
F (S ∪ x)

4: end while

NP-hard as well (Krause and Guestrin, 2005), the greedy
algorithm given in Algorithm 1, proposed by Nemhauser
et al. 1978, guarantees a

(
1− 1

e

)
-factor approximation to the

optimal solution under cardinality constraint for monotonically
non-decreasing and non-negative submodular functions. The
greedy algorithm starts with an empty set and at each step,
adds an element that maximizes the set function. Note that,
this is equivalent to adding elements with the largest marginal
gain.

For each of the k iterations in the algorithm, where k is
the size of S∗, a single source shortest path problem needs
to be solved. Hence, the worst-case time complexity of the
algorithm is O(k(V + E)) assuming that all edge weights
are positive. For undirected graphs, K(i, j) = K(j, i) and
computations can be reduced by half even though the time
complexity remains the same.

A submodular function is a set function for which the gain
in the value of the function after adding a single item decreases
as the set size grows (diminishing returns). Next, we prove that
F is a submodular set function.

Definition 1. V is the ground set, F : 2V → R and S ⊆ V .
The marginal gain of adding one element to the set S is:
G(S, x) = F (S ∪ {x})− F (S) where x ∈ V \ S.

By plugging the definition of F in Equation 1, we can
rewrite G.

G(S, x) = F (S ∪ {x})− F (S)

=
∑

i∈S∪{x}

ci+β
∑

i∈S∪{x}

1−
∑

j∈S∪{x}

(
K(i, j)

2k

)
−

∑
i∈S

ci + β
∑
i∈S

1−
∑
j∈S

(
K(i, j)

2k

)
= cx + β − β

2k

∑
i∈S

(K(i, x) +K(x, i))

(3)

Definition 2. A function F that is defined on sets, is
submodular if and only if G(A, x) ≥ G(B, x) or equivalently
F (A∪{x})−F (A) ≥ F (B ∪ {x})− F (B) for all sets A,B
where A ⊂ B ⊂ V and x ∈ V \B.

Lemma 1. F (S) given in Equation 1 is submodular.

Proof. F is submodular if and only if the following is true:

G(A, x)−G(B, x) ≥ 0 (4)

Let H(A,B, x) be,

H(A,B, x) = G(A, x)−G(B, x)

=

(
cx + β − β

2k

(∑
i∈A

(K(i, x) +K(x, i))

))

−

(
cx + β − β

2k

(∑
i∈B

(K(i, x) +K(x, i))

))

=
β

2k

 ∑
i∈B\A

(K(i, x) +K(x, i))


(5)

Since K(i, j) ≥ 0 ∀i, j ∈ V , H(A,B, x) ≥ 0. Hence, F is
submodular.

To be able to use the greedy algorithm, F must be a mono-
tonically non-decreasing and non-negative function. Below, we
prove that F satisfies these properties.

Definition 3. F (S) is monotonically non-decreasing func-
tion for sets if and only if the corresponding gain function is
always non-negative i.e. G(S, x) ≥ 0 for all sets S ⊂ V and
x ∈ V .

Lemma 2. F (S) given in Equation 1 is monotonically non-
decreasing for sets for which |S|≤ k .

Proof. Since K(i, j) ≤ 1 ∀ij, G(S, x) is bounded such that;

(6)

G(S, x) ≥ cx + β − β

2k

∑
i∈S

(1 + 1)

≥ cx + β − β

2k
2|S|

≥ cx + β(1− |S|/k)
≥ (1− |S|/k)
≥ 0

Since |S|≤ k, F (S) is monotonically non-decreasing.

Lemma 3. F (S) given in Equation 1 is non-negative for sets
|S|≤ k.

