Abstract
Taxonomy is a fundamental organizing principle of biology, which ideally should be based on evolutionary relationships. Microbial taxonomy has been greatly restricted by the inability to obtain most microorganisms in pure culture and, to a lesser degree, the historical use of phenotypic properties as the basis for classification. However, we are now at the point of obtaining genome sequences broadly representative of microbial diversity by using culture-independent techniques, which provide the opportunity to develop a comprehensive genome-based taxonomy. Here we propose a standardized bacterial taxonomy based on a concatenated protein phylogeny that conservatively removes polyphyletic groups and normalizes ranks based on relative evolutionary divergence. From 94,759 bacterial genomes, 99 phyla are described including six major normalized monophyletic units from the subdivision of the Proteobacteria, and amalgamation of the Candidate Phyla Radiation into the single phylum Patescibacteria. In total, 73% of taxa had one or more changes to their existing taxonomy.