Proof. For any set S = {v1, v2, ..., vn} with cardinality n, let
Si denote the subset of S that contains elements up to the
i-th element, i.e. Si = {v1, v2, ..., vi} and Si = ∅ for i = 0.
F (S) can be decomposed as the summation of marginal gain
functions:

F (S) = F (∅) +
n∑

i=1

G(Si−1, vi) (7)

F (∅) = 0 by the definition of F (S). Lemma 2 states that
G(S, x) ≥ 0 for all sets S ⊂ V and x ∈ V \ S when |S|≤ k.
Hence, F (S) ≥ 0 for all sets S ⊂ V where |S|≤ k.
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III. RESULTS

A. Dataset

We use AT genotype and phenotype data from Atwell et al.
2010. The dataset includes 17 phenotypes related to flowering
times (up to m = 180 samples and n = 214, 051 SNPs).
Gene-gene interaction network is constructed based on TAIR
protein-protein interaction data1. SNPs with a minor allele
frequency (MAF) < 10% are disregarded (n = 173, 219 SNPs
remained) and population stratification is corrected using the
principal components of the genotype data (Price et al., 2006).
Candidate genes pertaining to each phenotype is retrieved from
Segura et al. (2012) and used for validating the models. Gene
Ontology (GO) annotations are obtained from TAIR (Berardini
et al., 2004). We obtain the Hi-C data for AT from Wang
et al. 2015 and process the intra-chromosomal contact matrices
using the Fit-Hi-C method (Ay et al., 2014).

B. Networks

We construct four undirected SNP-SNP networks. To be
able to compare the performances of SPADIS and SConES in
a controlled setting, we use three networks defined in Azencott
et al. 2013: The GS network links loci that are adjacent on the
DNA. The GM (gene membership) network additionally links
two loci if both loci fall into the same gene or they are both
close to the same gene below a threshold of 20,000 bp. The
GI (gene interaction) network also links any two loci if their
nearby genes are interacting in the protein interaction network.
Note that, GS ⊂ GM ⊂ GI . To investigate the usefulness
of the 3D conformation of the genome in this setting, we
introduce a new network, GS-HICN which connects loci that
are close in 3D in addition to 2D (GS). That is, an edge
is added on top of the GS network for loci pairs that are
significantly close in 3D (FDR adjusted p-value ≤ 0.05). All
networks contain 173,219 vertices. The number of (undirected)
edges are as follows: GS: 173,214, GM: 11,661,166, GI:
18,134,516, GS-HICN: 2,919,607.

C. Compared Methods

We compare SPADIS with the following methods using the
networks described in Networks section:
SConES: It is a network-constrained SNP selection method
that provides a max-flow based solution (Azencott et al.,
2013).
Univariate: We run a univariate linear regression and select
SNPs that are found to be significantly associated with the
phenotype (FDR-adjusted p-value ≤ 0.05) (Yekutieli and
Benjamini, 1999). If more than k SNPs are found to be
associated, the most significant k SNPs are picked.

1ftp://ftp.arabidopsis.org/home/tair/Proteins/

Lasso: The Lasso regression (Tibshirani, 1996) that minimizes
the prediction error with an the `1-regularizer of the coefficient
vectors. We use the SLEP implementation (Liu et al., 2009).
GraphLasso and GroupLasso: We also compare our method
to GraphLasso and GroupLasso (Jacob et al., 2009) through
simulations, using the implementation in the SLEP package.
Due to the prohibitive runtimes of these algorithms, they
are excluded from the comparison on AT dataset (see Time
Performance section). For GraphLasso, SNP pairs connected
with an edge constitute a separate group, i.e. one such group
is constructed for every edge in the network. For GroupLasso,
the groups are defined as follows. For GS: every consecutive
SNP pair on the genome constitute a single group. This is
equivalent to setting a group for an edge. For GM: the SNPs
near (< 20 kbp) of a gene are considered as a group, and
a separate group is constructed for every gene. For GI: the
SNPs that are near interacting genes in the PPI network are
combined and formed a single group. The SNPs that are near
genes but do not participate in the interaction network are
assigned to groups based on their gene membership as in GM.
For GS-HICN: SNP pairs connected with an edge is considered
as a separate group similar to the groups in GraphLasso.

D. Experimental Setup Details

We consider the following experimental settings.
1) Experimental Setting 1 (ES1): The first one is SConES’

setting explained in (Azencott et al., 2013). In a 10-fold cross
validation setting, a parameter search is conducted for each
fold separately. The parameters that maximize the desired
objective (e.g., stability, regression performance) are selected.
With the best parameter set, the SNPs are selected with the
corresponding method (please see Parameter Selection section
for details). Then, for evaluation, ridge regression is performed
on the complete dataset using a 10-fold cross validation setting
using this SNP set. Although this strategy is adopted due to the
limited dataset size in Azencott et al. 2013, it also implicates
that the test data is used during the feature selection step which
might lead to memorization. We use this setting to check if we
could replicate the values reported in (Azencott et al., 2013).
Using this setting, we show that we can successfully reproduce
the reported precision of the selected SNPs and R2 values of
SConES in Supplementary Figures 1 and 2, respectively.

2) Experimental Setting 2 (ES2): We use nested cross-
validation, the outer 10-fold cross-validation splits the data
into training and test sets, and the inner loop is used to select
the parameters via 10-fold cross-validation on the training set.
In the inner loop at each fold, the scheme described in ES1
is run on the training data. Note that, parameter selection is
repeated 10 times in ES2 and the test data is never seen by
the algorithms. Unless otherwise stated, we use ES2 in all
experiments.

E. Parameter Selection

A fair comparison among such a diverse range of methods
is challenging. SPADIS operates with a cardinality constraint,
whereas other methods have parameters that affect the number
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of selected SNPs. To account for these differences, we consider
two parameter selection settings.
Parameter Selection Setting 1 (PSS1). We measure the pre-
dictive power of methods by constraining them to select a
fixed number of SNPs (k). We achieve this by applying binary
search over a range of sparsity parameter values that yields
close to k chosen SNPs.
Parameter Selection Setting 2 (PSS2). We allow the methods
to select SNP sets of different sizes as long as the set size is
smaller than an upper bound. In AT data, this upper bound is
set as the 1% of the total number of SNPs which is 1733 (as
also done in Azencott et al. 2013).

In each setting, we select parameters either based on sta-
bility denoted with (S) (via consistency index) or regression
performance denoted with (R). For consistency index based
parameter selection (S), the common set of SNPs consistently
selected across all training folds are chosen. In regression
based parameter selection (R), SNP set is selected by a
single run with the best parameter set on the training data.
For SPADIS, we use only the regression performance (R) as
SPADIS performs better with this strategy, for other methods
we experiment with both of them. More details on parameter
selection for each method are given in Supplementary Text
3.1.

F. Time Performance

We report the CPU runtime of all methods, across a range of
number of SNPs (from 1000 to 173,219) and four networks.
The measurements are taken on a single dedicated core of
Intel i7-6700HQ processor. The runtime tests are conducted
for one cross-validation fold with preset parameters on a single
phenotype FT Field, which has the most number of samples
available (m = 180).

We consider a method to time-out if it takes more than 103

seconds for a single run because the runtime of the complete
test (10 folds with parameter selection) would take more than
1 CPU week (103 seconds x 10 evaluation folds x 10 training
folds x at least 7 parameters).

Results show that SPADIS is more efficient time-wise than
all other methods except the Univariate method (Fig. 1).
GroupLasso and GraphLasso do not scale to SNP selection
problem in GWAS. Hence, they are not included in the perfor-
mance experiments that are described in Phenotype Prediction
Performance section.

G. Simulated Experiments

To assess the performance of the methods in a controlled
setting, we conduct simulated experiments. We randomly
choose 200 samples (out of 1307) in AT data. We select 500
random SNPs with MAF > 10% as follows: We first select 25
genes randomly. Then, we select 20 random SNPs near (< 20
kbp) each gene. In each experiment, we designate 15 SNPs
to be causal and generate phenotypes using the regression
model: y = Xw + ε, where y ∈ Rm×1 is the phenotype
vector, X ∈ Rm×n is the genotype matrix, w ∈ Rn×1 is the
weight vector for each SNP, and ε is the error term. Both

Fig. 1: CPU time measurements of SPADIS, SConES, Uni-
variate, Lasso, GroupLasso and GraphLasso from 1.000 to
173.219 SNPs on four different networks. GS, GM, GI, GS-
HICN respectively from left to right. Note that, runtimes of
GroupLasso and GraphLasso are the same for GS and GS-
HICN networks by construction.

w and ε are normally distributed. We sample the weights
of the causal SNPs from a standard normal distribution. We
argue that in a real-life setting, there is no clear separation
between causal and non-causal SNPs i.e. all SNPs play some
part in explaining the phenotype at varying degrees. Hence,
we sample the weights of the non-causal SNPs from a normal
distribution with zero mean and 0.1 standard deviation instead
of setting them directly to zero.

We compare the methods under four different simulation
settings: (a) the causal SNPs are randomly selected, (b) the
causal SNPs are selected randomly such that they are near
different genes, (c) 5 causal genes are determined and 3 SNPs
near each causal gene are selected for a total of 15 SNPs, and
(d) the causal SNPs are selected near a single random gene.

For each method, we adopt the parameter selection strategy
PSS1 and experimental setting ES2 and select the parameters
such that the number of selected SNPs is k. We test with
k = 5, 10 and 15. For evaluation, we consider three metrics:
(i) Precision as the ratio of the number of causal SNPs
that are selected and the total number of SNPs selected, (ii)
Number of causal genes hit (a gene is hit if a SNP near that
gene is selected), (iii) Pearson’s squared correlation coefficient
(R2). We perform 10-fold cross-validation 50 times and report
averages over all folds. The 95% confidence interval for the
means of the specified statistics are calculated assuming a
t-distribution on the error.

In all experimental settings except the fourth on the GS
network, SPADIS outperforms other methods when k is less
than the number of causal SNPs (Fig. 2). When the k is equal
to the number of causal SNPs, Lasso catches up to SPADIS
and they outperform all other methods. In the fourth setting
where the assumptions of SPADIS are violated, SPADIS un-
derperforms compared to others in term of Precision. However,
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(a) The causal SNPs are selected randomly.

(b) The causal SNPs are randomly selected from different genes without replacement.

(c) 5 causal genes are determined and 3 SNPs near each causal gene are selected for a total of 15 SNPs.

(d) The causal SNPs are selected such that they are near the same gene.

Fig. 2: The simulation results of SPADIS, SConES(R), SConES(S), Lasso, Univariate, GroupLasso and GraphLasso on GS
network for k = 5, k = 10 and k = 15. (a) Causal SNPs are picked randomly. (b) All causal SNPs are from different genes.
(c) Causal SNPs are from 5 different genes (d) All causal SNPs are from the same gene. (Left) Pearson’s squared correlation
coefficient, (Middle) Number of causal genes hit, (Right) Precision calculated for causal SNPs hit. Black bars indicate the 95%
confidence intervals.

its regression performance is still comparable. Note that, this is
the setting where methods with graph connectivity assumption
should perform well (casual SNPs are close). However, we
argue that all associated SNPs are rarely that close for complex
traits.

Next, we check the number of causal genes hit (GenesHit)
for all methods. In all settings, GenesHit and R2 are correlated
(i.e., the higher the number of genes hit, the higher the
R2). Yet, there is no evident correlation between Precision
and R2. For instance, Lasso generally have low Precision,
yet perform well in regression. We argue that high number
of hit genes indicates high regression performance because
then the selected SNPs are unlikely to be correlated as they
fall into different genes. Such SNPs are likely to contain
complementary information and can explain the phenotype
better. This constitutes the core idea of SPADIS.

H. Phenotype Prediction Performance

First, we compare the regression performances of
SConES(S), SConES(R) and SPADIS using the Pearson’s
squared correlation coefficient R2 under ES2 and PSS1.
Here, we report results wherein all approaches select 500
SNPs (see Fig. 4). The results for k = 100, 250, and 1000 are
provided in Supplementary Figures 3, 4 and 5 respectively.

Out of 68 tests that is performed for k = 500 over
17 phenotypes using 4 different networks as input, SPADIS
outperforms SConES(S) in 46 tests and SConES(R) in 47
tests. The improvement in R2 is up to 0.15 in a single

phenotype and 0.03 on average. Overall, this corresponds to
an improvement in 12 out of 17 phenotypes, when they are
averaged over all networks. We test whether the differences in
R2 are statistically significant (FDR adjusted p-value ≤ 0.05)
using the method described in Hittner et al. (2003). The
multiple hypothesis correction is conducted as in Yekutieli and
Benjamini (1999). Three results of SPADIS are found to be
significantly better than SConES, whereas none of the results
of SConES is found to be significantly better than SPADIS.
The same comparison (k = 500) under ES1 instead of ES2,
can be found in Supplementary Figure 6.

The improvement of SPADIS over SConES in regression
performance for a varying number of selected SNPs (k = 100,
250, 500, 1000) is summarized in Fig. 3. We observe that
performance of both methods increase as the set size grows.
Therefore, for a fair comparison, we believe that it is important
to compare the methods when they select the same number of
SNPs. For all k values tested, SPADIS provides a consistent
improvement in regression performance over SConES on av-
erage. In addition, the improvement of SPADIS is particularly
prevalent when the number of selected SNPs is smaller. When
k is small, the additional information leveraged by SPADIS
becomes more evident because there are more room for
improvement in the regression performance. We argue that this
property of SPADIS may provide an advantage in complex
phenotypes with large number of causal SNPs.

A more natural setting for SConES and other methods is
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Fig. 3: Figure shows the improvement of SPADIS over
SConES in terms of Pearson’s squared correlation coefficient
(left) and number of distinct candidate genes-hit (right) for
different number of SNPs selected, k. All values shown are
averaged over 17 phenotypes. Blue bar indicates the maximum
of SConES(S) and SConES(R) for the corresponding network
and k value. The red bar indicates the amount of improvement
of SPADIS over SConES.

to let each method decide the number of SNPs based on their
parameter search. We perform a second set of experiments
(PSS2) in which we allow methods to pick the SNP set size
as long as the set sizes are bounded from above by 1% of all
SNPs, which is 1733. We let SPADIS select the maximum
number of SNPs permitted i.e. 1733. In this setting, we
compare SPADIS with SConES(S), SConES(R), Univariate,
Lasso(S) and Lasso(R) on all phenotypes.

In PSS2, SPADIS is the best performing method on 8 out
of 17 phenotypes on GS network (Fig. 5). Similarly, SPADIS
performs best in 9 phenotypes on GM and GS-HICN networks
and 8 on the GI network (see Supplementary Figures 7-9).
When regression performances (R2) are averaged over all
phenotypes for each method, SPADIS outperforms all other
methods, on every network (see Fig. 6). The next two best per-
forming methods are SConES(R) and Lasso(R), respectively.
Unsurprisingly, the methods that are optimized according to
R2 are better in regression than their stability optimized
versions on average. Next, we check whether the differences
between SPADIS and other methods are statistically significant
as it was done for PSS1. Out of 68 experiments of SPADIS (17
phenotypes × 4 networks) SPADIS is found to be significantly
better than (i) SConES(R) in 2 experiments, (ii) Lasso(R)
in 6 experiments, (iii) SConES(S) in 14 experiments, (iv)
Univariate in 17 experiments, and finally, (v) Lasso(S) in 28
experiments. In none of the experiments, SPADIS is found to
be significantly worse than its counterparts. See Supplemen-
tary Figures 10-12 for the corresponding results.

I. Diverse Selection of SNPs

The goal of SPADIS is select a diverse set of SNPs over the
SNP-SNP network. We hypothesize that SNPs selected with
SPADIS correspond to more diverse biological processes and
that the prediction performance increase is due to this effect.

Here, we investigate whether this hypothesis is supported by
empirical values.

First, we compare the average number of candidate genes
hit by each method (out of 165 candidate genes related with
flowering time). A gene is considered hit if the method selects
a SNP near the gene (≤ 20 kbp). Number of distinct candidate
genes hit by SPADIS lies in the interval [18.9, 25.2], which is
an increase between 31% and 66% compared to the maximum
amount SConES(S) or SConES(R) could detect over different
networks (see TABLE I). It is an indication that SPADIS
realizes its goal which is to cover the genome more even a
limited number of SNPs selected.

In order to test our intuition that SPADIS discovers SNPs
that are related to diverse processes, we check how many dis-
tinct GO biological processes are hit by the SNPs discovered
in each method. As shown in TABLE I, SNPs discovered by
SPADIS covers 490 GO-terms on average (by hitting genes
annotated with those GO terms). This is an increase of 21%
and 33% over the best SConES(S) and SConES(R) results on
different networks, which again supports our claim.

Finally, we compare the methods with respect to the ratio of
the number of selected SNPs that are near a candidate gene and
the total number of selected SNPs, as done in Azencott et al.
2013 for the sake of completeness. This metric measures the
precision of the selected SNPs, hence we denote it as such.
As shown in TABLE I, SPADIS consistently underperforms
in this metric. Nevertheless, we argue that it is not a good
measure of how well the methods perform. Precision considers
all SNPs near a candidate gene as true positives. That is
why the methods that favor connectivity of SNPs on the
network perform well with respect to this metric. Consider
the following extreme case: a method that selects solely a
set of SNPs near a single candidate gene can easily achieve
precision value of 1.0. Hence, precision indirectly rewards the
selection of SNPs that fall into a smaller number of genes.
On the other hand, the diversification of the SNPs in terms
of genes and biological processes help explain the phenotype
better. This metric is in clear contrast with the number of genes
hit, hence the regression performance - see Table I.

J. Contribution of the Hi-C Data

We evaluate the information leveraged by using the Hi-C
data by comparing, (i) when using other networks (GS, GM,
and GI) versus (ii) when using GS-HICN, in all 17 phenotypes
for k = 500. As shown in Fig. 7, Hi-C data provides slight
but consistent improvements in regression performance over
all networks on average: 0.7% higher than GS and GM, 1.3%
higher than GI, on average. Also as it can be seen in TABLE
I, Hi-C data using SPADIS covers the largest number of
biological processes hit: 2.2% more than GS, 4.5% more than
GM and 10.6% higher than GI on average. Moreover, the
improvement is consistent over phenotypes compared to GM
and GI: in 15 out of 17 phenotypes, GS-HICN covers more
biological processes compared to GM, and this number is 16
when compared to GI, and 10 when compared to GS. Note
that, GS ⊂ GS-HICN but GM, GI 6⊂ GS-HICN. We argue that
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Fig. 4: The regression performances of SPADIS, SConES(R) and SConES(S) on AT data for k = 500. The rows denote
phenotypes and the columns denote networks. The numbers in each cell show Pearson’s squared correlation coefficients
attained by SPADIS and SConES respectively. The background color encodes the difference in correlation coefficients between
SPADIS and SConES. Red indicates SPADIS performs better than SConES while blue indicates otherwise. Differences that
are found to be statistically significant are shown in bold and white and marked with star (*).

Fig. 5: The regression performances of SPADIS, SConES(S),
SConES(R), Univariate, Lasso(R) and Lasso(S) for PSS2 for
GS network and all phenotypes. Rows are phenotypes and
the columns are compared methods. The numbers in each
cell show Pearson’s squared correlation coefficients for the
corresponding phenotype and method. The average cardinal-
ity of the selected SNP sets (over 10 evaluation folds) are
given in parentheses. For each phenotype, the best performing
method(s) are shown with bold and red font. While determin-
ing the best performing method(s), differences smaller than
two significant digits are disregarded.

similar results of GS-HICN and GS is because GS is a subset
of GS-HICN. We observe similar trends when k = 100,
k = 250 and k = 1000 as well. See corresponding results
in Supplementary Figures 13-15 and Supplementary Tables 1-
3.

IV. DISCUSSION

SPADIS seeks for a subset of SNPs on a network derived
from biological knowledge, such that the selected SNP set is
associated with the phenotype. Even though there are methods
for tackling the same problem with a similar formulation, they
rest on the assumption that causal SNPs tend to be connected
on the network. Thus, they incorporate constraints that favor
the connectivity of selected SNPs. However, we argue that

Fig. 6: Average regression performances of SPADIS,
SConES(S), SConES(R), Univariate, Lasso(R) and Lasso(S)
over 17 AT phenotypes, using PSS2. X-axis shows the com-
pared methods and Y-axis shows the Pearson’s squared cor-
relation coefficient (R2). For each network, the methods are
ordered in descending order of R2.

SNPs affecting diverse biological processes would be comple-
mentary and explain the phenotype better. The SNPs that are
nearby might not provide additional predictive power as they
can be in haplotype blocks and bring redundant information.
To derive meaningful insights, a method that can highlight
different parts of the networks, thus, different potentially hit
biological processes, will be useful. To address this issue, we
propose a new formulation: As opposed to enforcing graph
connectivity over the set of selected features, we set out to
discover SNPs that are far apart in terms of their location
on the genome, which translate into diversity in function. To
the best of our knowledge, none of the current approaches
operate with this principle. Our results indicate that selecting
SNPs remotely located on the network indeed hit genes that
are related to a larger number of distinct biological processes.
This property can help in gaining more biological insights into
the genetic basis of the complex traits and diseases.
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Fig. 7: The regression performances of the methods for GS, GM, GI, GS-HICN networks on AT data for k = 500. The
rows denote phenotypes and columns denote methods. The figure focuses on the Pearson’s squared correlation coefficients
differences between GS-HICN and other networks. Left : GS-HICN vs GS , Middle : GS-HICN vs GM, Right : GS-HICN vs
GI. The background is colored in accordance with their differences. Red indicates GS-HICN performs better than the other
network while blue indicates vice versa.

TABLE I: Table shows statistics about the genes and biological
processes hit by the selected SNPs for each method when the
number of selected SNPs is 500. The values are averages over
all 17 phenotypes. Genes-Hit is the number of distinct can-
didate flowering time genes identified. GO-Hit is the number
of distinct biological processes hit by the selected SNPs. A
process is considered hit if the method chooses a SNP near a
gene which is annotated with that biological term. Precision is
the ratio of the number of selected SNPs near candidate genes
and the total number of selected SNPs. R2 is the Pearson’s
squared correlation coefficient.

Network Method Genes-Hit GO-Hit Precision(%) R2

GS SPADIS 24.6 500 6.5% 0.459
GS SConES(S) 13.3 347 9.0% 0.426
GS SConES(R) 14.8 375 8.7% 0.428
GM SPADIS 25.2 489 6.4% 0.458
GM SConES(S) 15.3 383 8.6% 0.425
GM SConES(R) 15.4 385 8.6% 0.430
GI SPADIS 18.9 462 5.5% 0.451
GI SConES(S) 12.7 373 7.0% 0.424
GI SConES(R) 14.4 381 8.0% 0.422
GS-HICN SPADIS 24.8 511 6.6% 0.464
GS-HICN SConES(S) 16.1 391 8.7% 0.437
GS-HICN SConES(R) 15.6 387 8.6% 0.434

The technical contribution of this paper involves formulating
this principle through a submodular function. We empirically
show that SPADIS can recover SNPs known to be associated
with the phenotype and the optimization is efficient. Another
alternative would be to formulate an optimization function that
directly rewards the number of distinct process hits. However,
given the incomplete knowledge of the annotations, this could
lead to literature bias. Therefore, we refrain from incorporating
such a term directly in the model, instead, we let the diversity
on the 2D and 3D distances lead the selection.

To score each SNPs relevance to the phenotype, we use
sequence kernel association test (SKAT) based on its success
and for drawing a fair comparison to the existing literature.

There are other alternatives such as Pearson’s correlation
coefficient, or maximal information coefficient Reshef et al.
(2011), which can be used as long as the computed scores are
non-negative or are transformed to a non-negative range.

For the first time, we investigate the utility of Hi-C data for
selecting a SNP set. Our results show that Hi-C data provides
consistently slight improvements in regression performance.
We think it is a promising source of information for SNP
association. We currently limit the use of data to intra-
chromosomal contacts due to much better higher resolution
compared to inter-chromosomal contact maps (2 kbp vs.
20 kbp). We also discard contacts that fall outside of the
significance range. These choices are likely to over-constrain
the method, and further research is needed to fully utilize such
information, which we leave as future work.

SPADIS can be used for discovering associated SNP sets for
complex genetic disorders. For instance in autism, the former
research efforts have mostly focused on identifying risk genes
through whole exome sequencing studies (De Rubeis et al.,
2014; Iossifov et al., 2014). However, close to 90% of the
point mutations fall outside of the coding regions (Hindorff
et al., 2009). Discovering a set of non-coding risk mutations
will certainly help to uncover the genetic architecture. Very
recently, a large-scale effort to collect GWAS data of autism
families along with clinical information of patients is reported
(Yuen et al., 2017). In this article, we introduce SPADIS and
benchmark its performance on AT genotype and phenotypes.
In future work, we plan to apply SPADIS on autism, which
should help explain the heterogeneity in wide spectrum of
phenotypes.
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